Error handling approach using characterization and correction steps for handwritten document analysis

Abstract : In this paper, we present a framework to handle recognition errors from a N-best list of output phrases given by a handwriting recognition system, with the aim to use the resulting phrases as inputs to a higher-level application. The framework can be decomposed into four main steps: phrase alignment, detection, characterization, and correction of word error hypotheses. First, the N-best phrases are aligned to the top-list phrase, and word posterior probabilities are computed and used as confidence indices to detect word error hypotheses on this top-list phrase (in comparison with a learned threshold). Then, the errors are characterized into predefined types, using the word posterior probabilities of the top-list phrase and other features to feed a trained SVM. Finally, the final output phrase is retrieved, thanks to a correction step that used the characterized error hypotheses and a designed word-to-class backoff language model. First experiments were conducted on the ImadocSen-OnDB handwritten sentence database and on the IAM-OnDB handwritten text database, using two recognizers. We present first results on an implementation of the proposed framework for handling recognition errors on transcripts of handwritten phrases provided by recognition systems.
Type de document :
Article dans une revue
International Journal on Document Analysis and Recognition (IJDAR), 2012, 15 (2), pp.125-141
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00582446
Contributeur : Solen Quiniou <>
Soumis le : jeudi 7 avril 2011 - 13:40:29
Dernière modification le : vendredi 25 mai 2018 - 01:07:46
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 13:31:37

Fichier

quiniou11error.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00582446, version 1

Citation

Solen Quiniou, Mohamed Cheriet, Eric Anquetil. Error handling approach using characterization and correction steps for handwritten document analysis. International Journal on Document Analysis and Recognition (IJDAR), 2012, 15 (2), pp.125-141. 〈hal-00582446〉

Partager

Métriques

Consultations de la notice

449

Téléchargements de fichiers

295