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Implementation of a Differential Flatness

Based Controller on an Open Channel

Using a SCADA System

Tarek Rabbani, Simon Munier, David Dorchies, Pierre-Olivier Malaterre,

Alexandre Bayen and Xavier Litrico — March 10, 2009

With a population of more than six billion people, food production from agriculture has

to be raised to meet the increasing demand of food supply. While irrigated agriculture provides

40% of the total food production, it represents 80% of the freshwater consumption worldwide.

In summer and drought conditions, efficient management of the scarce water resources becomes

crucial. The majority of open-channel irrigation canals are managed manually, however, with

large water losses leading to low water efficiency. The present article focuses on the development

of algorithms which could contribute to more efficient management of irrigation canals, used to

convey water from a source (generally a dam or reservoir located upstream) to water users.

Figure 1 illustrates the type of setting considered for this study. The intake structure,

figure 1a, withdraws water from the source of supply (river, lake, etc.) and directs it to the

irrigation system. The withdrawn water is conveyed to a distribution system by a conveyance

canal, as shown in figure 1b. The distribution system consists of canals with lateral offtakes

used to irrigate the fields. Gate structures, figure 1c, are used to control the water distribution.
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These cross-structures are operated in order to ensure an accurate water delivery for different

users and to guarantee the infrastructure safety. In particular, they are used to maintain minimum

water levels inside the reaches above the off-takes supply depths, and to prevent the canal from

overtopping. In this article, we present results from the implementation of an algorithm, derived

to perform real-time operations using a Supervision, Control And Data Acquisition (SCADA)

system with automatic centralized controller.

Irrigation canals can be viewed (and modeled) as delay systems since it takes time for the

water released at the upstream end to reach the user located downstream. In particular, open-loop

control can greatly improve real-time operations. We present an open-loop controller which can

deliver water at a given location in a given time. The design of such an open-loop controller

requires a method to invert the system of equations that describe the dynamics of the open

channel in order to parametrize the controlled input as a function of the desired output. The

Saint-Venant equations are widely used to describe water flow dynamics in a canal, yet these

equations are not easy to invert. We use a simplified model, the Hayami model, and differential

flatness, a method which can be used to design an open-loop controller and invert the dynamics

of the system.

Modeling of Open Channel Flow

Saint-Venant Equations

The Saint-Venant equations are named after Adhémar Jean-Claude Barré de Saint-Venant,

a French engineer who first derived these equations in 1871 in a note to the Comptes-Rendus de
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l’Académie des Sciences de Paris [1]. This model assumes one-dimensional flow, with uniform

velocity over the cross-section. The effect of boundary friction is accounted for through an

empirical law such as the Manning-Strickler friction law [2]. The average channel bed slope is

assumed to be small, and the pressure to be hydrostatic. Under these assumptions, the Saint-

Venant equations are written as follows:

∂A

∂t
+
∂Q

∂x
= 0 (1)

∂Q

∂t
+
∂ (Q2/A)

∂x
+ gA

∂H

∂x
= gA(Sb − Sf ) (2)

with A(x, t) the wetted cross-sectional area (m2), Q(x, t) the discharge (m3/s) across section

A(x, t), H(x, t) the water depth (m), Sf (x, t) the friction slope, Sb the bed slope and g the

gravitational acceleration (m2/s). Equation (1) expresses conservation of mass and equation (2)

expresses conservation of momentum.

These equations are completed by boundary conditions at cross structures, where the

Saint-Venant equations are not valid. The cross-structure at the downstream end of the canal can

be modeled by a static relation between the discharge, Q(L, t), and the water depth, H(L, t), at

x = L, i.e:

Q(L, t) = W (H(L, t)) (3)

where W (·) is an empirical function or a law derived from hydrostatics, usually writ-

ten analytically. For a weir overflow structure, this relation is given by Q(L, t) =

Cw
√

2gLw (H(L, t)−Hw)3/2 where g is the gravitational acceleration, Lw is the weir length,

Hw is the weir elevation, and Cw is the weir discharge coefficient.
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A Simplified Linear Model

A simplified version of the Saint-Venant equations is obtained by neglecting inertia terms

in the momentum equation (2), which leads to the diffusive wave equation (see [3] for more

details). Linearizing the Saint-Venant equations around a reference uniform flow Q0, and water

depth H0 leads to the Hayami equations:

D0
∂2q
∂x2 − C0

∂q
∂x

=
∂q

∂t
(4)

B0
∂h
∂t

+ ∂q
∂x

= 0 (5)

where C0 = C0(Q
0) and D0 = D0(Q

0) are the nominal celerity and diffusivity which depend

on Q0, and B0 is the average bed width. The quantities q(x, t), h(x, t) are the deviations from

the nominal uniform flow and water depth, respectively. Figure 2 illustrates the notations used

in this work.

The linearized boundary condition at the downstream end x = L is:

q(L, t) = bh(L, t) (6)

where b is the linearization constant equal to ∂W
∂H

(H0) in our case. The value of this constant

depends on the hydraulic structure geometry: length, height, and discharge coefficient.

The initial conditions are defined by the deviations from their nominal values, which are

assumed to be zero initially.

q(x, 0) = 0 (7)

h(x, 0) = 0 (8)
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Flatness-based Open-loop Control

Open-loop Control of a Canal Pool

We consider the design of a feed-forward controller of water discharge of an open-

channel hydraulic system. The system of interest is a one-dimensional hydraulic canal with

a cross-structure at the downstream end as shown in Figure 2. We assume that the desired

downstream discharge qd(t) is known, based on scheduled user demands. The control problem

consists in determining the upstream discharge q(0, t) that has to be delivered in order to meet this

downstream discharge qd(t). This is an inverse problem, or an open-loop control problem. Note

that by linearization, this is equivalent to determining Q(0, t) as a function of Qd(t) = Q0+qd(t)

in the flow regime considered here.

The appropriate upstream discharge control q(0, t) is the solution of the open-loop control

problem defined by the Hayami model equations (4)-(5), initial conditions (7)-(8), boundary

condition (6). Differential flatness, for details see “What is Differential Flatness?”, provides a

way to solve this open loop control problem [4], [3] in the form of a parametrization of the

input u(t) = q(0, t) as a function of the desired output y(t) = qd(t):

u(t) = e

(
−α

2

β2 t−αL)
)(

T1(t)− κT2(t) +
B0

b
T3(t)

)
. (9)

where

T1(t) =
+∞∑
i=0

di(e
α2

β2 ty(t))

dti
β2iL2i

(2i)!
, (10)

T2(t) =
+∞∑
i=0

di(e
α2

β2 ty(t))

dti
β2iL2i+1

(2i+ 1)!
, (11)
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T3(t) =
+∞∑
i=0

di+1(e
α2

β2 ty(t))

dti+1

β2iL2i+1

(2i+ 1)!
, (12)

α = C0

2D0
, β = 1√

D0
, and κ = B0

b
α2

β2 − α.

The convergence of the infinite series is guaranteed for output Gevrey functions y(t) of

order lower than 2 [4], [3]. The choice of the output, y(t), is defined by the demand, imposed

on the system and is discussed below.

Assessment of the Performance of the Method in Simulation

Before field implementation, it is needed to test the method in simulation, which we now

do. For this, we perform a simulation in which we apply the controller defined by equation (9),

called hereafter the Hayami controller, to the full nonlinear Saint-Venant model.

Simulation of Irrigation Canals (SIC)

The simulations are carried out using the software Simulation of Irrigation Canals (SIC).

SIC is developed by Cemagref and implements a semi-implicit Preissmann scheme to solve the

nonlinear Saint-Venant equations for open-channel one-dimensional flow [5], [6]. The test canal

has a length L = 4940 m, an average bottom slope 3.8 × 10−4 m/m, an average bed width

B0 = 2 m and Manning coefficient 0.024 m−1/3s.

Parameter Identification

The purpose of model identification is to identify the parameters, C0, D0 and b

corresponding to the Hayami model, that would best approximate the flow governed by the Saint-
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Venant equations. This is done with an upstream discharge in the form of a step input. The flow

discharges are monitored at the upstream and downstream positions. The hydraulic identification

is performed classically by finding the values of model parameters that minimize the least-square

error of the downstream discharge computed by the Hayami model and simulated by SIC. The

identification is performed using Saint-Venant equations generated data by SIC and around a

steady flow regime Q0 = 0.400 m3/s . This leads to the following parameters C0 = 0.84m/s,

D0 = 634m2/s, b = 0.61m2/s.

Desired Water Demand

The water demand curve is approximated from predicted consumption or by acknowledg-

ment of farmers of their consumption intentions. The requirements of consumption at offtakes

are usually modeled by a demand curve in the form of step function . However, depending on the

canal model used, such demand may require high values of upstream discharge. We define our

demand curve to be a linear transformation of a Gevrey function of the form y(t) = q1φ(t/T )

where q1, T are constants and φ(t) is a dimensionless bump function. The chosen Gevrey function

allows a transition from zero discharge flow for t ≤ 0 to a discharge flow equal to q1 for t ≥ T .

The function q1φ(t) is depicted in figure 3, (desired output).

Simulation Results

The Hayami control (equation (9)) is computed using the corresponding identified

parameters. The downstream discharge is defined by y(t) = q1φ(t), where q1 = 0.1 m3/s

and T = 3× 3600 s. Figure 3 shows the control u(t) and the desired output y(t).
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The control input u(t) is simulated with SIC to compute the corresponding downstream

discharge. Figure 4 shows the actual downstream discharge and the desired one.

The open-loop control based on the Hayami model is able to achieve an accurate motion

planning. The output discharge follows closely the desired one, even if the model is here different

from the Hayami model. We implemented this open loop controller on a real canal.

Implementation on Gignac Canal in Southern France

The experiments are performed on the Gignac Canal, located northwest of Montpellier,

south of France. The main canal is 50 km long, with a common feeder (8 km long) and two

branches on the left and the right bank of Hérault river (respectively 27 km and 15 km long).

Figure 5 shows a map of the feeder canal with its left and right branches.

The canal separates into two branches (figure 6a), the right bank and the left bank, at

Partiteur station. The canal is equipped at each branch with:

• Automatic regulation gate with position sensors (figure 6b).

• Water level sensors: The water level sensors are piezo-resistive sensors, whose resistance

varies with the water level.

• Ultrasonic velocity sensor (figure 6c): The ultrasonic velocity sensor measures the average

velocity of the water flow. The velocity measurement, water level measurement and the

geometric properties of the canal at the gate determine the flow discharge.

We are interested in controlling the water discharge of the right bank of the canal. The cross

section of the right bank is trapezoidal with average slope of 0.00035 m/m. The canal is managed
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by a SCADA system, which enables the monitoring and control of water discharge. Data from

sensors and actuators of the four gates at Partiteur is collected by a control station at the left

bank as shown in figure 7. The information is communicated by radio frequency signals every

few minutes (five minutes in our case) to the main center which is two kilometers away. The

data is displayed, saved in a database, and commands to the actuators are sent back to the local

controllers at the gates. In our experiment, we are interested in controlling the gate at the right

bank of Partiteur station to achieve a desired downstream discharge five kilometers downstream

at Avencq station. The gate opening at Partiteur is computed to deliver the control discharge,

for details see “How to Impose a Discharge at a Gate?”.

Results Obtained Assuming Constant Lateral Discharge Withdrawals

The identification of the parameters of the canal between Partiteur and Avencq is

performed. The steady flow regime is Q0 = 0.640 m3/s. This lead to the following parameters

C0 = 1.35 m/s, D0 = 893 m2/s, b = 0.17 m2/s. The downstream discharge is defined by

y(t) = q1φσ(t), where q1 = −0.1 m3/s, and T = 3.2 × 3600 s. The control input u(t) is

computed using equations (9) for the Hayami model. Figure 8 shows the desired downstream

discharge and the desired control (upstream discharge) to be applied at the upstream with the

measured discharges at each location, respectively.

Given the actuator limitations, a dead-band in the gate opening of 2.5 cm and unpredicted

disturbances like friction in the gate opening mechanism, the results are very satisfactory. The

downstream discharge is tracked well until t ∼ 3.4 h, yet there is a steady state error. This

error does not seem to be due to the actuator limitations, but to simplifications in the model
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assumptions, not necessarily satisfied in practice. Indeed, this steady state error may be due to

the fact that the lateral discharge was assumed to be constant, whereas it in fact depends on the

water level in the canal pool.

Modeling the Effects of Lateral Discharge Withdrawals

The discharge in a lateral offtake is a function of the water level in the canal just upstream

of the offtake. Typically, the flow through a gravitational underflow offtake is proportional to

the square root of the upstream water level. In a first assumption, we may linearize this relation,

and assume that the offtakes are located at the downstream end of the canal. Then, instead of

being constant, the lateral flow is proportional to the downstream water level. This can be seen

as a local feedback between the level and the outflow. This modifies the dynamical model of

the canal as follows:

ql(t) = b1h(L, t) (13)

We combine the output equation y(t) = qd(t) = bh(L, t) with the conservation of flow

at x = L, q(L, T ) = ql(t) + qd(t) = (b+ b1)h(L, t), to obtain:

y(t) = Gq(L, t)

where G = b
b+b1

. Therefore, the effect of gravitational lateral discharge is expressed by a gain

factor G which is lower than 1. This means that, in order to deliver a given discharge at the

downstream end, one should release a larger discharge, to account for the lateral losses.

The open-loop control is readily deduced from equation (9) by replacing b with b + b1,
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and y(t) by q(L, t) = G−1y(t):

u(t) =
1

G
e

(
−α

2

β2 t−αL)
)(

T1(t)− κT2(t) +
B0

b+ b1
T3(t)

)
. (14)

In the case of gravitational lateral discharge, the open loop control depends on four

parameters G, C0, D0 and b + b1 and these parameters need to be identified using the same

method outlined for the constant lateral discharge withdrawals.

Results Obtained Accounting for Lateral Discharge Withdrawals

The open-loop control input is simulated on the Saint-Venant equations using SIC

software, in order to evaluate the impact of lateral discharge withdrawals on the output.

Simulation Results

The simulations are carried out on a test canal of length L = 4940 m, average bottom

slope 3.8 × 10−4, average bed width B0 = 2 m, Manning coefficient 0.024 m−1/3s, and

gravitational lateral off-takes distributed along its length. Identification is performed around

a steady flow regime Q0 = 0.400 m3/s. This leads to the following parameters: G = 0.90,

C0 = 0.87 m/s, D0 = 692.34 m2/s, and b = 0.62 m2/s for the gravitational lateral discharge

model, and to C0 = 0.84m/s, D0 = 1100.72m2/s, and b = 0.75m2/s for the constant lateral

discharge model. The downstream discharge is defined by y(t) = q1φ(t), where q1 = 0.1 m3/s,

and T = 3×3600 s. Figure 9 shows the control u(t) and the desired output y(t) for each model

(Hayami with and without gravitational lateral discharges).

We notice that the open-loop control with gravitational lateral discharges has a steady-
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state above the desired output to account for the variable withdrawal of water. The control input,

u(t), is simulated with SIC to compute the corresponding downstream discharge. Figure 10

shows the SIC simulation results.

Experimental Results

The identification of the parameters of the canal between Partiteur and Avencq is

performed as described above for the models with gravitational lateral discharge. The steady

flow regime is Q0 = 0.480m3/s. This lead to the following parameters of the Hayami model

G = 0.70, C0 = 1.08 m/s, D0 = 444 m2/s, b = 0.27 m2/s. The downstream discharge is

defined by y(t) = q1φ(t), where q1 = 0.1 m3/s, and T = 5× 3600 s. The control input u(t) is

computed using equations (14) for the Hayami model. Figure 11 shows the desired downstream

discharge and the desired control (upstream discharge) to be applied at the upstream with the

actual discharges at each location.

Conclusion

This article introduced a flatness based controller for an open channel hydraulic canal.

The controller was tested by computer simulation (SIC) and real experimentation (Gignac canal,

France) using a SCADA system for the implementation. The initial model which assumed

constant lateral outflows has been improved to take into account the variation of lateral outflow

with the water level. This new model has shown to accurately represent the system dynamics.

This paper has described a realistic application of a flatness based open-loop controller that is

able to compute the upstream flow corresponding to a desired outflow, taking into account the
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gravitational offtakes along the canal reach.
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(a) Intake structure. (b) An irrigation system.

(c) Gate structures.

Figure 1: An irrigation canal system with intake and gate structures [7].

16



Figure 2: One-dimensional hydraulic canal with an off take at the downstream end of the canal.

q(x, t), h(x, t), qd(t) and ql(t) are the deviations from the nominal values of water discharge,

water depth, desired downstream discharge and lateral discharge, respectively.
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Figure 3: Control input, u(t) = q(0, t) computed using differential flatness on Hayami model

for a desired output discharge y(t).
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Figure 4: Desired downstream discharge and actual downstream discharge computed by SIC.

Note that Qd(t) is the output obtained by applying the Hayami control on the full nonlinear

model (Saint-Venant model).
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Figure 5: Location of Gignac canal in southern France. The canal takes water from the Hérault

river, with two branches irrigating a total area of 3000 ha, where mainly vineyard is grown.
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(a) The right bank (RB) and the left bank (LB) of the canal at Partiteur station.

(b) Partiteur right bank regulation

gate.

(c) Ultrasonic velocity sensor.

Figure 6: The left and right bank of Partiteur canal with actuators (submerged gates) and sensors

(velocity sensors).
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Figure 7: SCADA (Supervision, Control And Data Acquisition) system. (a) Wireless radio

transmitter. (b) Wireless radio receiver. (c)-(d) SCADA computer interface. (e) Control center.
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Figure 8: Open-loop control of the Gignac canal using Hayami model flatness based controller.

The measured output flow is rather close to the desired one, except at the end of the simulation.

This discrepancy cannot be explained solely by the actuator limitations, but to simplifications in

the model assumptions.
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Figure 9: Open-loop control input u(t) computed by Hayami model (with and without gravita-

tional lateral discharges) for a desired output discharge, y(t).
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Figure 10: Desired downstream discharge and actual downstream discharge computed by SIC.

Taking into account the effect of gravitational lateral discharge withdrawals enables to accurately

follow the desired outflow. Note that this result is obtained on a realistic model of open channel

flow, which is different from the simplified model used for control design.
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Figure 11: Implementation of open-loop control based on Hayami model with gravitational lateral

discharge withdrawals. The measured output flow is very close to the desired one, even if the

delivered upstream inflow is perturbed due to the actuator limitations.
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Sidebar 1: What is Differential Flatness?

The theory of differential flatness, which was first developed in [8], consists in a

parametrization of the trajectories of a system by one of its outputs, called the “flat output”

and its derivatives. Let us consider a system ẋ = f(x, u), where the state x is in Rn, and the

control input u ranges in Rm. The system is said to be flat, and admits z (where dim(z) = dim(u))

for flat output if all the quantities can be parametrized by z and its derivatives. More specifically:

• The state x can be written as x = h(z, ż, · · · , z(n)).

• The equivalent dynamics can be written as u = g(z, ż, · · · , z(n+1)).

In the context of partial differential equations, the vector x can be thought of as “infinite

dimensional”. The notion of differential flatness extends to this case, and for a differentially

flat system of this type, the evolution of x can be parametrized using an input u which often

is the value of x at a given point. A system with a flat output can then be parametrized as

a function of this output. This enables the solution of open loop control problems, if this flat

output is the one that needs to be controlled. The open loop control input can then directly be

expressed as a function of the flat output. This also enables the solution of motion planning

problems, where one wants to steer the system from one state to another. Differential flatness

was used to investigate the related problem of heavy chains motion planning [9], as well as

the Burgers equation [10], the telegraph equation [11], the Stefan equation [12] and the heat

equation [13].

Methods for parametrization can be achieved in different ways depending on the type

of the problem. Laplace transform is widely used [9], [10], [11] to invert the system. The
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equations can be transformed back from the Laplace domain to the time domain, thus resulting

in the flatness parametrization. Other methods can be used to compute the parametrization in

the time domain directly. For example, the Cauchy-Kovalevskaya form [13], [14] can be used

to parametrize the trajectories of a distributed parameter system X(ζ, t) in ζ ∈ [0, 1] as a power

series in space multiplied by a time function, i.e. X(ζ, t) =
+∞∑
i=0

ai(t)
ζi

i!
where X(ζ, t) is the state

of the system, and ai(t) is a time function. The usual approach consists in substituting the Cauchy-

Kovalevskaya form in the governing partial differential equation and boundary conditions; a

relation between ai(t) and the flat output y(t) or its derivatives can then be found (for example,

ai(t) = y(i)(t) where y(i)(t) is the ith derivative of y(t)) which leads to the final parametrization.
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Sidebar 2: How to Impose a Discharge at a Gate?

Once a desired open-loop discharge is computed, it needs to be imposed at the upstream

end of the canal. In open channel flow, it is not easy to impose a discharge at a gate. Indeed,

once the gate is opened or closed, the upstream and downstream gate water levels react instantly,

and modify the discharge: this discharge is among other a function of the water levels on both

sides of the gate. One possibility would be to use a local slave controller that operates the gate

in order to deliver a given discharge. But due to operational constraints, it is usually not possible

to operate the gate at a very high sampling period. As an example, some large gates may not

be operated more than a few times an hour, which directly limits the operation of the local

controller.

Several methods have been developed by hydraulic engineers to perform this control

input based on the gate equation, which provides a good model for the flow through the gate

[15]. The problem can be described as depicted in figure S1. Two pools are interconnected

with a hydraulic structure, in our case a submerged orifice (also applicable for more complex

structures). The gate opening is to be controlled to deliver a required flow from pool 1 to pool

2.

The hydraulic cross-structure is assumed to be modeled by a static relation between the

discharge flowing through the gate Q, the water levels upstream and downstream of the gate Y1,

Y2, respectively, and the gate opening W :

Q = f(Y1, Y2,W )

In our case, f(Y1, Y2,W ) = Cd
√

2gLgW
√
Y1 − Y2 where Cd is a discharge coefficient, Lg
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is the gate width, and g is the gravitational acceleration. This nonlinear model can be linearized

for small deviations q, y1, y2, w from the reference discharge value Q, water levels Y1, Y2, and

gate opening W , respectively.

q = ku (y1 − y2) + kww

where the coefficients ku, and kw are obtained by differentiating f(Y1, Y2,W ) with respect to

its first, second and third arguments, respectively.

Different inversion methods can be applied either to the nonlinear or to the linear model to

obtain a gate opening W necessary to deliver a desired discharge through the gate, usually during

some sampling period Ts. The static approximation method, assumes constant water levels Y1,

and Y2 during the gate operation period Ts. This leads an explicit solution of the gate opening W

in the linear model assumption. The characteristic approximation method uses the characteristics

for zero slope rectangular frictionless channel to approximate the water levels. The linear version

of the model also leads to an explicit expression of the gate opening. The dynamic approximation

method uses the linearized Saint-Venant equations to predict the water levels. This method can

be thought of a global method, because it considers the global dynamics of the canal to predict

the gate opening necessary to deliver the desired flow. In [15], the three methods are compared

and tested by simulation and on the Gignac canal. The dynamic approximation methods has

been shown to better predict the gate opening necessary to obtain a desired average discharge.
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Figure S1: Schematic representation of a gate between two canal pools [15].
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