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Can LR Test Be Helpful in Choosing the Optimal Lag order in the VAR 

Model When Information Criteria Suggest Different Lag Orders?

Abstract

The objective of this simulation study is to investigate whether the likelihood ratio (LR) test 

can pick the optimal lag order in the vector autoregressive model when the most applied 

information criteria (i.e. vector Schwarz-Bayesian, SBC, and vector Hannan-Quinn, HQC) 

suggest two different lag orders. The results based on the Monte Carlo simulations show that 

combining the LR test with SBC and HQC results in a significant increase in the success rate 

of choosing the optimal lag order compared to cases when only SBC or HQC are used. This is 

true irrespective of homoscedasticity or conditional heteroscedasticity. This improvement in 

choosing the right lag order also tends to improve the forecasting capability. 

.

Running title: Optimal Choice of the Lag Length in the VAR Model Using LR

JEL Classification: C32, C30 

Keywords: VAR, Lag length, Information Criteria, Monte Carlo Simulations, Likelihood 

Ratio Test
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1. Introduction

One of the most applied models in the empirical economics is the vector autoregressive 

(VAR) model. In addition to its simplicity regarding estimation and interpretation, and its 

good forecasting capabilities, the VAR model treats all the variables of interest 

endogenesously. This property is important since in macroeconomics exogenous variables 

are rare. The VAR models also provide the possibility to investigate the causal 

relationship between the variables. It is also possible to transform the VAR model to a 

vector moving average (VMA) representation in order to trace the effects of the shocks on 

each variable in the system by calculating the impulse response functions and the variance 

decompositions. Due to the recent developments in dealing with integrated variables, the 

VAR model has been proven to be even more useful since it can be used to test for the 

long-run equilibrium relationship between the variables in combination with the short-run 

adjustment process. Obviously the VAR model is dynamic which accords with economic 

theory. However, economic theory is usually not much of help regarding the length of the 

dynamic process. In the literature several lag choosing criteria have been proposed for this 

purpose. Three of the most used information criteria are the Akaike (1969) information 

criterion, (AIC), the Schwarz (1978) Bayesian criterion (SBC) and the Hannan and Quinn 

(1979) criterion (HQC). These information criteria were originally developed for single 

equations. But they can be extended in vector form to determine the lag order of systems 

of equations, i.e. VAR models. However, the choice of these criteria for determining the 

lag order in the VAR model is usually arbitrary in the applied studies. Sometimes these 

information criteria do not agree in choosing the lag order. The question is then upon 

which information criteria one should rely. 

Hatemi-J (1999, 2001) suggested using two of these criteria to choose the optimal lag 

length in the VAR model. If these two criteria choose different lag orders then the author 

suggested using the likelihood ratio (LR) test to choose between these two lags. It should 

be expressed that the LR test will be used only once in this case.1 This means that the 

problem of mass-significance that occurs when the test is used sequentially can be 

avoided.2 According to a simulation study performed by Hacker and Hatemi-J (2005) SBC 

1 For an application of this approach see Hacker and Hatemi-J (2003).
2 See also Hatemi-J (2003).
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has best performance in many cases. However, HQC has better performance in some 

cases. Thus, which criteria should be used is dependent on the data generating process for 

the variables. However, one cannot be sure about this issue when actual data is used 

because the true data generating process for the actual data cannot be known. This subject 

is important because inference in the VAR model is dependent on the choice of lag length. 

The purpose of this article is to evaluate the lag choosing procedure suggested by Hatemi-

J. Thus, the purpose of this study is to see whether the LR test can be useful in picking the 

optimal lag order of the VAR model when SBC and HQC suggest different lag orders. It 

should be pointed out that we will make use of many combinations of the parameters in 

the VAR model in the simulations in order to make the results as general as possible. 

This paper is organized as follows. In the next section we will describe the VAR model 

and different criteria that can be used to determine the optimal lag order. Section 3 

describes the design of our simulation. Section 4 presents the simulation results and 

conclusions. 

2. The VAR Model and the Lag choosing Criteria

Let us define the following VAR model, consisting of n variables that is characterized by 

an order less-than or equal to K:

.,1,
1

Tt,ZDZ tkt

K

k
ktt L=++Γ= −

=
∑ εβ (1)

where εt is a n×1 vector of disturbance terms that are assumed to be independently identically 

distributed errors with the distribution ( )Ω0,Nn , βk is a matrix of coefficients for Zt-k, and Dt

represents non-stochastic components such as constant terms, linear trend, or seasonal 

dummies. The initial values, 0-1 ,, ZZ K L , are assumed to be fixed. Our objective is to choose 

the largest order for the time series, denoted by kl ∈ K, such that 0≠
lkβ  and βj = 0, ∀ j > kl. 

To accomplish choosing the optimal lag length in the VAR model the following general form 

for an information criterion can be applied:

( ) ( )
,,0,det Kj,

T

Tf
jIC j L

)
=+Ω= ln (2)
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where jΩ̂  is the maximum likelihood estimate of the variance-covariance matrix Ω  when the 

lag order used in estimation is j. Logarithm is denoted by ln and det represents the 

determinant of the corresponding matrix.

The objective is to estimate kl by the j that minimizes the above criterion. Schwarz (1978) 

suggested ( ) TnTf ln2= , whereas Hannan and Quinn (1979) preferred ( ) ( )TnTf lnln22= .3

The lag order of the VAR model can also be determined by testing the significance of 

parameters for each specific lag order. The likelihood ratio (LR) test that can by applied for 

this purpose, due to Sims (1980), is defined as the following:

( ) 21 loglog Ω−Ω−= cTLR (3)

where T is the sample size and c is the total number of parameters estimated in the VAR 

model under the alternative hypothesis. 1Ω  is the maximum likelihood estimate of the 

variance-covariance matrix of the residuals in the VAR model under null hypothesis and 2Ω

is the maximum likelihood estimate of the variance-covariance matrix of the residuals in the 

VAR model under alternative hypothesis. The LR test is chi-square distributed with the 

degrees of freedom equal to the number of restriction that are tested.

3. The Simulation Design

We make use of the following bivariate VAR model, which is of order two, in our 

simulations:
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The error terms vector 
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1  are designed to be independent or conditionally heteroscedastic. 

More specifically, the simulations are also run when the variance of the error terms can be 

described by the following autoregressive conditional heteroscedasticity (ARCH):
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To cancel the effect of starting up values, we generated 100 presample observations. This 

gives us the possibility to have the same number of observations in estimating the VAR model 

regardless of the number of lags. 

A central issue in a Monte Carlo simulation like the current one is choosing a variety of 

parameters that as a group has characteristics that fairly represent those of the infinite space of 

possible parameters. In order to obtain general results we consider all the combinations shown 

in Table 1 for the coefficient matrices. There are 12500 (5×5×5×5×4×5) possible 

combinations of the elements in this table. The VAR model is always of the second order 

since β2,22 is never zero. 

Table 1. 

Parameter Values for VAR model of equation (4)

β1,11 -1 0.5 0 0.5 1

β1,22 -0.5 -0.25 0 0.25 0.5

β1,12 = β1,21 -0.5 -0.1 0 0.1 0.5

β2,11 -0.8 -0.2 0 0.2 0.8

β2,22 -0.6 -0.1 0.1 0.6

β2,12 = β2,21 -0.5 -0.1 0 0.1 0.5

To assure that we have stable cases we make sure that the modulus (the square root of the 

summed squares of the real and imaginary eigenvalue components) of each eigenvalue of the 

following companion matrix (B) is less than one. 

B = 



















0010

0001
222212221211

122112121111

,,,,

,,,,

ββββ
ββββ

(6)

We run separate simulations based on small sample sizes (T = 40).4

3 Nielsen (2001) shows that SBC and HQC are consistent regardless of the assumption about the characteristic 
roots in the VAR model. By consistency is meant that the criterion selects the true order of the VAR system with 
probability one asymptotically. 
4 It should be pointed out that we have run 10000 simulations for each combination of the parameters. This 
means that the total number of the simulations is 125000000 for each sample size. The simulations are 
performed by using GAUSS.
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Since VAR models are extensively used for forecasting purposes, we also investigate 

whether combining the LR test with the two information criteria can result in determining lag 

orders that can result in more accuracy in forecasts. Assume that )z(E hT,i +  is the forecast of 

variable zi, i = 1,2, for h periods into the future that we would make if we know the actual 

parameters of the VAR model (assuming errors are equal to zero for future periods). This 

forecast is equivalent to the expected value of hT,iz +  based on the information available in the 

last observed period T. Let us denote hT,iẑ +  the forecast of variable zi for h periods into the 

future that we make using the estimated parameters based on the lag length chosen by the 

criterion. Finally, let hT,iz +  denote the forecast of variable zi for h periods into the future that 

is made based on the estimated parameters using always the right lag length of two. Then, the 

sum of squared errors ratio, SSER, can be calculated for a particular case (set of parameters in 

a scenario) by the following equation:

( )[ ]

( )[ ]∑

∑

++

++

−

−
=

S
hTihTi

S
hTihTi

zEz

zEz

SSER
2

,,

2
,,ˆ

, (7)

where S denotes the set of 1000 simulations for a particular case, so in the numerator and 

denominator we are summing up over the simulations. In the numerator we show the 

systematic sum of squared errors of the forecasted variable based on forecasts using lags

chosen by the criterion.5 In the denominator we show the systematic sum of squared errors of 

a forecasted variable using always the correct lag length. The lower SSER is, the better the 

forecasting is in comparison to forecasts based on knowing the correct lag length. If the 

chosen criterion does just as well in forecasting as when the correct lag length is always 

chosen, then this ratio would be one. For any particular scenario we calculate the average 

SSER, i.e. the mean of the SSER over all the cases and over the two variables, z1 and z2.

4. The Results of the Simulations and the Conclusions

5 Lütkepohl (1985,1991) handles his presentation of forecast capability in a different fashion. He focuses not on 

the systematic forecast error, )zE(ẑ hT,ihT,i ++ − , but on the overall forecast error hT,ihT,i zẑ ++ − , where zi,T+h

is an actualized outcome of zi for h periods into the future. He thus also includes in his focus the unsystematic 
(random) components of the forecast error, E(zi,T+h) – zi,T+h, which injects additional randomness that we find 
undesirable for comparison since it is unsystematic. For his presentation in his 1985 article he normalizes 
(divides) an approximation of the mean squared overall forecast error with the theoretical variance of E(zi,T+h) –
zi,T+h . 
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In Table 2 we present the frequency distributions in the presence and absence of 

conditional heteroscedasticity. We can see that the two criteria perform differently and which 

performance is better depends on the circumstances. However, when we combine these two 

criteria with the LR test for picking the true lag order in the VAR model the percentage 

choosing the optimal order increases significantly compared to cases when only one criterion 

is utilized, particularly for small sample sizes. This is true whether conditional 

heteroscedasticity is present or not. The same conclusion can be drawn regarding the 

forecasting properties (see Table 3). Using the LR test combined with SBC and HQC to 

choose the optimal lag order in the VAR model is going to result in choosing lag orders that 

are going to result in more precise forecasts compared to cases when only SBC and HQC are 

used.

Table 2. 

Results for picking the optimal lag order based on simulations for a VAR(2) model with and 

without autoregressive conditional heteroscedasticity (ARCH).

Info criterion 

& variance 

situation↓

Lag 

length→

0 1 2 3 4 5 6 7

Frequency distribution of estimated VAR orders, without ARCH

HQC, 0.019 0.031 0.860 0.056 0.018 0.007 0.005 0.004 

SBC 0.066 0.070 0.850 0.013 0.001 0.000 0.000 0.000 

HQC, SBC and LR 0.021 0.050 0.908 0.018 0.003 0.000 0.000 0.000 

Frequency distribution of estimated VAR orders, with ARCH

HQC, 0.018 0.032 0.833 0.078 0.022 0.008 0.005 0.004 

SBC 0.060 0.069 0.846 0.022 0.002 0.000 0.000 0.000 

HQC, SBC and LR 0.019 0.051 0.897 0.028 0.004 0.000 0.000 0.000 
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Table 3. 

Results for forecasting performance (SSER) based on simulations for a VAR(2) model with 

and without autoregressive conditional heteroscedasticity (ARCH).

Forecasting Period Forecasting Error for HQC

Forecasting Period
Without 

ARCH
With ARCH

1 1.249 1.334

2 1.267 1.422

3 1.240 1.403

4 1.229 1.453

5 1.194 1.877

Forecasting Period Forecasting Error for SBC

1 1.283 1.254

2 1.285 1.257

3 1.139 1.149

4 1.111 1.149

5 1.063 1.181

Forecasting Period Forecasting Error for HQC, SBC and LR

1 1.141 1.162

2 1.147 1.176

3 1.089 1.131

4 1.073 1.148

5 1.049 1.18
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Can LR Test Be Helpful in Choosing the Optimal Lag order in the VAR 

Model When Information Criteria Suggest Different Lag Orders? 

 

Abstract 

The objective of this simulation study is to investigate whether the likelihood ratio (LR) test 

can pick the optimal lag order in the vector autoregressive model when the most applied 

information criteria (i.e. vector Schwarz-Bayesian, SBC, and vector Hannan-Quinn, HQC) 

suggest two different lag orders. This lag-choosing procedure has been suggested by Hatemi-

J (1999). The results based on the Monte Carlo simulations show that combining the LR test 

with SBC and HQC causes a substantial increase in the success rate of choosing the optimal 

lag order compared to cases when only SBC or HQC are used. This appears to be the case 

irrespective of homoscedasticity or conditional heteroscedasticity properties of the error-term 

in small sample sizes. This improvement in choosing the right lag order also tends to improve 

the forecasting capability of the underlying model.  

.
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1. Introduction 

 

One of the most applied models in the empirical economics is the vector autoregressive 

(VAR) model. In addition to its simplicity regarding estimation and interpretation, and its 

good forecasting capabilities, the VAR model treats all the variables of interest endogenously. 

This property is important since in macroeconomics exogenous variables are rare. The VAR 

models furthermore provide the possibility to investigate the causal relationship between the 

variables. It is also possible to transform the VAR model to a vector moving average (VMA) 

representation in order to trace the effects of the shocks on each variable in the system by 

calculating the impulse response functions and the variance decompositions. Due to the recent 

developments in dealing with integrated variables, the VAR model has been proven to be 

even more useful since it can be used to test for the long-run equilibrium relationship between 

the variables in combination with the short-run adjustment process. Obviously the VAR 

model is dynamic which accords with economic theory on a variety of topics. However, 

economic theory is usually not much of help regarding the length of the dynamic process. In 

the literature several lag choosing criteria have been proposed for this purpose. Three of the 

most used information criteria are the Akaike (1969) information criterion, (AIC), the 

Schwarz (1978) Bayesian criterion (SBC) and the Hannan and Quinn (1979) criterion (HQC). 

These information criteria were originally developed for single equations, but they can be 

extended in vector form to determine the lag order of systems of equations, i.e. VAR models. 

However, the choice of which of these criteria to use for determining the lag order in the VAR 

model is usually arbitrary in applied studies. Sometimes these information criteria do not 

agree in choosing the lag order. The question is then upon which information criterion one 

should rely.  

 

Hatemi-J (1999, 2001) suggested using two of these criteria to choose the optimal lag length 

in the VAR model. If these two criteria choose different lag orders then the author suggested 

using the likelihood ratio (LR) test to choose between these two lags. It should be expressed 

that the LR test will be used only once in this case.1 This means that the problem of mass-

significance that occurs when the test is used sequentially can be avoided.2 According to a 

simulation study performed by Hacker and Hatemi-J (2005) SBC has best performance in 

 
1 For an application of this approach see Hacker and Hatemi-J (2003). 
2 See also Hatemi-J (2003, 2006), and Bahmani-Oskooee and Brooks (2003). 
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many cases. However, HQC has better performance in some cases. Thus, which criteria 

should be used is dependent on the data generating process for the variables. However, one 

cannot be sure about this issue when actual data is used because the true data generating 

process for the actual data cannot be known. This subject is important because inference in 

the VAR model is dependent on the choice of lag length. The purpose of this article is to 

evaluate the lag choosing procedure suggested by Hatemi-J (1999).  Thus, the purpose of this 

study is to see whether the LR test can be useful in picking the optimal lag order of the VAR 

model when SBC and HQC suggest different lag orders. It should be pointed out that we will 

make use of many combinations of the parameters in the VAR model in the simulations in 

order to make the results as general as possible.  

 

This paper is organized as follows. In the next section we will describe the VAR model and 

different criteria that can be used to determine the optimal lag order. Section 3 describes the 

design of our simulation. Section 4 presents the simulation results and conclusions.  

 

2. The VAR Model and the Lag Choosing Criteria 

Let us define the following VAR model, consisting of n variables that is characterized by an 

order less-than or equal to K:

.,1,
1

Tt,ZDZ tkt

K

k
ktt L=++Γ= −

=
∑ εβ (1) 

where εt is a n×1 vector of disturbance terms that are assumed to be independently identically 

distributed errors with the distribution ( )Ω0,Nn , βk is a matrix of coefficients for Zt-k, and Dt

represents non-stochastic components such as constant terms, linear trend, or seasonal 

dummies. The initial values, 0-1 ,, ZZ K L , are assumed to be fixed. Our objective is to choose 

the largest order for the time series, denoted by kl ∈ K, such that 0≠
lkβ and βj = 0, ∀ j > kl.

To accomplish choosing the optimal lag length in the VAR model the following general form 

for an information criterion can be applied: 

( ) ( ) ,,0,det  Kj,
T
TfjIC j L

)
=+Ω= ln  (2) 

where jΩ̂ is the maximum likelihood estimate of the variance-covariance matrix Ω when the 

lag order used in estimation is j. Logarithm is denoted by ln and det represents the 

determinant of the corresponding matrix. 

Page 12 of 18

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

The objective is to estimate kl by the j that minimizes the above criterion. Schwarz (1978) 

suggested ( ) TnTf ln2= , whereas Hannan and Quinn (1979) preferred ( ) ( )TnTf lnln22= .3

The lag order of the VAR model can also be determined by testing the significance of 

parameters for each specific lag order. The likelihood ratio (LR) test that can be applied for 

this purpose, due to Sims (1980), is defined as the following: 

( ) 21 loglog Ω−Ω−= cTLR (3) 

where T is the sample size and c is the total number of parameters estimated in the VAR 

model under the alternative hypothesis. 1Ω is the maximum likelihood estimate of the error-

term variance-covariance matrix in the VAR model under the null hypothesis and 2Ω is the 

maximum likelihood estimate of the error-term variance-covariance matrix in the VAR model 

under the alternative hypothesis. Under the null hypothesis the LR test is chi-square 

distributed with the degrees of freedom equal to the number of restriction that are tested. 

 

3. The Simulation Design 

 

We make use of the following bivariate VAR model, which is of order two, in our 

simulations: 



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0.1

ε
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ββ
ββ
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ββ

, (4) 

The error terms vector 







ε
ε

t

t

2

1 are designed to be independent and homoscedastic or 

conditionally heteroscedastic. In the conditionally heteroscedastic situation the simulations 

are run when the variance of the error terms can be described by the following autoregressive 

conditional heteroscedasticity (ARCH)4:

3 Nielsen (2001) shows that SBC and HQC are consistent regardless of the assumption about the characteristic 
roots in the VAR model. By consistency is meant that the criterion selects the true order of the VAR system with 
probability one asymptotically.  
4 In this formulation of multivariate ARCH the conditional and unconditional variances are equal to each other 
asymptotically. This seems to be a necessary condition in order to make sure that the comparison of our 
simulation results for homoscedastic and conditionally heteroscedastic cases makes sense. A mathematical 
derivation of equation (5) is provided by Hatemi-J (2004).  For a test of multivariate ARCH effects in the VAR 
model the interested reader is referred to Hacker and Hatemi-J (2005).   
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, (5) 

where 2
itσ represents the conditional variance at time t for variable i ( .2,1=i ). To cancel the 

effect of starting up values, we generated 100 presample observations. This gives us the 

possibility to have the same number of observations in estimating the VAR model regardless 

of the number of lags.  

 

A central issue in a Monte Carlo simulation like the current one is choosing a variety of 

parameters that as a group has characteristics that fairly represent those of the infinite space of 

possible parameters. In order to obtain general results we consider all the combinations shown 

in Table 1 for the coefficient matrices. There are 12500 (5×5×5×5×4×5) possible 

combinations of the elements in this table. The VAR model is always of the second order 

since β2,22 is never zero.  

 

Table 1.  

Parameter Values for VAR model of equation (4) 

β1,11 -1 0.5 0 0.5 1 

β1,22 -0.5 -0.25 0 0.25 0.5 

β1,12 = β1,21 -0.5 -0.1 0 0.1 0.5 

β2,11 -0.8 -0.2 0 0.2 0.8 

β2,22 -0.6 -0.1  0.1 0.6 

β2,12 = β2,21 -0.5 -0.1 0 0.1 0.5 

To assure that we have stable cases we make sure that the modulus (the square root of the 

summed squares of the real and imaginary eigenvalue components) of each eigenvalue of the 

following companion matrix (B) is less than one.  

B =



















0010
0001

222212221211

122112121111

,,,,

,,,,

ββββ
ββββ

(6) 

We run simulations based on small sample sizes (T = 40). It should be pointed out that we 

have run 10000 simulations for each combination of the parameters. This means that the total 
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number of the simulations is 125000000. The simulations are performed by a program 

procedure written by the authors in GAUSS.5

We investigate whether performance on lag length choice using either criterion can be 

improved by employing the LR test (with 5% significance for null hypothesis rejection) when 

the two criteria disagree. Since VAR models are extensively used for forecasting purposes, we 

also investigate whether combining the LR test with the two information criteria can result in 

determining lag orders that can result in more accuracy in forecasts. Assume that )z(E hT,i + is 

the forecast of variable zi, i = 1,2, for h periods into the future that we would make if we know 

the actual parameters of the VAR model (assuming errors are equal to zero for future 

periods). This forecast is equivalent to the expected value of hT,iz + based on the information 

available in the last observed period T. Let us denote hT,iẑ + the forecast of variable zi for h

periods into the future that we make using the estimated parameters based on the lag length 

chosen by the criterion. Finally, let hT,iz + denote the forecast of variable zi for h periods into 

the future that is made based on the estimated parameters using always the right lag length of 

two. Then, the sum of squared errors ratio, SSER, can be calculated for a particular case (set 

of parameters in a scenario) by the following equation: 

( )[ ]

( )[ ]∑

∑

++

++

−

−
=

S
hTihTi

S
hTihTi

zEz

zEz
SSER

2
,,

2
,,ˆ

, (7) 

where S denotes the set of 1000 simulations for a particular case, so in the numerator and 

denominator we are summing up over the simulations. In the numerator we show the 

systematic sum of squared errors of the forecasted variable based on forecasts using lags 

chosen by the criterion.6 In the denominator we show the systematic sum of squared errors of 

 
5 Notice that SBC and HQC choose different lag orders more frequently in small sample sizes.  In large sample 
sizes (asymptotically) both information criteria are expected to choose the same lag order and there will be no 
need for using the LR test in such cases.  That is why we concentrate on small sample sizes in our simulations. 
However, we also conducted simulations for a sample size of 70. The results, not presented to save space, 
showed similar qualitative results.  
6 Lütkepohl (1985, 1991) handles his presentation of forecast capability in a different fashion. He focuses not on 
the systematic forecast error, )zE(ẑ hT,ihT,i ++ − , but on the overall forecast error hT,ihT,i zẑ ++ − , where zi,T+h 
is an actualized outcome of zi for h periods into the future. He thus also includes in his focus the unsystematic 
(random) components of the forecast error, E(zi,T+h) – zi,T+h, which injects additional randomness that we find 
undesirable for comparison since it is unsystematic. For his presentation in his 1985 article he normalizes 
(divides) an approximation of the mean squared overall forecast error with the theoretical variance of E(zi,T+h) –
zi,T+h .  
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a forecasted variable using always the correct lag length. The lower SSER is, the better the 

forecasting is in comparison to forecasts based on knowing the correct lag length. If the 

chosen criterion does just as well in forecasting as when the correct lag length is always 

chosen, then this ratio would be one. For any particular scenario we calculate the average 

SSER, i.e. the mean of the SSER over all the cases and over the two variables, z1 and z2.

4. The Results of the Simulations and the Conclusions 

 

In Table 2 we present the frequency distributions in the presence and absence of conditional 

heteroscedasticity. We can see that the two criteria perform differently and which 

performance is better depends on the circumstances. However, when we combine these two 

criteria with the LR test for picking the true lag order in the VAR model the percentage 

choosing the optimal order increases substantially compared to cases when only one criterion 

is utilized, particularly for small sample sizes. This is true whether conditional 

heteroscedasticity is present or not. The same conclusion can be drawn regarding the 

forecasting properties (see Table 3). Using the LR test combined with SBC and HQC to 

choose the optimal lag order in the VAR model is going to result in choosing lag orders that 

are going to result in more precise forecasts compared to cases when only SBC and HQC are 

used. 

 

Table 2.  

Results for picking the optimal lag order based on simulations for a VAR(2) model with and 

without autoregressive conditional heteroscedasticity (ARCH). 

 Lag length 

0 1 2 3 4 5 6 7
Info criterion & variance situation 

Frequency distribution of estimated VAR orders, without ARCH 

HQC,  0.019 0.031  0.860  0.056  0.018  0.007  0.005  0.004  

SBC 0.066 0.070  0.850  0.013  0.001  0.000  0.000  0.000  

HQC, SBC and LR 0.021 0.050  0.908  0.018  0.003  0.000  0.000  0.000  

Frequency distribution of estimated VAR orders, with ARCH 

HQC,  0.018 0.032  0.833  0.078  0.022  0.008 0.005  0.004  

SBC 0.060 0.069  0.846  0.022  0.002  0.000  0.000  0.000  

HQC, SBC and LR 0.019 0.051  0.897  0.028  0.004  0.000  0.000  0.000  

Page 16 of 18

Editorial Office, Dept of Economics, Warwick University, Coventry CV4 7AL, UK

Submitted Manuscript

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

8

Table 3.  

Results for forecasting performance (average SSER) based on simulations for a VAR(2) 

model with and without autoregressive conditional heteroscedasticity (ARCH). 

Forecasting Period Forecasting Error for HQC 

Forecasting Period 
Without 

ARCH 
With ARCH 

1 1.249 1.334 

2 1.267 1.422 

3 1.240 1.403 

4 1.229 1.453 

5 1.194 1.877 

Forecasting Period Forecasting Error for SBC 

1 1.283 1.254 

2 1.285 1.257 

3 1.139 1.149 

4 1.111 1.149 

5 1.063 1.181 

Forecasting Period Forecasting Error for HQC, SBC and LR 

1 1.141 1.162 

2 1.147 1.176 

3 1.089 1.131 

4 1.073 1.148 

5 1.049 1.18 
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