Large sport events and unemployment: The case of the 2006 soccer World Cup in Germany

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Applied Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>APE-07-0361.R1</td>
</tr>
<tr>
<td>Journal Selection:</td>
<td>Applied Economics</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>28-Jul-2007</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Hagn, Florian; Hamburg University, Department of Economics and Business Administration, Maennig, Wolfgang; Hamburg University, Economics and Business Administration</td>
</tr>
<tr>
<td>JEL Code:</td>
<td>L83 - Sports</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Regional economics, sports economics, World Cup, Stadium impact</td>
</tr>
</tbody>
</table>
Large sport events and unemployment

The case of the 2006 soccer World Cup in Germany

Abstract

This study analyses on the basis of a multivariate analysis ex post the effects on the jobs market of a soccer World Cup, in this case the 2006 World Cup held in Germany. In addition to three methods already used for other analyses in studies of sporting events, an extended “Difference-in-Difference” estimate is used in order to compare the development of the numbers of unemployed in the 12 World Cup venues with the development of the numbers of unemployed in 63 other German cities. The results demonstrate that in none of the respective match venues did the effect of the sporting event on unemployment differ significantly from zero.

1 Introduction

Before the 2006 World Cup in Germany a series of analyses was published, according to which the investments of around €6 billion in connection with the World Cup competition and the expenditure of the expected 1–2 million foreign visitors would markedly affect income and employment. The estimates fluctuated between a €2 billion and a €10 billion increase in income growth, or up to 10,000 additional jobs (Ahlert 2000, Capital 2006, Deutsche Industrie und Handelskammer 2006, Deutsche Postbank AG 2005a and b, 2006; Kurscheidt 2004). Even in retrospect the soccer World Cup competition was universally felt to be an outstanding and positive event for Germany. However, these perceptions derive from only a few

1 We are thankful for the anonymous referees’ valuable comments.

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK
observations *ex post*, that are moreover exclusively descriptive in nature (cf., in particular, Bundesministerium des Innern 2006, Brenke and Wagner 2007).

Multivariate studies are clearly more restrained in their assessment of the effects of major sporting events and also specifically of the soccer World Cup. Baade and Matheson (2004) investigated in a multiple analysis *ex post* the effect on the income of people in the match venues of the soccer World Cup of 1994 in the USA. They concluded that income developed in an equally weak fashion in 9 of the 13 regions of the contest. Overall, the soccer World Cup had a negative effect on the income of the match venue of more than US$9 billion. Szymanski (2002) collected data on the twenty largest economies in terms of current GDP over the past thirty years, many of which have hosted the Olympic Games or the soccer World Cup at least once during that period. Using a simple regression model, he came to the conclusion that the growth of these countries was significantly lower in soccer World Cup years.² The results of these two studies of soccer World Cups are in agreement with other econometric studies of various large sporting events or sports venues. The majority of these studies suggest that the sporting events or sports stadia have little or no significant effect on regional wages, income and/or employment (e.g. Baade, 1987; Baade and Dye, 1990; Baade, 1994; Baade and Sanderson, 1997; Baade and Matheson, 2000, 2001, 2003; Carlino and Coulson 2004³). A number of works, particularly those of Coates and Humphreys (1999, 2000a and b, 2002, 2003a and b) or Teigland (1999), have even arrived at significant negative effects. To our knowledge, only very few studies have found significant positive effects of sports facilities and sports events *ex post*. Baim (1994) found positive employment effects for Major League baseball and football for 15 cities in the USA. Hotchkiss *et al.* (2003) found significant positive effects on employment in regions of Georgia (USA) affiliated or close to activities of the Atlanta Olympic Games in 1996, but they did not find significant effects on wages.

² No significant effects at all are registered for the Olympic Games.
³ Although Carlino and Coulson (2004) reach the conclusion that having a NFL team allows the cities to “enjoy” rents that are 8 percent higher.

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK
The present work supplements previous publications in a number of respects. It is the first work that examines the effects of World Cup 2006 in Germany on an *ex post* basis. It is the first multivariate study to examine the employment effects of a major sporting event outside the USA. This is particularly interesting set against the background of the contrasting modes of functioning of the labour markets in the USA and Europe. In addition, it also tests for method sensitivity by running the dataset in parallel with the three methods usually applied in the studies of Baade and Matheson (2000, 2001, 2003, 2004), Coates and Humphreys (1999, 2000a and b, 2002, 2003a and b) and Hotchkiss *et al.* (2003) as well as with a fourth method that attempts to overcome some potential shortcomings associated with the three other methods. Section 2 elaborates on the methods, data and results. Section 3 concludes.

2 Methods, Data and Results

The period of observation in our study comprised 111 months from January 1998 to March 2007. Hence, the period of observation had already begun more than two years before Germany was selected on 6 July 2000 as the venue for the World Cup and it ends with the latest period for which data are available.

We use data regarding the 75 largest urban districts (kreisfreie Städte) in Germany including the 12 match venues of the 2006 soccer World Cup. The selection of the 75 largest urban districts was made according to the criterion of the population in 1999. Match venues of the 2006 soccer World Cup in Germany were the twelve cities Berlin, Dortmund, Frankfurt on the Main, Gelsenkirchen, Hamburg, Hanover, Kaiserslautern, Cologne, Leipzig, Munich, Nuremberg and Stuttgart, whose location in Germany is shown in Figure 1. Berlin, Hamburg,
Munich, Hanover, Cologne and Frankfurt on the Main are among Germany’s largest cities. In contrast, Kaiserslautern is ranked at only No. 74 in the table of the most populous urban districts. The number of inhabitants of the urban districts in 1999 – the year before Germany was selected to host the World Cup competition – were taken from the comprehensive economic records of the regions (Arbeitskreis Volkswirtschaftliche Gesamtrechnung der Länder 2005). The shares contributed to the gross value added by the various economic sectors in 1999 were obtained from the comprehensive economic records of the regions (Arbeitskreis Volkswirtschaftliche Gesamtrechnung der Länder 2005).

Dependent variables are the monthly numbers of the unemployed for the urban districts obtained from the Federal Labour Agency (Bundesagentur für Arbeit 2006, 2007). The development in unemployment in the group of the 12 match venues and the group of the 63 non-venues is compared in Figure 2; the development in unemployment in the match venues and non-venues at first progressed generally in parallel (Figure 2). From about January 2001, unemployment in the match venues rose more strongly than in the non-venues. At the beginning of 2005 the two groups of comparative data again approached each other; however, in July 2005 the jobless figures in the non-venues again fell in comparison with the match venues. In the World Cup year 2006 and the beginning of 2007, the development of unemployment in the match venues and non-venues ran largely parallel, with unemployment in the non-venues falling somewhat more steeply than in the match venues from July 2006.

In order to clarify the extent to which the differences in the development of unemployment figures in the two comparative groups - after controlling for the customary explanatory variables of joblessness - is significantly correlated with the occurrence of the World Cup, we first use the three methods commonly employed in studies in the USA in investigating the

5 The shares contributed to the gross value production in the year 1999 – the year preceding the selection of Germany to host the World Cup – were used, since data in the period are not available for the whole period under consideration but only on a yearly basis.

The excluded industry category is the finance, leasing and venture service.

Hence, according to the method of Baade and Matheson (2000, 2001, 2003, 2004) the following equation is derived:

\[
\text{\partial Unemp}_{i,t} = \beta_0 + \beta_1 \sum_{j=1}^{n} \text{\partial Unemp}_{i,j} + \beta_2 \text{\partial Unemp}_{i,t-1} + \beta_3 \text{\partial Unemp}_{i,t-2} + \beta_4 \text{\partial Unemp}_{i,t-3} + \\
\beta_5 \ln \text{Pop1999}_i + \beta_6 \text{East}_i + \beta_7 \text{Trend} + \beta_8 \text{DumSeas}_i + \beta_9 \text{WC2006}_i + \varepsilon
\]

(1)

The notation of equation (1) is explained in the appendix. Table 1 shows in column (1) the results of this estimation. The variable \(\text{WC2006}_i\), which measures effects on unemployment in the match venue during the course of the World Cup in the months of June and July 2006, does not differ significantly from zero.

The other estimation models used in this paper are special cases of model (2):

\[
\ln \text{Unemp}_{i,t} = \beta_0 + \beta_1 \ln \text{Pop1999}_i + \beta_2 \text{LF1999}_i + \beta_3 \text{Pr od1999}_i + \beta_4 \text{HV1999}_i + \\
\beta_5 \text{DL1999}_i + \beta_6 \text{East}_i + \beta_7 \text{Trend} + \beta_8 \text{DumSeas}_i + \beta_9 \text{WC}_i + \beta_{10} \text{Post}_i + \\
\beta_{11} \text{PostWC}_i + \beta_{12} \text{TrWC}_i + \beta_{13} \text{TrPost}_i + \beta_{14} \text{TrPostWC}_i + \varepsilon
\]

(2)

The notation of equation (2) is explained in the appendix.

The model according to Coates and Humphreys (1999, 2000a and b, 2002, 2003a and b) uses a “Fixed Effects” model, regressing the log unemployment on log population in city \(i\) in the year 1999, city-specific time trends, time-specific dummy variables and a dummy variable for the World Cup 2006 in the months of June and July 2006. Column (2) in Table 1 presents the results of this model. The estimated values of the city-specific time trends and of the time-

6 The results of the seasonal dummies are not reported. They are available from the authors on request.
specific dummy variables are not reported here, although they were in most cases significant. In this model too, the variable $WC_{2006,i,t}$ proves to be not significantly different from zero.

Hotchkiss et al. (2003) use a standard “Difference-in-Difference” estimate in order to be able to detect changes in a) the intercept, i.e. in the levels of the employment and wages, and b) the slope, i.e. in the growth of the two variables. The “Difference-in-Difference” estimate compares the variable of interest before and after the incidence of a given event in a region with the change in the same variable in another region that was not affected by that event. For this it is assumed that the development in the affected region would have matched the development in the unaffected region if the event had not occurred. The difference between the model of Hotchkiss et al. (2003) and the models of Baade and Matheson (2000, 2001, 2003, 2004) and of Coates and Humphreys (1999, 2000a and b, 2002, 2003a and b) is that these last two test solely the effects during the course of the actual event, whereas with the model of Hotchkiss et al. (2003) the medium-term effects can also be determined. The model according to Hotchkiss et al. (2003) estimates the log unemployment by the shares of gross value added of selected economic sectors, a dummy for match venues of the World Cup 2006, a dummy for period after the World Cup 2006 (1 for period after, 0 for period before the World Cup), and a dummy for match venues and period after the World Cup 2006.

The period from June 2006 is selected as the post-event period ($Post = 1$), corresponding to the beginning of the World Cup on 9 June 2006. Column (3) in Table 1 represents the results from the estimation according to Hotchkiss et al. (2003) for this follow-up period. The relevant variable, $PostWC_{i,t}$, is not significant. Therefore the levels of the unemployed in the 12 match

7 The results of the evaluation are available from the authors on request.
8 Frequently, this concerns a political event, such as the introduction of a new law. The classic use of the “Difference-in-Difference” estimate originated with Card and Krueger (1994), who used it to investigate the consequences of minimum wages in two States of the USA.
venues in the period after the World Cup have not developed significantly differently from those in the other cities in the survey.

To test for an effect on the growth of the numbers of unemployed through the soccer World Cup, we also included, closely following the procedure of Hotchkiss et al. (2003) a time trend. Again the relevant variable $TrPostWC_{i,t}$ does not differ significantly from zero (column (4) in table 1). For the period after the World Cup, the match venues show in comparison with the non-venues no trend significantly different from zero in the development of unemployment.

Finally, we extend the standard “Difference-in-Difference” estimates of Hotchkiss et al. (2003), in that in our model we simultaneously take into account changes as much in the levels as also in the trends of the dependent variable. In this way we avoid distorted results, for example if an unemployment level in a city lower than before the World Cup is exclusively attributable to an already existing negative trend.

One shortcoming of the estimation models used by Baade and Matheson (2000, 2001, 2003, 2004), Coates and Humphreys (1999, 2000a and b, 2002, 2003a and b), and Hotchkiss et al. (2003) which have been discussed so far is that they do not attempt to overcome the problem of serial correlation, which often exists in data with time series dimensions. Since, as shown by Bertrand et al. (2004), “Difference-in-Difference” models are frequently subject to serial correlations and also tend to overestimate the significance of the results, in the following we use White coefficient covariance estimators, which are robust with regard to serial correlation. Bertrand et al. (2004) recommend this procedure particularly for “Difference-in-Difference” models with a sample in which $N > 50$.

Column (5) in table 1 shows the results of our model on the basis of Bertrand et al.. The values of the independent variables used have the expected sign and turn out to be almost without exception significant. The value of the variable $Post_{i,t}$, differing significantly and positively

9 Galster et al. (2004) use a similar extended “Difference-in-Difference” estimate in order to investigate the effects on housing prices of accommodation for the disabled.
from zero, indicates that in the whole sample in the period after the World Cup there is a significantly higher level of unemployment than in the period before the competition. The significantly negative value of the variable $TrPost$, shows for the whole sample a significant negative trend in the numbers of the unemployed in the period after the World Cup, in comparison with the period before the competition. Relevant for possible employment effects of the World Cup in the match venues are the two variables $PostWC_{i,j}$ and $TrPostWC_{i,j}$. These two variables have proved not to differ significantly from zero. Hence, neither the levels nor the trends of the unemployment figures in the period after the soccer World Cup relative to the period before the competition have developed significantly differently in the match venues from those of the unemployment figures in the non-venues. Therefore, an effect of the World Cup on employment in the 12 match venues can not be demonstrated.

3 Conclusion, and economic and political implications

Our study has demonstrated that the 2006 World Cup could not influence unemployment in the 12 match venues to an extent that was significantly different from its pattern in the non-venues.

Our results not only correspond with those of Baade and Matheson (2004), which were unable to prove any income effects significantly different from zero in the host cities of the 1994 Football World Cup in the USA; they also correspond with almost all ex post multivariate income and employment analyses of major sporting events and venues which, with the exception of Hotchkiss et al. (2003) for the 1996 Olympic Summer Games in Atlanta and Jasmand/ Maennig (forthcoming) for the 1972 Olympic Summer Games in Munich show no income and/or employment effects that are significantly positively different from zero.
We nevertheless hesitate to share the concern expressed both implicitly and explicitly in many of the comparable sports economy studies that the positive effects of the sporting events claimed by many sports protagonists are not true and that (bids to host) major sporting events are inefficient from an economic point of view, for three reasons. Firstly, other effects such as the feelgood benefit for the population and/or difficult to quantify image effects may be sufficiently important to justify major sporting events and/or subsidies for them via public funds. In both of the above-mentioned fields of possible effects, sporting economic empiricism is still in its infancy.

Secondly, the treatment group in the selected form of municipality areas might be too large and too highly aggregated to statistically prove significant effects. Studies on the effects of major sports venues on property values in surrounding areas indicate a maximum affect area of around 3,000 metres (Tu 2005, Ahlfeldt and Maennig forthcoming).

Thirdly, the employment effects claimed by the sports protagonists, which are usually based on corresponding ex-ante impact studies, cannot strictly speaking be rejected by testing for significant differences from zero. Their rejection would be possible if the postulated values were tested directly. However, this would not be regularly successful in the relevant studies because the effects claimed are so close to zero (Baade and Matheson 2006). To illustrate this: the value of 0.001967 for \(PostWC\) in column (5) of Table 1, with a standard deviation of 0.029605 is usually interpreted to mean that there are no effects on unemployment. Sports protagonists can argue that with the existing estimates a reduction of unemployment of up to around \((0.001967 - 2 \times 0.029605 =) -0.057243\) cannot be refuted. This would nevertheless

10 For the measurement of the experiential benefit of the Olympic Games in London 2012 cf. Atkinson et al. (2006), for the measurement of the willingness to pay for the Soccer World Cup 2006 (before and after the event cf. Heyne et al. (2007).

11 Baade and Matheson (2006) test hypotheses against both a zero impact and against the impact claimed by sports boosters. They are able to reject any boosters’ claims of economic impact from the game of greater than $300 million at a 5% significance level.
correspond, ceteris paribus, to a decrease of 3,460 unemployed persons in the average
unemployment levels in the host cities in the period between June 2006 and March 2007.
References

Coates, D. and Humphreys, B.R. (2000b) The economic consequences of professional

Coates, D. and Humphreys, B.R. (2003a) The effect of professional sports on earnings and
employment in the services and retail sectors in US cities, *Regional Science and Urban
Economics, 33*(2), 175-198.

Coates, D. and Humphreys, B.R. (2003b) Professional sports facilities, franchises and urban
economic development, *Public Finance and Management, 3*, 335-357.

Unternehmen*,

Deutsche Postbank AG (2005a) *FIFA Fußball-Weltmeisterschaft 2006™ – Deutsche
Wirtschaft steht als Gewinner bereits fest*,

Deutsche Postbank AG (2005b) *FIFA Fußball-Weltmeisterschaft 2006™ – Signifikante
Arbeitsplatz und Beschäftigungszuwächse in einzelnen Branchen*,

„ärmere“ Austragungsorte profitieren am meisten*,

value externalities, *Land Economics, 80*(1), 33-54.

The case of Soccer WC 2006. Unpublished Paper Bremen University, University of
Technology Munich and Hamburg University.

Figure 1: 12 Match venues for the 2006 soccer World Cup

Figure 2: Comparison of the jobless figures in the match venues and non-venues, monthly averages; (1998 = 100)

Table 1: Results of estimations

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-0.545333</td>
<td>-2.893523**</td>
<td>-5.725571**</td>
<td>-5.786100**</td>
<td>-5.559757**</td>
</tr>
<tr>
<td></td>
<td>(0.449554)</td>
<td>(0.069527)</td>
<td>(0.106001)</td>
<td>(0.102529)</td>
<td>(0.706835)</td>
</tr>
<tr>
<td>(\bar{\Delta Unemp}{i,t}) / (\bar{\bar{n}}{t})</td>
<td>0.984198**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020724)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta Unemp_{i,t-1})</td>
<td>0.070232**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010390)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta Unemp_{i,t-2})</td>
<td>-0.066135**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010199)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta Unemp_{i,t-3})</td>
<td>-0.029246**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010009)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln Pop_{1999})</td>
<td>0.036357</td>
<td>1.009341**</td>
<td>1.114090**</td>
<td>1.112397**</td>
<td>1.118913**</td>
</tr>
<tr>
<td></td>
<td>(0.034036)</td>
<td>(0.005372)</td>
<td>(0.006182)</td>
<td>(0.005764)</td>
<td>(0.042448)</td>
</tr>
<tr>
<td>(LF_{1999})</td>
<td>9.210087**</td>
<td>9.521020**</td>
<td>12.670163**</td>
<td>16.145417**</td>
<td>17.69763</td>
</tr>
<tr>
<td></td>
<td>(1.506866)</td>
<td>(1.479889)</td>
<td>(1.351303)</td>
<td>(1.345903)</td>
<td>(1.165561)</td>
</tr>
<tr>
<td>(Prod_{1999})</td>
<td>1.351303**</td>
<td>1.345903**</td>
<td>1.165561**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.057822)</td>
<td>(0.056771)</td>
<td>(0.357648)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(HV_{1999})</td>
<td>2.176097**</td>
<td>2.165001**</td>
<td>2.521375**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.029999)</td>
<td>(1.01086)</td>
<td>(0.632940)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DL_{1999})</td>
<td>2.742939**</td>
<td>2.736931**</td>
<td>1.065683</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.074783)</td>
<td>(0.073364)</td>
<td>(0.561188)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(East_{i})</td>
<td>-0.089776</td>
<td></td>
<td></td>
<td></td>
<td>0.569676**</td>
</tr>
<tr>
<td></td>
<td>(0.067240)</td>
<td></td>
<td></td>
<td></td>
<td>(0.059449)</td>
</tr>
<tr>
<td>(Trend)</td>
<td>0.000264</td>
<td>0.001809**</td>
<td>0.001669**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000807)</td>
<td>(0.000108)</td>
<td>(0.000214)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WC_{2006})</td>
<td>-0.523758</td>
<td>0.027841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.454969)</td>
<td>(0.039916)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(WC_{i})</td>
<td>0.018728</td>
<td>-0.029539</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011107)</td>
<td>(0.088953)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Post_{i})</td>
<td>0.051208**</td>
<td>0.077428**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011678)</td>
<td>(0.013079)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(PostWC_{i,t})</td>
<td>0.031908</td>
<td>0.001967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028774)</td>
<td>(0.029605)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TrWC_{i})</td>
<td>0.000459**</td>
<td>0.000663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.000168)</td>
<td>(0.000480)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TrPost_{i})</td>
<td>-0.011736**</td>
<td>-0.021646**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002042)</td>
<td>(0.001229)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(TrPostWC_{i,t})</td>
<td>0.000277</td>
<td>-0.001254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0004875)</td>
<td>(0.002139)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.579986</td>
<td>0.952688</td>
<td>0.884910</td>
<td>0.888998</td>
<td>0.934962</td>
</tr>
</tbody>
</table>

* bzw. ** = significant on 5%- or. 1%-confidence level
Notations

Equation (1)

\[\partial Unemp_{i,t} \] percentage change in the unemployment in city i at time \(t \),

\[\frac{\sum_{i=1}^{n} \partial Unemp_{i,t}}{n_t} \] average percentage change in unemployment in the sample at time \(t \),

\[\partial Unemp_{i,t-1} \] percentage change in unemployment in city i at time \(t-1 \),

\[\partial Unemp_{i,t-2} \] percentage change in unemployment in city i at time \(t-2 \),

\[\partial Unemp_{i,t-3} \] percentage change in unemployment in city i at time \(t-3 \),

\[\ln Pop1999_i \] log population in city i in the year 1999,

\[East_i \] dummy for urban districts in the region of the former East Germany,

\[Trend \] time trend,

\[DumSeas \] dummies for the month of February to December ,

\[WC2006_{i,d} \] dummy for the World Cup 2006 in the months of June and July 2006 in match venues, and

\[\varepsilon \] disturbance variable.

Equation (2)

\[\ln Unemp_{i,t} \] log unemployment in city i at time \(t \),

\[\ln Pop1999_i \] log population in city i in the year 1999,

\[LF1999_i \] share of gross value added of the agriculture, forestry and fisheries sector in city i in the year 1999,

\[Prod1999_i \] share of gross value added of the manufacturing industry sector in city i in the year 1999,
$HV_{1999,i}$ share of gross value added of the trade, hospitality industry and traffic sector in city i in the year 1999,

$DL_{1999,i}$ share of gross value added of the public and private service industry sector in city i in the year 1999,

$East_i$ dummy for urban districts in the region of the former East Germany,

$Trend$ time trend,

$DumSeas_i$ dummies for the month of February to December,

WC_i dummy for match venues of the World Cup 2006 (1 for match venue, 0 if not a match venue),

$Post_i$ dummy for period after the World Cup 2006 (1 for period after, 0 for period before the World Cup), and

$PostWC_{i,t}$ dummy for match venues and period after the World Cup 2006, (1 if match venue and period after the World Cup, otherwise 0),

$TrWC_i$ trend variable for match venues of the World Cup 2006 (1 if match venue and 1st phase of the period under consideration, 2 if match venue and 2nd phase of the period, etc., otherwise 0),

$TrPost_i$ trend variable for period after the World Cup 2006 (1 if 1st phase after the World Cup, 2 if 2nd phase, etc. otherwise 0), and

$TrPostWC_{i,t}$ trend variable for match venues and period after the World Cup 2006 (1 if match venue and 1st phase after the World Cup, 2 if match venue and 2nd phase after the World Cup, etc., otherwise 0), and

ε disturbance variable.