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Abstract In this paper, we present a framework to handle
recognition errors from aN -best list of output phrases given
by a handwriting recognition system, with the aim to use
the resulting phrases as inputs to a higher-level application.
The framework can be decomposed into four main steps:
phrase alignment, detection, characterization, and correction
of word error hypotheses. First, theN -best phrases are aligned
to the top-list phrase, and word posterior probabilities are
computed and used as confidence indices to detect word er-
ror hypotheses on this top-list phrase (in comparison with
a learned threshold). Then, the errors are characterized into
predefined types, using the word posterior probabilities of
the top-list phrase and other features to feed a trained SVM.
Finally, the final output phrase is retrieved, thanks to a cor-
rection step that used the characterized error hypotheses and
a designed word-to-class backoff language model. First ex-
periments were conducted on the ImadocSen-OnDB hand-
written sentence database and on the IAM-OnDB handwrit-
ten text database, using two recognizers. We present first
results on an implementation of the proposed framework
for handling recognition errors on transcripts of handwrit-
ten phrases provided by recognition systems.
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1 Introduction

With the emergence of new devices (e.g.smartphones, in-
teractive whiteboards, or digital pens) and the increase in
information channels, more and more multimedia data (au-
dio, video, electronic texts, handwritten texts. . . ) are pro-
duced days after days. In order to exploit this amount of in-
formation, high-level applications need to be designed. In
recent years, applications based on natural language pro-
cessing such as information retrieval, information extrac-
tion, summarization or categorization have been investigated
for “clean” text documents [39]. However, multimedia data,
such as blogs, SMS, e-mails, or transcripts from recognition
systems (automatic speech recognition systems, handwrit-
ing recognition systems, or statistical machine translation
systems) are generally “noisy”. Thus, it is more difficult to
apply the aforementioned techniques to these noisy data.

Recently, there has been an interest for studying prob-
lems relating to processing text data from noisy sources.
Techniques from natural language processing applications
thus need to be adapted to deal with such noisy data. In
the field of noisy data processing, works have been focusing
more particularly on dealing with text documents [39], such
as blogs. . . , or transcripts from automatic speech recogni-
tion (ASR) systems [13,36]. However, there have been few
works that deal with transcripts from handwriting recog-
nition (HWR) systems [26,35]. The main issue with tran-
scripts, whether they are from an ASR or a HWR system,
is that they contain transcription errors. This is even morea
problem when the transcripts are used as inputs to higher-
level applications, such as information retrieval or text sum-
marization. It is, then, of main interest to detect these recog-
nition errors so that the higher-level system can deal with
them, and/or to correct them so as to improve the perfor-
mance of the higher-level system.
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In this paper, we set our work in the case of handling
recognition errors on handwritten transcripts, in order tomake
it easier for a higher-level system to process these transcripts
that are given as input. Thus, we present a framework to han-
dle recognition errors on phrase transcripts, given as output
by a handwriting recognition system (here, aphrasemay
be either a sentence or a text). The proposed error handling
framework consists of four steps:

1. alignment of the transcription results, given in aN -best
list by the recognition system, into a word graph;

2. detection of error hypotheses on the top-list transcrip-
tion, using word posterior probabilities as confidence mea-
sures (and compared to a learned threshold);

3. characterization of error hypotheses into predefined types,
inherent to handwriting recognition, using a SVM and
different word features (and considering different word
contexts). To our knowledge, no previous work men-
tioned the characterization of errors in handwritten phrase
recognition;

4. correction of error hypotheses, based on the error types
and using aword-to-class backofflanguage model (LM),
that was designed to combine efficiently an-gram LM
and an-class LM.

In the proposed framework, we want to be as independent as
possible to the recognition system used to provide the input
transcripts. The only constraint on the recognizer output is
that it has to be aN -best list of phrase hypotheses (usually,
the list is ordered based on a recognition score); additional
information on each phrase may also be given (e.g.its recog-
nition score, the recognition score of each of its words, or in-
formation on the phrase segmentation into its words). Here,
we use on-line handwriting recognition systems, but off-line
handwriting recognition systems may also be used, or even
automatic speech recognition systems (in this latter case,
recognition error types may have to be changed, to reflect
speech recognition errors). A preliminary version of this er-
ror handling framework was presented in [34]; here, we gen-
eralize it to consider recognizers as “black boxes”, without
any further assumptions on the information they provide.

The remainder of this paper is organized as follows. Sect. 2
discusses previous work on the processing of recognition er-
rors in handwriting recognition (on-line and off-line), but
also in the field of speech recognition, while Sect. 3 presents
the proposed framework. Sections 4, 5, 6, and 7 describe
the various parts of the framework,i.e. the alignment of the
phrase hypotheses from aN -best list into a word graph, the
detection of word error hypotheses, the characterization of
these error hypotheses, and the correction of the initial top-
list phrase, respectively. Sect. 8 gives an experimental evalu-
ation of the proposed framework. Finally, some conclusions
are drawn in Sect. 9.

2 Related work

In this section, we present an overview of previous works
dealing with recognition errors, in the context of off-line
and on-line handwriting recognition. We also review works
in the field of automatic speech recognition, since most of
the approaches proposed in that domain can be applied to
handwriting recognition (in fact, many approaches used in
handwriting recognition come from speech recognition).

2.1 Handwriting recognition

In handwriting recognition (whether off-line or on-line),there
have been few work on the detection, characterization and/or
correction of recognition errors, especially at the phraselevel.

In fact, some handwriting recognition systems detect recog-
nition errors by rejecting recognition results considerednot
sufficiently reliable. This rejection step can be performed
using “anti-models” as in [27], where “anti-letter models”
are used to identify incorrectly recognized words in hand-
written sentences. The approach most commonly used is to
compute confidence indices on words and then to compare
them with a threshold to decide whether or not the words
have to be rejected. In [30], several confidence measures are
presented, both at the letter and word levels but no linguistic
information is used in the confidence measures considered.
In [3], rejection strategies based on theN -best list obtained
by varying the weight of a language model are considered;
the authors rely on the fact that incorrectly recognized words
are more sensitive to this weight variation. However, in all
these approaches, words are only detected as correct or in-
correct: there is no further characterization of the errors, nor
is there a correction step.

Other work has involved combining the outputs of var-
ious recognition systems: this approach can be viewed as a
correction step on the output of one of these recognition sys-
tems (usually, the one that achieves the best performance).
Thus, in [2], the outputs of different recognition systems are
combined into a transition network and a language model is
used to help retrieve the most likely output text. However,
several recognition systems are needed to achieve this. In
other recognition systems, the use of several language mod-
els during the recognition step can be viewed as a correction
step on a baseline recognition system with only one LM.
Thus, in [29,32], an-class LM is combined with anothern-
class model and with an-gram model, respectively, whereas
in [45], a stochastic context-free grammar is combined with
an-gram model: in both cases, the recognition system ben-
efits from the use of the added language model. Finally, an
original correction approach has been proposed in [12]. In
this work, the correction task is considered as a translation
task in which the source language is the output of the recog-
nition system (which may contain recognition errors) and
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the target language is the corrected output. Since the recog-
nition system is considered as a black box that only gives
anN -best list of candidate words for a handwritten word,
the probabilities used in the correction model are estimated
using the relative frequencies of each word and its trans-
lated equivalents. Nonetheless, these probabilities strongly
depend on the vocabulary of the handwritten sentences and
need to be trained again if the vocabulary changes. Thus, this
system may not be well adapted for applications where the
vocabulary is not known,e.g.a freeform note-taking appli-
cation. In such handwritten notes, out-of-vocabulary words
are more likely to occur than in notes from off-line applica-
tions where the whole vocabulary may be known in advance.
Recent works also analyze the impact of recognition errors
(i.e. “noise”) on recognition tasks [26], or on higher-level
tasks such as text categorization [35].

2.2 Speech recognition

In the field of automatic speech recognition, confidence mea-
sures are frequently associated with the words of the recog-
nized outputs [1,9–11,17,18,44,37,42]. They are also used
in machine translation tasks to assess the quality of the trans-
lation, as in [40], where various measures are compared.
Among all these confidence measures, word posterior prob-
abilities have been shown to be among the best [5,23,41],
and they can be combined with other information sources in
a neural network [23], in a SVM [21], or using conditional
random fields [13] to achieve even better results. These con-
fidence measures can also be used to detect recognition er-
rors by rejecting words, the value of which is below a con-
sidered threshold. In [44], the error detection step is com-
posed of two levels: first, incorrect phrases are detected (us-
ing a SVM and various features at the sentence level), and
then, for the phrases detected in this way, the words are clas-
sified as either correct or incorrect (also using an SVM, and
this time various features at the word level). In our proposed
framework, we use these word posterior probabilities to de-
tect recognition errors, but also to characterize them intodif-
ferent types (using other features in an SVM as well).

The ROVER framework [14] has been proposed in or-
der to combine the outputs of several recognizers and then
to correct the output of the best of them. From the alignment
of outputs considered, this framework introduces a voting
scheme to make the final choice among competing words
from the various recognizers. The score given to each word
combines the confidence indices given by all the recognition
systems and the number of systems that outputted the word
considered (in [2], this framework is extended to take a lan-
guage model into account during the voting step). Further-
more, as speech recognition systems are usually multi-pass
systems, they use several language models with increasing
complexity in various passes, since each recognition pass

decreases the size of the search space. But, although differ-
ent types of language models have been tried,n-gram mod-
els remain the most widely used. In [28], an interesting LM,
called theword-to-category backoff LM, is presented: the
category-based LM is used when the current word with its
associated history is not estimated in the word-based LM (it
is showed that it achieves better results than using only the
word-based LM). Inspired by this work, in the final step of
our framework, we combine an-gram LM and an-class LM
(into aword-to-class backoff LM) to correct the errors iden-
tified. Thus, rather than combining LMs, as previous work
in handwriting recognition, we use an adequate LM based
on the error type of the current word.

3 Architecture of the error handling framework

Our framework, illustrated in Fig. 1, is aimed at handling
recognition errors on aN -best list of phrases given by a
handwriting recognition system (phrases can correspond to
sentences or texts, depending on the recognition system).
This framework can be divided into four parts: alignment
of the input phrases, detection of the word error hypotheses
on the top-list phrase, characterization of the detected error
hypotheses, and correction of those errors. The various parts
are presented in the following sub-sections, and they will be
described in greater detail in the rest of the paper.

3.1 Alignment of the input sentences

First, the phrases of theN -best list given by the recognition
system need to be aligned. For this purpose, we use an in-
cremental alignment algorithm based on a string matching
algorithm. The resulting output of this alignment module is
a word graph which will be used by the following modules
(see part (a) of Fig. 1). The alignment algorithm is presented
in Sect. 4.

3.2 Detection of the word error hypotheses

To detect error hypotheses on the top-list phrase, a confi-
dence index is computed for each of its words. Here, word
posterior probabilities are computed from the inputN -best
list and are used as confidence indices, as presented in Sect.5.
Each word in the top-list phrase is finally labeled as either an
error hypothesis or a correct word, by comparing its confi-
dence index with a learned threshold (see part (b) of Fig. 1).

3.3 Characterization of the word error hypotheses

Previously detected word error hypotheses are then charac-
terized according to predefined error types: a word with an
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t here war not a hit of trouble
t here war not a bit of trouble
there war not a hit of double

edit operations

SVM

<errSeg>

Fig. 1 Overview of the error handling framework

incorrect segmentation (errSeg), a word that is a substitution
of the correct word that appears in the graph (errSubst), and
a word that is a substitution of the correct word that does
not appear in the graph (errAbs). As described in Sect. 6,
the confidence index for each error hypothesis and other fea-
tures are given as inputs to a SVM classifier which is learned
to output the corresponding error type for each word error
hypothesis. Then, each word error hypothesis of the top-list
phrase is labeled according to its characterized error type.
Furthermore, these error types are used to prune the word
graph, so that alternative word hypotheses only remain for
words identified as errors that may be corrected (see part (c)
of Fig. 1).

3.4 Correction of the word error hypotheses

Finally, a language model that efficiently combines an-gram
LM and a n-class LM (calledword-to-class backoff LM)
is used on the pruned word graph to retrieve the corrected
phrase. This phrase is the output of the whole framework
(see part (d) of Fig. 1). The combined language model, as
well as its use on the pruned word graph, is presented in
Sect. 7.

4 Multiple phrase alignment using string edit
operations

In order to use information from the other phrases of theN -
best list, these phrases need to be aligned with the top-list
phrase. A word graph is thus built. In this section, we de-
scribe how the standard edit distance is used to match pairs
of phrases so as to build the word graph that represents the
alignment of all the phrases in theN -best list.

The word graph is built by iteratively aligning each com-
peting phrase of theN -best list with the top-list phrase. First,
an initial word graph is built with the top-list phrase: an edge
is created for each of its words. Then, for each of the other
phrases in the list, the Levenshtein edit distance [24] is com-
puted between the top-list phrase and the phrase considered:
this edit distance computes the minimum number of edit op-
erations (amongsubstitutions, insertionsanddeletions) used
to transform the phrase considered into the top-list phrase.
The corresponding sequence of edit operations is used to
create new edges and nodes, according to these operations
(see Fig. 2):

– substitution: an edge labeledyj is created, parallel to the
top-list phrase edge labeledxi (both edges have the same
starting and ending nodes);

– insertion: an edge labeledyj is created to be inserted
between the edges labeledxi andxi+1 (a new node is
also created); anull edge is also created, parallel to the
edge labeledyj ;

– deletion: a null edge is created, parallel to thexi edge.

xi

yj

(a)

xi

<null>

(c)

xi
yj

<null>

(b)

Fig. 2 Examples of edge and node creation in a word graph, according
to the edit operations: (a)substitution, (b) insertion, and (c)deletion

In the case of the substitution operation, a new edge with
a labelyj is only created if it does not already exist in the
word graph. If it does, information for the current wordyj ,
as given for the current phrase, is added to the correspond-
ing edge (e.g.recognition score, where the recognition score
associated with the edge becomes the maximal score among
the corresponding words). In the first part of Fig. 1, there is
an example of a word graph construction, from a3-best list
of phrase hypotheses.

This iterative alignment algorithm does not guarantee
an optimal alignment with minimal edit costs. However, in
practice, it gives an adequate solution, as a trade-off between
accuracy and computational complexity.
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5 Detection of error hypotheses using confidence
measures on words

A common approach to detecting error hypotheses is an-
notating confidence at the word level. Confidence indices
are thus computed for each word of theN -best phrase list,
using theN -best list itself and the word graph built from
it (see Sect. 4). These confidence indices are then used to
detect potential recognition errors on the top-list phrase. In
this section, we first describe how word posterior probabil-
ities are computed, to be used as word confidence indices.
Then, we present an approximation of these word posterior
probabilities, depending on the information provided by the
recognition system (as given in theN -best lists). Finally, we
introduce the general error detection approach, which com-
pares word confidence indices to a learned threshold.

5.1 Word posterior probabilities as confidence indices

The posterior probability of a word corresponds to the sum
of probabilities of all the phrases of theN -best list that con-
tains this word, at the same position. Word posterior prob-
abilities are commonly used as confidence indices in tasks
such as speech recognition or machine translation, where
they were shown to be among the best confidence measures [5,
23]. Nevertheless, these probabilities are not widely usedin
the field of handwriting recognition, whereas they could also
be useful as confidence measures on words.

The word posterior probabilities can be computed either
from theN -best list of phrases or on the word graph. Here,
we chose to compute them on theN -best list, by also using
the word graph to obtain the alignment of the words at a
given position of the phrases. The word posterior probability
Ppost(wi) of a wordwi can thus be computed according to
Eq. 1:

Ppost(wi) =

∑
wi∈W (k) P (W (k)|S)
∑

W (k) P (W (k)|S)
(1)

with
∑

wi∈W (k) P (W (k)|S) being the sum of probabilities
of the phrasesW (k) that containswi at the same position.
P (W (k)|S) is the probability for the phraseW (k) given the
signalS corresponding to the handwritten phrase. Using the
Bayes formula,P (W (k)|S) can be rewritten as given by
Eq. 2:

P (W (k)|S) = P (S|W (k))× P (W (k)) (2)

which can then be rewritten as Eq. 3, using a decomposition
of the phrase into its words:

P (W (k)|S) =

N(k)∏

j=1

P (s
(k)
j |w

(k)
j )× P (w

(k)
j |h

(k)
j ) (3)

with P (w
(k)
j |h

(k)
j ) being the probability of wordw(k)

j given

its historyh(k)
j in the phrase, which is given by a language

model (see Sect. 7.2), andP (s
(k)
j |w

(k)
j ) being the probabil-

ity of part s(k)j of the handwritten phrase, given the word

w
(k)
j , which is given by the handwriting recognition system.

These two probabilities,P (s
(k)
j |w

(k)
j ) andP (w

(k)
j |h

(k)
j ), are

thus needed to compute the word posterior probabilities. Nev-
ertheless, the handwriting recognition probabilities maynot
be always provided in theN -best list given by the recogni-
tion system. That is why we need to compute an approxima-
tion to these recognition probabilities so as to compute an
approximation of the word posterior probabilities.

5.2 Approximation of the word posterior probabilities

In [40], the authors proposed various word-level confidence
measures for machine translation. Here, we use two of these
confidence measures as an approximationP̃ (si|wi) of the
word recognition probability. Thus, we can combine this
probability with the probability given by the language model
to obtain an approximatioñPpost(wi) of the word posterior
probability.

The first approximation corresponds to therelative fre-
quencyof a wordwi in the N -best list of phrases and is
given by Eq. 4:

frel(wi) =
1

N

N∑

k=1

δ(w
(k)
j , wi) (4)

with δ(w
(k)
j , wi) being the Kronecker function, which equals

1 whenw(k)
j = wi and 0 otherwise (w(k)

j is the wordwj

from the phraseW (k), this word being aligned towi).
The second approximation extends the first one by also

taking into account the rank of each hypothesis phrase in
theN -best list. Thisrank-weighted frequencyof a wordwi

is given by Eq. 5:

frank(wi) =
2

N(N + 1)

N∑

k=1

δ(w
(k)
j , wi)× (N + 1− k)(5)

5.3 Error hypothesis detection by comparison with a
threshold

Word error hypotheses can easily be detected by compar-
ing their confidence index with a thresholdτerr (the optimal
value of which is found on a validation set, as can be seen
in the experiments in Sect. 8.5): if the confidence index of
the considered word is below the learned threshold, the word
is detected as an error hypothesis. The confidence index of
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each word of the top-list phrase is used to label the top-list
phrase words, as defined by Eq. 6:

classreco(wi) =

{
error if Conf(wi) < τerr
correct otherwise

(6)

Here, we use the word posterior probabilitiesPpost(wi)

(or the approximate posterior probabilities,P̃post(wi)) as
the confidence indicesConf(wi).

6 Characterization of error hypotheses into predefined
types

In addition to detecting error hypotheses, it may be of inter-
est to also characterize these error hypotheses into various
types. This means that the error hypotheses could then be
processed differently, according to their type (to try to cor-
rect them, for example). In this section, we present the error
types we chose to consider. Then, we describe the various
features that we are using as inputs to a SVM, to charac-
terize each error hypothesis into its likeliest type. Finally,
we show how these error types are used to prune the word
graph that will then be used to perform the final correction
step (see Sect. 7).

6.1 Recognition error types

In this paper, we consider three types of errors that may
cause an incorrect recognition of a considered word:

– segmentation errors(errSeg): the recognition error is caused
by the considered word being an incorrect segmentation
part of the correct word (in part (a) of Fig. 3,“t” is a
segmentation error of the correct word“there” );

– substitution errors(errSubst): the considered word is not
the correct one and the correct word is one of the aligned
words, corresponding to a competing edge in the word
graph (in part (b) of Fig. 3,“hit” is a substitution error
of the correct word“bit” );

– absent substitution errors(errAbs): the considered word
is not the correct one and, as opposed to the previous
error type, the correct word is not one of the alterna-
tive words. Hence, no corresponding edge appears in the
word graph (in part (c) of Fig. 3,“war” is an absent sub-
stitution error of the correct word“was” ).

6.2 Feature sets for the error characterization

To characterize the detected error hypotheses into the error
types defined in the previous sub-section, we use a classi-
fier. We have chosen to use a SVM, both because SVMs are
efficient and because they are able to deal with unbalanced

(b)

t

there

here

<errSeg>

<null>

[there]

(a)

<errAbs>
war

[was]

(c)

<errSubst>
hit

bit

[bit]

Fig. 3 Examples of the error types: (a)segmentation error, (b) substi-
tution error, and (c)absent substitution error(the edges corresponding
to the words of the top-list phrase are shown in bold, and the correct
words to recognize are given above, in square brackets)

classes (in terms of the number of training examples). The
SVM is aimed at characterizing each word of the top-list
phrase that has been detected as a word error hypothesis, us-
ing some features of the considered word as its inputs (each
word of the top-list phrase is then further labeled with its
retrieved error type).

Here, we consider various features providing different
types of information such as from a graphic model, or a lan-
guage model, which have been proven to be useful to de-
tecting error hypotheses [8]. Furthermore, we consider three
different feature sets, based on an incrementally enlarged
context from which features are extracted for the considered
word (see Fig. 4, where each context is shown with a dif-
ferent color):word context(wSet), local context(lSet), and
neighboring context(nSet). This can be compared to work
by [36], where features are also divided into different groups
corresponding to different contexts of words. This is aimed
at showing the improvement obtained when enlarging the
word context. These three feature sets are described in the
following sub-sections.

not a trouble

double

hit

bit

of

neighboring context

word context

local context

Fig. 4 Different contexts of the word“hit” (the edges corresponding
to the words in the top-list phrase are shown in bold)

6.2.1 Word context feature set (wSet)

In this baseline set,wSet, we consider a context restricted
to the current word itself. Hence, the features for a wordwi

correspond to information on this word only. The 5 follow-
ing features are considered:
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– posterior probability(wWordPosteriorProba): the poste-
rior probabilityPpost(wi) of the word, as given by Eq. 1
(or the approximated posterior probabilitỹPpost(wi) if
no recognition score is given, as explained in Sect. 5.2);

– unigram probability(wWordUnigramProba): the unigram
probability of the word, given by the language model (if
the word does not belong to the vocabulary associated
with the language model, this probability is equal to 0);

– length(wWordLength): the length of the word (in num-
ber of characters);

– position(wWordPhrasePos): the position of the word in
the top-list phrase;

– phrase length(wPhraseLength): the length of the top-list
phrase (in number of words).

The first 3 features are used classically in several works
on speech recognition [17,18,21,44,8] and on handwriting
recognition [30] to detect recognition errors. The last 2 fea-
tures were inspired by [21].

6.2.2 Local context feature set (lSet)

In the setlSet, additional information on the competing words
of the current word in the word graph are considered. So,
this set contains 11 features,i.e. the 5 previous ones as well
as the following 6 new features:

– number of competing words(lConcurrNbWords): the num-
ber of competing words in the graph that have the same
segmentation as the considered word (i.e. their edges
have the same starting and ending nodes as the word
considered);

– competing null edge(lConcurrNullEdge): a Boolean fea-
ture indicating whether or not thenull edge is one of the
competing words;

– posterior probability meanandvariance(lConcurrPos-
teriorProbasMeanandlConcurrPosteriorProbasVariance):
the mean and variance of the posterior probabilities of all
the competing words of the word considered;

– unigram probability meanandvariance(lConcurrUni-
gramProbasMeanandlConcurrUnigramProbasVariance):
the mean and variance of the unigram probabilities of all
the competing words of the word considered.

The mean and variance of some score features are frequently
used. The use of the first feature was again inspired by [21].
In that work, they also have features similar to the second
one here, but they used it for the competing words of the pre-
vious and next words to consider (i.e. to know whether the
competing edges of the previous and next considered words
contain anull edge). So, we add this kind of feature, but by
considering the current competing edges, anticipating that it
may be helpful for characterizing segmentation errors.

6.2.3 Neighboring context feature set (nSet)

Finally, we extend the setlSet to the setnSet, in which we
also consider information on the neighboring words (the pre-
vious one and the next one in the top-list phrase). Indeed, a
recognition error can often lead to a recognition error on a
neighboring word. This last set contains 16 features,i.e. the
11 previous ones and the following 5 new features:

– bigram probability(nWordBigramProba): the bigram prob-
ability of the word, given its previous word in the top-list
phrase (if the considered word does not belong to the vo-
cabulary associated with the language model, this prob-
ability is equal to 0, and, if the previous word does not
belong to the vocabulary, this probability is equal to the
unigram probability of the considered word);

– previous posterior probability(nPrevWordPosteriorProba):
the posterior probability of the previous word;

– next posterior probability(nNextWordPosteriorProba):
the posterior probability of the next word;

– error on the previous word(nPrevWordError): a Boolean
feature indicating whether or not the previous word has
been detected as an error hypothesis;

– error on the next word(nNextWordError): a Boolean
feature indicating whether or not the next word has been
detected as an error hypothesis.

The first feature is an extension of theunigram probabilityof
the baseline set, to include the context of the previous word.
The second and third features were inspired by [8,17], while
the last two features are based on our previous work [34].

6.3 Word graph pruning by the error characterization types

The word graph is finally pruned according to the type of
each word in the top-list phrase (a correct label or a charac-
terized error type):

– segmentation error: the edgexi of the current word is
kept, as well as the edgesyi of the competing words;

– substitution error: the edgexi of the current word is
kept, as well as the edgesyi of the competing words;

– absent substitution error: only the edgexi of the current
word is kept in the graph (competing edges are pruned)
and its word label is replaced byerrAbs;

– correct word: only the edgexi of the correct word is kept
in the graph (competing edges are pruned).

In Fig. 5, it can be seen that the word“double” has been
removed from the graph, as the corresponding word of the
top-list phrase (word“trouble” ) has been detected as a cor-
rect word.

The pruning step is performed to decrease the size of the
graph, which in turn will reduce the complexity of the cor-
rection step that uses this graph. The pruning mainly con-
sists of removing edges that compete with words detected
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double

war not a hit of trouble

<null> there bit

<errAbs> <errSubst><errSeg><errSubst>

t here

Fig. 5 Example of a pruned word graph (the pruned edges are shown
with dotted lines)

ascorrect ones, thereby ensuring that their initial recogni-
tion will not change. Competing edges of error hypotheses
characterized asabsent substitution errorsare also removed,
ensuring that their incorrect recognition will not have as bad
an impact as before on the recognition of the neighboring
words. Indeed, this kind of error leads to the substitution of
the current word by a wrong word, which has been shown to
cause recognition errors on neighboring words, essentially
due to the use of a language model during the recognition
process [4]. In fact, only competing edges ofsegmentation
andsubstitution errorsremain in the graph (in addition to
edges corresponding to words of the top-list phrase), which
will be used to correct the top-list phrase.

7 Correction of error hypotheses using a word-to-class
backoff language model

The characterization of error hypotheses into different types
can now be used to try to correct the top-list phrase, de-
pending on its characterized words. So, the pruned word
graph can be exploited to retrieve the corresponding cor-
rected phrase. In this section, we introduce the Maximum
A Posteriori (MAP) approach that is used to find the likeli-
est sentence in a word graph, using a language model. Then,
we briefly recall the concept of statistical language model-
ing. Finally, we describe the language model used in this
correction step that combines an-gram LM and an-class
LM, from its creation to its use on the pruned word graph.

7.1 Post-processing correction using a language model

To retrieve the corrected phrase that is given as the output
of the whole error handling framework, we use the classic
MAP decoding. This decoding is aimed at finding the likeli-
est phrasêWcorrect among the phrasesW (k) = w

(k)
1 . . . w

(k)
Nk

,
given the handwritten signalS (it is efficiently performed on
the word graph with the Viterbi algorithm [15]):

Ŵ = argmax
W (k)

P (S|W (k))× P (W (k))γ ×N (k)δ (7)

with P (S|W (k)) being the probability of the handwritten
signalS for the given sentenceW (k) (it is classically given
by the recognition system),P (W (k)) the probability of the
phraseW (k) given by a language model and weighted by
γ, andN (k) the number of words in the sentenceW (k) that

is weighted byδ. Eq. 7 extends Eq. 2 by weighting each
probability and by also taking into account the number of
words in the phrase. Eq. 7 can be further decomposed for
each word of the sentence, as given by Eq. 8:

Ŵ = argmax
W (k)

N(k)∏

j=1

P (s
(k)
j |w

(k)
j )× P (w

(k)
j |h

(k)
j )γ × δ (8)

where the probabilityP (s
(k)
j |w

(k)
j ) is either given by a hand-

writing recognition system or computed as an approxima-
tion (as explained in Sect. 5.2), and the probabilityP (w

(k)
j |h

(k)
j )

is given by a language model. This language model can be a
simple model (as the ones described in Sect. 7.2), or a more
complex one (as the combined language models presented
in Sect. 7.3).

7.2 Statistical language modeling

Before presenting the combined LM, we recall the principle
of statistical language modeling and the two models most
commonly used:n-gram LMs andn-class LMs.

7.2.1 General definition

Statistical language modeling is aimed at capturing the reg-
ularities of a language by the use of statistical inference on
a corpus of that language. The probability of a sequence of
n wordsW = wn

1 = w1 . . . wn is thus given by equation 9:

P (W ) =

n∏

i=1

P (wi|hi) (9)

wherehi = w1 . . . wi−1 is called thehistoryof wordwi. In
practice, there are too many different histories, which leads
to a tremendous number of probabilities to estimate. Fur-
thermore, most of these probabilities occur too infrequently
in the corpus to be estimated reliably. A solution would be
to merge histories into equivalence classes, which resultsin
n-gram LMs.

7.2.2n-gram language models

In n-gram LMs, histories ending with the samen− 1 words
are considered to belong to the same equivalence class. Eq. 9
can thus be rewritten into Eq. 10:

P (W ) =
n∏

i=1

Pw(wi|w
i−1
i−n+1) (10)

wheren is called theorder of the LM. Then-gram prob-
abilities Pw(wi|w

i−1
i−n+1) are estimated using relative fre-

quencies obtained from a text corpus. Hence, the probability
estimations depend on the corpus, and the probabilities of
non-occurringn-grams (i.e. sequences ofn words) will be
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estimated to be zero. One way to overcome this problem is
to apply asmoothingto then-gram LM probabilities. The
principle of the smoothing is first to reduce the probabilities
of the n-grams occurring in the corpus and then to redis-
tribute this mass of probabilities to unseenn-grams. Here,
we use the Kneser-Ney smoothing, which has been shown
to be very efficient [19]. Nonetheless, when words are out
of the vocabulary associated with the LM, their probabili-
ties will remain equal to zero. In that case, a solution may
be to usen-class language models, where words are grouped
into equivalence classes. Thus, if we can find the class of an
out-of-vocabulary word, its linguistic probability will not be
equal to zero.

7.2.3n-class language models

Depending on the approach used to create the considered
classes (using a statistical criterion or by considering prede-
fined categories), a word may belong to one or more classes.
For example, when considering the grammatical nature of
words (also calledPart-Of-Speechor POS tags), which is
our concern here, a word may belong to several classes, the
correct one depending on the context of the word. Two ap-
proaches can be used to take into account the various pos-
sible classes of words: either consider all the possible class
sequences associated with a given word sequence or only
consider the likeliest class sequence. We chose the latter ap-
proach, so that we could retrieve the class of anunknown
word (an OOV word or a word characterized as anabsent
substitution error, for example). The probabilityP (wi|hi)
is thus based not only on the words but also on their classes,
as given by Eq. 11:

Pc(wi|w
i−1
i−n+1) = max

ci
i−n+1

∈Ci

i−n+1

P (wi|ci)P (ci|c
i−1
i−n+1)(11)

with Ci
i−n+1 = Ci × . . .× Ci−n+1, andcj being a class in

the class setCj associated with the wordwj .
In conclusion,n-gram LMs are more accurate thann-

class LMs but the latter have better generalization power.
This is why we have combined efficiently these two types of
language models into what is called aword-to-class backoff
LM, as presented in the next sub-section.

7.3 Word-to-class backoff language model

In this sub-section, we first describe how an-gram language
model is efficiently combined with an-class language model
to create theword-to-class backofflanguage model and then
we present how to use this new language model on the pruned
word graph, to correct the top-list phrase.

7.3.1 Definition of the word-to-class backoff language
model

As seen in the previous sub-sections,n-gram LMs are more
accurate to provide a linguistic probability to a word, but
this word and the words in its history have to belong to the
vocabulary associated with the language model. In the case
when the word or one word of its history is out of the vo-
cabulary, it may be of interest to use instead an-class LM
that can provide a probability to this OOV word based on
its class. Consequently, in order to associate an accurate lin-
guistic probability with each word, we combine an-gram
LM and a n-class LM, as inspired by [28]. We call this
model aword-to-class backoff LM, because then-class LM
is used instead of then-gram LM when the current word
wi, or at least one word of its history, is anunknown word
(for example, an OOV word or anabsent substitution error),
and so does not belong to the vocabulary associated with the
LMs. The probability of a wordwi is then given by Eq. 12:

Pwc(wi|w
i
i−n+1) =





Pw(wi|w
i
i−n+1) if wi

i−n+1 ∈ V n

Pc(wi|w
i
i−n+1) otherwise

(12)

with V being the vocabulary associated with the language
models,Pw(wi|w

i
i−n+1) the probability given by then-gram

LM andPc(wi|w
i
i−n+1) the probability given by then-class

LM.
To create the word-to-class backoff language model, the

n-gram and then-class LMs are built separately, using the
classic maximum likelihood estimation (MLE). When build-
ing then-class LM, classes are estimated for in-vocabulary
words and for OOV words. However, the classes associated
with absent substitution errorsare not known. So, we con-
sider that the set of classes associated with absent substitu-
tion errors is the whole set of classes of the LM; indeed, an
absent substitution errorcan correspond to any word and
thus to any class.

7.3.2 Use of the word-to-class backoff language model to
correct errors

The aim of the correction step is to correct recognition errors
on the top-list phrase, using a language model and compet-
ing recognition results in the word graph (for thesubstitu-
tion errorsandsegmentation errors; however, for the latter,
the correct word is not certain to be one of the competing
results). The language model used for that step is the word-
to-class backoff LM, presented in the previous sub-section:
then-gram part of the backoff LM will be used on most of
the words, except when the considered word (or one word
in its history) is an OOV word or has been characterized as
anabsent substitution error: in that case, then-class part of
the LM is used instead. Fig. 6 shows a pruned word graph,
where the part of the word-to-class backoff LM that is used
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Pw Pw

Pw PcPw Pc Pw Pw Pw Pw
t not

<null> there bit

here <errAbs> a hit of trouble

Fig. 6 Parts of the word-to-class backoff LM used to estimate the lin-
guistic probability of each word of the word graph (Pw standsfor the
n-gram LM, while Pc stands for then-class LM)

to compute the linguistic probability of a word is given for
each word of the top-list phrase. It can be seen that then-
class part of the LM is used to compute the linguistic prob-
ability for the word“war” (because it was detected as an
absent substitution error), and for the word“not” (because
the word in its history is an absent substitution error so it
does not belong to the vocabulary). For the other words, the
n-gram part of the word-to-class backoff LM can be used.

The corrected phrase finally corresponds to the best path
in the pruned word graph, using Eq. 8 to combine the prob-
ability of words from the word-to-class backoff language
model with their recognition probabilities previously given
by the recognition system (i.e. provided in theN -best lists
or computed as an approximation, as presented in Sect. 5.2).

8 Experiments and results

In this section, we report the experiments that were con-
ducted to evaluate the whole error handling framework we
have proposed. First, we describe the experimental setup,
including a description of the handwritten and the linguistic
data, as well as the two on-line handwritten phrase recogni-
tion systems we use to generate theN -best lists of phrases
given as inputs to our framework. Then, we discuss the opti-
mization of the parameters of the various parts of the frame-
work (using validation sets). Finally, the overall resultson
the test set are presented.

8.1 Experimental setup

In this sub-section, we describe the linguistic data (LMs and
associated vocabularies) and the handwritten databases we
use in our experiments.

8.1.1 Handwritten data

The experiments were performed on two on-line handwrit-
ten phrase databases (Fig. 7 shows examples of phrases from
the two databases). These databases are divided into differ-
ent sets (at least one training set and one test set, and pos-
sibly validation sets) with no writer appearing in more than
one dataset (writer-independent tasks are thus considered).

(b)

(a)

Fig. 7 Examples of phrases from the databases (a) ImadocSen-OnDB
and (b) IAM-OnDB

The two following paragraphs give greater details on these
databases.

ImadocSen-OnDB1 is an in-house database containing
sentences acquired from a TabletPC. The written sentences
have been extracted from part of the Brown corpus [16].
This is a simplified database since the sentences only con-
tain lowercase letters (i.e. 26 different characters). Because
it is of medium size, the database is divided into only two
datasets: the training set, which is used both to train the clas-
sifiers (SVMs for the characterization step) and to optimize
the parameters, and the test set, which is used to measure
the final recognition results. Table 1 sums up the character-
istics of the database. In this table, atokencorresponds to a
sequence of letters, a sequence of digits or a symbol (e.g.a
punctuation mark).

Table 1 Characteristics of the handwritten sentence database
ImadocSen-OnDB

Set Train. Test
# writers 25 17
# phrases 557 460
# tokens 8,769 7,080

IAM-OnDB [25] is a large database containing on-line
handwritten texts acquired from a whiteboard. The written
texts have been extracted from part of the LOB corpus [22]
and contain 81 distinct characters (all lowercase and capi-
tal letters, punctuation marks, digits, a character for garbage
symbols, and a character for the space). The IAM-OnDB-
t2 task is considered here, which handles the recognition of
handwritten lines. This database is divided into four datasets
(as given in Table 2): the training set is used to train the
classifiers, the two validation sets are used to optimize the
other parameters, and the test set is used to measure the final
recognition results using the whole framework.

1 the ImadocSen-OnDB database can be downloaded at
http://www.irisa.fr/imadoc/database/ImadocSen-OnDB.html
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Table 2 Characteristics of the handwritten text database IAM-OnDB

Set Train. Test Valid. 1 Valid. 2
# writers 97 68 24 17
# lines 5,364 3,859 1,438 1,518
# phrases 775 192 216 544
# tokens 35,166 24,542 8,595 9,670

8.1.2 Linguistic data

The language models used in the different parts of the frame-
work are built on the tagged Brown corpus [16] using the
SRILM toolkit [38]. This corpus contains 52,954 sentences
(1,002,675 words), where 46,836 sentences (900,108 words)
were used to train the LMs (we call this part of the corpus
theBrown training corpus). The remaining sentences are not
considered, because they are used in the Imadoc database
(see Sect. 8.1.1). This ensures that the training set of the
LMs and the handwritten test sets are, and remain, indepen-
dent. We restricted the vocabulary associated with the LMs
to the 20,000 words of the corpus that occur most frequently
(other words in the corpus are considered as OOV words and
are mapped to the tag<unk>). To train the probabilities of
the LMs, the words of the corpus are divided into tokens
(corresponding to the tokens previously defined).

The same LMs are used in the experiments on both databases.
A bigram LM is used is used in the various steps of the
framework: in the error detection part (used in the computa-
tion of posterior probabilities), in the error characterization
part (to compute different word features), and in the error
correction step (to be used as the main component of the
word-to-class backoff LM). A4-class LM is also used in
the correction step (this time to be used as the backoff com-
ponent of the word-to-class backoff LM). For thisn-class
LM, we consider 145 classes, which correspond to the POS
classes in the tagged version of the Brown corpus.

8.2 Evaluation metrics

To evaluate the different steps of the error handling frame-
work, we use different metrics. We present them in this sub-
section.

To evaluate the performance of the task, from a recogni-
tion point of view, we use the commonword accuracy(WA)
andword recognition rate(WRR), which are defined by

WA =
#words −#subst−#del −#ins

#words
(13)

and

WRR =
#words −#subst−#del

#words
(14)

with#words being the number of all the words of the phrases
to be recognized in the set considered and#subst, #ins,

and#del the number of substitutions, insertions, and dele-
tions in the resulting recognized phrases, respectively.

To evaluate the posterior probabilities used as confidence
indices, we compute thenormalized cross entropy(NCE),
which is commonly used to measure the quality of confi-
dence measures (the higher its value, the better the confi-
dence measure). The NCE is defined by:

NCE =
Hmax −Hconf

Hmax

(15)

with

Hmax = −pc log2(pc) − (1 − pc) log2(1− pc) (16)

and

Hconf = −
1

N

[
∑

wi∈Wcorr

log2(pi) +
∑

wi∈Werr

log2(1− pi)

]
(17)

with pc = Nc

N
being the average probability that a word is

correct (Nc is the number of correct words in the set consid-
ered, andN is the total number of words),pi the predicted
confidence that the wordwi is correct (given by the con-
fidence measure), andWcorr andWerr the sets of correct
words and error words, respectively.

TheClassification Error Rate(CER) is used to measure
the performance of the error detection step (and to chose the
error thresholdτerr) and is defined as follows:

CER =
#correcterr +#errorscorr

#words
(18)

with #correcterr being the number of correct words iden-
tified as error hypotheses, and#errorscorr the number of
errors identified as correct words.

Finally, theprecision(Prec), therecall (Rec), and the
F-Measure(F) are classical measures used in the field of
information retrieval. Here, they are used to assess the per-
formance of identifying errors. They are defined as follows:

Prec =
#errorserr

#errorserr +#errorscorr
, (19)

Rec =
#errorserr

#errorserr +#correcterr
, (20)

and

F =
2× Prec×Rec

Prec+Rec
(21)

with #errorserr being the number of error hypotheses cor-
rectly identified as error hypotheses. Prec gives the percent-
age of word classified as errors and that are indeed errors,
whereas Rec gives the percentage of errors to identify that
are indeed classified as errors. The F-measure is then a single-
valued metric that reflects the trade-off between the preci-
sion and the recall.
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8.3 Baseline phrase recognition systems

We used two on-line handwriting recognizers in our exper-
iments. In this sub-section, we present both, as well as the
baseline recognition results on the two datasets (i.e.the recog-
nition results before any error handling approach is used).

8.3.1 ResifPhrase sentence recognition system

The first recognizer we used is the on-line handwritten sen-
tence recognition system RESIFPhrase [33]. Given an input
handwritten sentence, a graph containing handwritten word
segmentation hypotheses is built. To identify these hypothe-
ses, a radial basis function network (RBFN) is used to clas-
sify each inter-stroke gap. A confidence index is associated
with each of these classification results and is used to cre-
ate additional segmentation hypotheses. A MAP decoding
is then performed on the word graph to find the likeliest sen-
tence, using graphical and linguistic information as givenby
Eq. 7. In this case,P (S|Wk) is, in fact, the accumulated
score given by the word recognition system: it combines
graphic and lexical scores given by the word recognition
system RESIFMot [6]. Thegraphic scoreincludes adequa-
tion measures between each character and its corresponding
model, as well as spatial and statistical information between
characters; thelexical scoredepends on edit operations per-
formed during the lexical post-processing step.P (Wk) is
given by a bigram LM trained on the same part of the Brown
corpus as the LMs used in the error handling framework.
Nevertheless, it is different from these LMs because its vo-
cabulary contains 13,748 words made up of lowercase letters
only (the same vocabulary is used in the RESIFMot recog-
nizer).

The limitation of this recognizer is that it can only recog-
nize lowercase letters which restricts its use to ImadocSen-
OnDB. For this reason, we consider another recognizer to
evaluate our error handling framework on the IAM-OnDB,
which is a more realistic database.

8.3.2 Microsoft text recognizer

To obtainN -best lists of phrases from on-line handwritten
texts (as given in IAM-OnDB), we used the recognizer pro-
vided by Microsoft in their TabletPC sdk [31]. This enables
us to evaluate our whole approach with a real “black box”
recognizer, since theN -best lists only contain phrase hy-
potheses (ordered according to a recognition score, but one
that is not given). Furthermore, neither the vocabulary used
in the recognizer nor the LMs involved are known.

8.3.3 Baseline recognition results

In the following experiments, we consider three error han-
dling tasks, depending on the handwritten database consid-

ered and the recognition system used to provide the input
N -best list of phrase hypotheses. The tasks are:

– Sen/RP: RESIFPhrase recognizer on ImadocSen-OnDB;
– Sen/MS: Microsoft recognizer on ImadocSen-OnDB;
– Txt/MS: Microsoft recognizer on IAM-OnDB.

Table 3 gives the baseline WA and WRR (defined in Sect. 8.2),
for each task.

Table 3 Baseline recognition results on the test sets

Task Sen/RP Sen/MS Txt/MS
Top-1 WA 83.1 % 94.2 % 85.2 %
Top-1 WRR 84.6 % 94.7 % 86.7 %
Top-N WRR 90.3 % 95.5 % 92.0 %

The WA and the WRR are first given, considering only
the top-1 phrase on the list: these are the baseline rates against
which those obtained with our error handling approaches
will be compared. The recognition rate when considering the
top-N phrases of the list is also given (here,N is set to 150):
it gives an upper bound for our approach. Indeed, it can only
be achieved if all the word error hypotheses are perfectly de-
tected and perfectly corrected (the correction step only uses
words of the competing phrases to correct the errors). It also
implies a perfect characterization step, since the correction
step is performed on the graph pruned according to the char-
acterized error types. Thus, we can see that the WRR for the
first and the third tasks could be improved (due to about a
6 % difference between the top-1 and top-N rates), whereas
it might be more difficult to improve the WRR for the sec-
ond task (only a 1 % difference between the top-1 and top-N
rates).

The rates obtained with the Microsoft recognizer are higher
than those obtained with the RESIFPhrase recognizer. How-
ever, these results cannot be compared directly, since the
Microsoft recognizer uses a larger vocabulary, more sophis-
ticated LMs, and is also trained on a much larger training
set. Furthermore, the rates with the Microsoft recognizer are
higher than those obtained in [20] (using also the Microsoft
recognizer on IAM-OnDB), which is due to the fact that,
here, we compute rates on the tokens and not on the words.
Thus, a handwritten compound word corresponding to 3 to-
kens (the first word, the dash, and the second word) will
only be recognized for [20] if all its tokens are recognized,
whereas we will focus here on how many of its tokens are
recognized.

8.4 Comparison of confidence measures to detect error
hypotheses

In the experiments presented in this sub-section, we com-
pare the confidence measures used to detect word error hy-
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potheses. Table 4 gives the NCE for the word posterior prob-
abilities, and for the two word posterior probability approxi-
mations presented in Sect. 5.2 (the NCE is computed on the
training set for ImadocSen-OnDB, and on the first validation
set for IAM-OnDB).

Table 4 Quality of the posterior probabilities using the NCE

Task Sen/RP Sen/MS Txt/MS
Ppost(wi) 0.275 undef. undef.
P̃post(wi) (usingfrel(wi)) 0.253 0.150 0.193
P̃post(wi) (usingfrank(wi)) 0.258 0.154 0.197

We can see that the posterior probability obtains the best
NCE value, but the approximated posterior probabilities based
on the relative frequency and on the rank frequency also give
good values. The rank frequency gives better results than
just using the frequency because it gives a lower score to a
word that appears only in the last phrases of the list than to
a word that appears the same number of times in the first
phrases. So, for the Sen/MS and Txt/MS tasks, we choose
to use the rank-weighted frequency of words to approximate
the word recognition probabilities, so that we can compute
approximated posterior probabilities for the words (because
no word recognition probability is provided by the Microsoft
recognizer), while we use the actual recognition probabili-
ties for Sen/RP.

8.5 Setting of the error detection threshold

In this sub-section, we present the experiments on the choice
of the error detection threshold, now that we have chosen the
word posterior probability approximations (see Sect. 8.4). In
Fig. 8, ROC curves are given, when using the word poste-
rior probabilities as confidence indices (see Sect. 5.3): each
point of these curves corresponds to a chosen thresholdτerr
and shows the compromise between the correct words, the
confidence score of which is aboveτerr (TAR, for True Ac-
ceptance Rate), and the error words, the confidence score of
which is aboveτerr (FAR, for False Acceptance Rate). To
plot these curves, we used the same training and validation
sets as previously, for the three tasks.

For the tasks Sen/MS and Txt/MS, it can be seen that
ROC curves are almost lines from (0%, 0%) to (100%, 100%),
which means that error words cannot really be separated
from correct words, at least using only their posterior proba-
bilities. This may be because of the absence of a word recog-
nition score given by the recognition system: the rank fre-
quency score we use may not be good enough to compute
the approximated posterior probabilities. In order not to de-
tect too many false errors (i.e. that are indeed correct words),
we set the threshold to 0.1. For the Sen/RP task, the ROC
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Fig. 8 ROC curve comparing confidence measures for the different
error handling tasks

curve obtained has a better shape and allows us to set the
error detection threshold to 0.25 (corresponding to a 88.5%
TAR and a 79.8% FAR).

8.6 Choice of the feature set to characterize error
hypotheses

In the experiments described in this sub-section, we com-
pare the various feature sets used in a SVM to characterize
word error hypotheses into the three predefined error types
(see Sect. 6).

A SVM is trained for each of the three tasks using pa-
rameter optimization with a 10-fold cross-validation, thanks
to the LIBSVM library [7]. The training sets of the two
databases are used to train the SVMs; these training sets are
limited to the actual error words (the correct words are dis-
carded from the sets).

Table 5 gives the accuracy, that corresponds to the word
recognition rate WRR (here, computed only on the error
words), for each feature set considered and each task (it is
the metric used in LIBSVM to optimize the parameters of
the SVMs trained).

Table 5 Accuracy of the SVMs for the various feature sets

Task Sen/RP Sen/MS Txt/MS
wSet 58.5 % 77.2 % 58.7 %
lSet 58.6 % 77.7 % 58.8 %
nSet 61.8 % 79.7 % 60.6 %

The WRR obtained using thewSetare already good and
are only slightly improved when using the next context,lSet.
The improvement is more significant when using the larger
context,nSet, which improves the WRR by 2 to 3 %.
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In order to study the impact of the different features, we
used a tool from LIBSVM to perform feature selection: it
computes the contribution of each feature, in terms of the F-
measure Fand then computes the WRR for classifiers trained
with different subsets of the features. The better WRR is
thus obtained when using the whole set of features,nSet.
Table 6 also shows the importance of each feature, consider-
ing the three previous tasks (1 stands for the most important
feature and 16 for the less important one).

Table 6 Importance of the various features, for the characterization
classifiers

Task Sen/RP Sen/MS Txt/MS
wWordPosteriorProba 6 4 6
wWordUnigramProba 13 10 11
wWordLength 5 8 7
wWordPhrasePos 10 7 4
wPhraseLength 9 9 5
lConcurrNbWords 12 2 2
lConcurrNullEdge 2 5 10
lConcurrPosteriorProbasMean 3 3 3
lConcurrPosteriorProbasVariance 15 14 15
lConcurrUnigramProbasMean 8 16 13
lConcurrUnigramProbasVariance 11 6 12
nWordBigramProba 14 11 9
nPrevWordPosteriorProba 4 13 8
nNextWordPosteriorProba 16 15 16
nPrevWordError 1 1 1
nNextWordError 7 12 14

It can be seen that the most important information to
characterize error hypotheses into the predefined types are:

– features fromwSet(minus the unigram probability fea-
ture);

– the mean of posterior probabilities of concurrent words
as well as their number and the presence of anull edge
among them;

– information on the previous word of the top-list phrase
(if detected as an error, and its posterior probability).

This explains the good results obtained when using only
wSetand the improvement brought by information on the
previous word of the top-list phrase.

8.7 Evaluation of the overall error handling approach

In this sub-section, we present the final results on the test
sets of both databases, using the parameters optimized in
the previous sub-sections, for the three error handling tasks.
Table 7 gives the word recognition rate WRR, and the clas-
sification error rate CER, for the three different tasks, using
the whole error handling approach (see Sect. 8.2 for their

definitions). Moreover, to measure more precisely the per-
formance of the error handling process, the precision (Prec),
the recall (Rec), and the F-Measure (F) are given in Table 8.

The WRR is decreased for the three tasks, when using
only the error detection step (by 9-10 %). Consequently, the
CER is increased by∼10 % for the Sen/MS and Txt/MS
tasks but only by∼5 % for the Sen/RP task. When adding
the correction step, the WRR is improved, for the three tasks,
when compared to the error detection step alone, but it is
still below the baseline rates (by∼5 %). Likewise, the CER
is decreased (and is∼3-5 % over the baseline CER). This
behaviour is unavoidable because correct words are selected
during the error detection step, and not all of the so-detected
errors can be corrected during the correction step.

As this work is not placed in the context of a recognition
task, we evaluate more precisely the error handling contri-
bution, using classic methods from the field of information
retrieval (see Table 8). It can be seen that the recall is de-
creased during the correction process because of the attempt
to correct detected error hypotheses, but the correction step
also improves the precision and the F-measure. More partic-
ularly, better results are obtained for the Sen/RP task, where
the actual recognition scores of the words are used during
the correction step, to retrieve the final phrase.

9 Conclusion

We have proposed a framework to handle recognition er-
rors on phrase transcripts, from handwriting recognition sys-
tems, that are meant to be used as inputs to a higher-level
system (e.g. information retrieval systems or text catego-
rization systems). The framework takes aN -best best list
of phrases (given by the recognizer) as input and outputs a
phrase on which errors are detected, characterized, and even
corrected. This approach is decomposed into four steps: an
alignment step (where a word graph is built by aligning the
N -best phrases of the list), a detection step (where word
posterior probabilities are used as confidence measures to
detect error hypotheses on the words in the top-list phrase),
a characterization step (where the previously detected er-
ror hypotheses are characterized into predefined error types,
which are also used to prune the word graph accordingly),
and a correction step (where a word-to-class backoff LM is
defined and used to retrieve the final phrase on the pruned
graph and thus to correct initial recognition errors). Experi-
ments on two handwritten phrase databases were performed,
using two recognition systems to provide the initialN -best
lists: thus, three tasks were considered (Sen/RP, Sen/MS,
and Microsoft). The results of this first implementation are
mitigated. Indeed, even though the features chosen were proven
to allow the characterization of error hypotheses into prede-
fined error types and the correction step was shown to be
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Table 7 Overall recognition results with the whole error handling approach

Task Sen/RP Sen/MS Txt/MS
Rate WRR CER WRR CER WRR CER
Baseline 84.6 % 15.2 % 94.7 % 5.3 % 86.70 % 13.0 %
Error detect. 76.1 % 20.8 % 85.0 % 14.2 % 75.3 % 22.7 %
Error detect. 79.7 % 18.2 % 89.4 % 10.1 % 80.2 % 17.1 %
& charact. & correct.

Table 8 Precision and recall results with the whole error handling approach

Task Sen/RP Sen/MS Txt/MS
Rate Prec Rec F Prec Rec F Prec Rec F
Error detect. 20.2 % 21.8 % 20.9 % 2.7 % 15.0% 9.7 % 11.3 % 14.9 % 12.8 %
Error detect. 29.2 % 17.5 % 21.9 % 12.8 % 13.3 % 13.0 % 17.7 % 11.3 % 13.8 %
& charact. & correct.

an added-value to the error detection step alone, the over-
all results (in terms of WRR) are below the baseline WRR.
Starting from the results obtained in terms of precision and
recall, further investigations will be needed to improve the
different steps of the proposed error handling framework.

Future works will investigate approaches to align multi-
ple segmentations to better correct segmentation errors. To
do so, we could align multiple segmentation hypotheses when
creating the word graph, as proposed in [43], where an edge
can be align with two other edges, when the graph is cre-
ated. We will study the bias of the posterior probabilities,as
it was shown in [21] to impact the NCE and thus the qual-
ity of confidence measures based on these probabilities. We
will investigate using other features for the characterization
step and/or the detection step, especially probabilities given
byn-class LMs using POS classes (as then-class part of our
word-to-class backoff LM) that were proven to be efficient,
in recent works in speech recognition [36,13]. It would also
be of interest to investigate using other measures to opti-
mize the error detection threshold, like the F-measure, and
to study how it impacts the correction step and thus the over-
all error handling process. We will also investigate how to
correct words, not only using the words that appear in the
input phrase list. Indeed, it would be interesting to handle
words characterized asabsent substitution errors, for which
the correct recognition result does not appear in the word
graph. In that case, we could use their classes, as identified
by the word-to-class backoff LM, during the error correc-
tion step. The class of a word may then be used to select
a specific vocabulary, containing only words of that class.
This specific vocabulary could be given to a word recogni-
tion system, which could be used to further recognize the
word. Finally, it would be of interest to measure how the
error handling approach impacts the performance of higher-
level applications that deal with handwritten transcripts(for
information retrieval or categorization tasks, for example),
as in [26], or to study how to present all these error charac-

terization and correction results to an end-user (in a freeform
note-taking application, for example).
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