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We discuss avalanche and finite size fluctuations in a mesoscopic model to describe the shear
plasticity of amorphous materials. Plastic deformation is assumed to occur through series of
local reorganizations. Yield stress criteria are random while each plastic slip event induces a
quadrupolar long range elastic stress redistribution. The model is discretized on a regular square
lattice. Shear plasticity can be studied in this context as a depinning dynamic phase transition.
We show evidence for a scale free distribution of avalanches P (s) ∝ S−κ with a non trivial
exponent κ ≈ 1.25 significantly different from the mean field result κ = 1.5. Finite size effects
allow for a characterization of the scaling invariance of the yield stress fluctuations observed in
small samples. We finally identify a population of precursors of plastic activity and characterize its
spatial distribution.

I. INTRODUCTION

While traditionally described in continuum mechanics by constitutive laws at macroscopic scale, it has progres-
sively appeared in the last two decades that the mechanical behavior of materials was not as smooth and regular as
anticipated. In particular crack propagation in brittle materials and plastic flow in crystalline solids have been shown
to exhibit jerky motion and scale free spatio-temporal correlations [1–3].
Beyond its obvious fundamental interest, the understanding of intermittence and intrinsic fluctuations in mechanics

of materials and their consequences at macroscopic scale is of direct importance for engineering applications: among
other examples a quantitative assessment of risk of failure would allow to better determine security margins which
stay rather uncontrolled (and often overestimated); a theoretical understanding of finite size effects would allow to
model the mechanical behavior of small pieces, a question of crucial interest with the rapid technological development
of MEMS and NEMS (Micro or Nano- Electro-Mechanical Systems).
Concepts such as avalanches and criticality have thus been growingly used in that context to describe and model

fracture and plasticity. In particular, the paradigm of the depinning transition has shown extremely appealing to model
such non-linear phenomena at mesoscopic scale [4–10]. Such a formalism indeed naturally captures the competition
between the disorder of local thresholds (toughness for crack propagation, yield stress for plastic deformation) and
elastic interactions which couple local mechanical events (crystallographic slip, crack advance). A critical threshold
naturally emerges at macroscopic scale which separates a static phase (crack propagation or plastic deformation
stops after a finite excursion) from a mobile phase (free propagation or deformation). As usual, this dynamic phase
transition can be characterized by a set of critical exponents.
While crystalline plasticity or crack propagation rely on rather solid grounds (theory of dislocation and linear elastic

fracture mechanics respectively), the understanding of plastic deformation in amorphous materials such as oxide or
metallic glasses is still in its infancy. In absence of crystalline lattice, plasticity seems to originates from a series of
very local structural rearrangements [11, 12]. Beyond this first level of description, any local reorganization has to be
accommodated by the surrounding elastic matrix, and induces internal stress [13–15]. These local plastic events thus
do not occur independently but in a strong correlated way.
We recently introduced a mesoscopic model of plasticity in amorphous materials [16]. Following an earlier work [9]

we developed a scalar discrete model on a regular lattice with a random yield stress. The local slip occurring
when the shear stress satisfies the plastic criterion is accompanied by an elastic stress redistribution of quadrupolar
symmetry [17, 18] which corresponds to the elastic response of the surrounding matrix to this Eshelby-like plastic
inclusion[19]. Although original due to the quadrupolar symmetry of the elastic interaction, one recognizes in this
short description the two ingredients of a depinning model: a random threshold field and an elastic interaction.
In a previous paper [16] we focussed on the competition between localization and diffusion which natural emerges

from the peculiar symmetry of the elastic interaction. Some directions being favored, plastic deformation forms shear
bands which span the entire lattice. This localization is however not persistent and after they grow up to the size of the
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system, shear bands tend to diffuse throughout the lattice. In particular we could make evidence for anisotropic strain
correlations which are strikingly similar to those recently observed in an atomistic study of a binary Lennard-Jones
glass under compression [20, 21].
In the present paper, a particular focus is given to the critical properties of the model. We recall in Section II the

definition of the model and its salient properties. Avalanches are quantitatively characterized in Section III. Finite
size fluctuations close to critical point are analyzed in Section IV. Characterization of avalanche precursor sites is
discussed in Section V. Section VI concludes this paper.
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FIG. 1: (Color online) (a) Map of the quadrupolar elastic interaction G used in the model. The discretization is performed in
Fourier space and a inverse Fourier transform gives in the direct space the Green function satisfying the bi-periodic boundary
conditions of the problem. (b) Map of cumulated plastic activity obtained for an averaged cumulated plastic strain ∆εp = 0.01
taken at εp = 1.0 (strain is expressed in arbitrary (infinitesimal) units). A clear localization of the plastic deformation
is observed. Note that this localization behavior is non persistent (see Ref. [16] for details on the competition between
localization and diffusion of the plastic deformation.)

II. BRIEF DESCRIPTION OF THE MODEL

A detailed description of the model can be found in [16]. Let us simply summarize here the main points.
We consider an elastically homogeneous material in plane deformation geometry under shear. Discretization is

performed on a square lattice with bi-periodic boundary conditions at a scale which is larger than the size of a
typical rearrangement. This scale is to be large enough to allow the use of continuum elasticity, and to neglect elastic
inhomogeneities. At a large scale, we impose a pure shear load σxx = −σyy, and σxy = 0.
A simplification consists of assuming that local rearrangements induce an elementary plastic shear with the same

symmetry as the macroscopic imposed macroscopic shear. We thus consider neither volumetric change, nor orientation
disorder for the shear principal axis at the microscopic scale. Consequently, although the model is based on a genuine
2D elastic description, the tensorial nature of the stress σ and strains ε plays no role. Scalar (equivalent) stress
σ ≡ σxx−σyy and strain ε ≡ εxx− εyy can be defined. The latter scalar stress (resp. strain) component will be called
“stress” (resp. “strain”) for simplicity in the following. The criterion for yielding characterizes the local configuration
of atoms, and hence will display some variability. A local yield threshold for each discrete site x as σγ(x) is introduced,
and will be treated as a random variable in the sequel. For all sites, the same statistical distribution will be used,
chosen for simplicity as a uniform distribution over the interval [0; 1]. The specific form of this distribution plays no
role in the scaling features addressed below.
The stress σ is a sum of the externally applied stress Σext and the residual stress σres induced by the previous

rearrangements of other regions of the system. Thus, the local scalar yield criterion for site x can be rewritten as

Σext + σres(x) = σγ(x). (1)

where σγ is the local yield stress. Here and in the following we use upper (lower) case symbols for macroscopic
(microscopic) quantities.
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Once this criterion is satisfied at site x, the material experiences there an incremental slip η increasing the local
plastic strain: εp(x) → εp(x) + η. Similarly to the yield thresholds, the slip value η is drawn randomly from the
uniform distribution, [0; d] if not otherwise stated. As shown in Fig. 1(a) this local slip induces in turn a quadrupolar
elastic stress redistribution [16–18] σres(r, θ) → σres(r, θ) + η cos(4θ)/r2.
In order to account for the local structural change that occurred the local yield stress is renewed by drawing a new

(uncorrelated) random value for σγ(x). It is assumed that there is no persistence in the local yield stress.
Quasi-static driving conditions are considered, using extremal dynamics, i.e. the imposed external loading Σext is

tuned at each time step, t at the current yield stress value, Σc, such that only one site can slip at a time:

Σext(t) = Σc

= minx[σγ(x)− σres(x)]
= σγ(x

∗(t))− σres(x
∗(t))

(2)

where x
∗(t) is the extremal site at time t. Note however, that “time”, t, is used here as a simple way of counting

and ordering events. On average, time is simply proportional to the total plastic strain imposed on the system,
〈ǫp〉 = tdL−2/2. The plastic strain field is thus simply

ǫp(x, t) =

t
∑

1

η(t)δ(x− x
∗(t)) (3)

In Ref. [16], we discussed the mechanical behavior of this model and in particular we could make evidence for
anisotropic plastic strain correlations, signalling the formation of shear bands as illustrated in Fig.1(b) which however
were not persistent, and diffused throughout the system over long times. Under application of shear, a transient
hardening stage was observed before the shear stress eventually saturates. This original phenomenon in the context
of amorphous materials (in crystalline material hardening is usually associated with dislocation pinning by impurities
or dislocation interactions) was interpreted as a consequence of the progressive exhaustion of the weakest sites of the
system (reminiscent of self-organized critical systems). Plastic strain fluctuations were shown to exhibit a non trivial
scaling : its standard deviation ρ(εp) grows as ρ(εp) ∝ εαp with α ≈ 0.75 in the transient regime and, in the stationary

regime, the power spectrum of plastic strain was shown to exhibit an anisotropic scaling S(q, θ) ∝ a(θ)q−α(θ) with
α(θ) obeying a quadrupolar like symmetry. In particular, in the direction of the shear bands, we obtained απ/4 ≈ 1.7.

III. AVALANCHE BEHAVIOR

As discussed above, while intermittence and avalanches were first identified in earthquake dynamics, biological
evolution [22] or magnetism [23, 24], the recent years have also shown their interest in the framework of mechanics of
materials.
In the context of plasticity of crystalline materials, a significant amount of results have been obtained over the last

decade (see e.g. the comprehensive review by M. Zaiser about scale invariance in plastic flow [2]). Acoustic emission
measurements performed on ice or metal monocrystals have shown a power law distribution of the energy P (E) ∝ E−κ

with κ ≈ 1.6 for ice [25] and κ ≈ 1.5 for hcp metals and alloys [26]. The case of polycrystal is somewhat more complex
since not only a grain size related cut-off appears in the avalanche distribution but the power law exponent is also
significantly lowered [25]. Performing nano-indentation measurements on Nickel monocrystals, Dimiduk et al made
evidence for a scale-free intermittent plastic flow and estimated κ ≈ 1.5− 1.6 [27].
Very recently analogous analysis could be performed on metallic glass samples. Sun et al [28] measured the distri-

butions of stress drops occurring in the strain stress curve were for various metallic glass samples under compression.
Scale free distributions were observed with a power law exponent κ ∈ [1.37− 1.49].
Various models have been designed which capture this avalanche behavior in plasticity at least from a qualitative

point of view. Dislocation dynamics [1] and phase field [2] models have for instance been used in that purpose in the
case of crystal plasticity. In the same context, Moretti and Zaiser [2, 29] developed at mesoscopic scale a model very
similar to the one presented here since it integrates some local yield randomness. A significant difference stems from
their account of short range interaction between dislocations moving on close slip planes. This local elastic interaction
thus adds up and competes with the long range interaction ensuring compatibility. This model was then used to
analyze slip avalanches in crystal plasticity [30], a scale free behavior was obtained with a power law exponent κ = 1.5
A special attention was given to the cut-off of the scale free behavior which could be associated to the finite stiffness
of a testing machine and to the hardening behavior of the material. Recently Salman and Truskinovsky presented a
model based on coupled Frenkel-Kontorova chains from which they could derive an integer-valued automaton[31]. In
both versions of the model the dissipated energy was shown to exhibit power law avalanches with the same exponent
κ = 1.6.
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FIG. 2: (Color online) (a) Sketch of the current yield stress (as obtained in extremal dynamics) (symbol ◦) and of the external
stress when the system is coupled to a spring of constant k. Avalanches are defined as the intervals where the external
stress remains larger than the yield stress. A new avalanche is initiated at the next maximum yield stress after arrest. (b)
Distributions of avalanche sizes P (S, k) for a system of size L = 256 and (from right to left) different values of spring constants
k = 3.10−6, 10−5, 3.10−5, 10−4. A power-law behavior P (S, k) ∝ S−κ of exponent κ ≈ 1.25 (dashed line) is observed with a
cut-off increasing as the spring constant decreases.

In the field of amorphous plasticity, most numerical results were obtained using atomistic methods. Recently, in the
framework of deformation of two-dimensional Lennard-Jones model glasses, Maloney and Robbins [20, 21] obtained a
linear dependence of the mean avalanche size with system size. Lemaitre, Caroli and Chattoraj looked at the rate and
termal dependence of the avalanches distribution [32, 33] and showed that the athermal avalanche dynamics remain
essentially unperturbed.
In a kinetic Monte Carlo study at mesoscopic scale, Homer et al [34] identified different (stress and temperature

dependent) correlation behaviors of shear transformation zones leading either to an avalanche-like behavior or to an
homogeneous flow. Still at mesoscopic scale, apart from the earlier version of the present model which considered
antiplane geometry, mean fields models [35] have been developed by Ben-Zion, Dahmen and collaborators in the
following of a model designed by Ben-Zion and Rice to capture earthquakes dynamics [36]. Again this class of models
is very close to the one presented here with a significant difference concerning the elastic interaction which is assumed
to be mean field. These models predict a universal scale free avalanche distribution with a power law exponent κ = 1.5.

A. Definition and scale free behavior

While avalanches are rather easily defined experimentally or in real-dynamics simulations, they need to be recon-
structed from the fluctuating force signal in the case of depinning models driven through the extremal dynamics
rules [37, 38]. Following Ref. [38], avalanches are defined by introducing a small but nonzero stiffness k in the exter-
nal driving as illustrated in Fig. 2(a) where the bold line of slope −k represents the external driving stress. With
the increasing plastic strain the external stress is decreased linearly by a quantity k∆t, where ∆t is the number of
iteration steps from the avalanche initiation. As soon as the driving stress drops below the current critical value σc,
the avalanche stops. The external spring is then loaded up to σc and trigs a new avalanche. Far from being artificial,
this procedure naturally mimics the effect of the finite stiffness of an experimental testing machine, or the elasticity of
the medium surrounding the active site [30]. Based on the latter argument, the thermodynamic limit of a large scale
separation between that of the STZ, and that of the medium is reproduced for a vanishing stiffness, i.e. as for an
ideal stress-controlled experiment. One may also note that an ideal strain-controlled experiment would be obtained
for an infinite stiffness.
The present definition size of avalanches S = ∆t should not be confused with the duration of an avalanche measured

in real time. The underlying extremal dynamics gives no information about real time scales. The size S of an avalanche
is however directly related to the strain εS experienced by the medium through εS = S〈η〉/L2 where 〈η〉 is the average
of the random incremental local slip η.
The avalanche size distributions P (S, k) corresponding to various stiffness values k are shown in Fig. 2b. We obtain a

scale free behavior over a domain bounded by a stiffness dependent cut-off (the lower the stiffness the larger the scaling



5

domain). Up to the cut-off size S∗ avalanche distributions follow a power law of exponent −κ with κ = 1.25 ± 0.05
over three decades. This excludes the mean field value κ = 1.5 as observed in mean-field models.
The present estimate κ = 1.25 ± 0.05 is also different from the results obtained on the dislocation-based models

by Zaiser et al[29, 30] and by Salman and Truxskinovsky[31] who observe larger values of the scaling exponent
κ = 1.5 − 1.6. The most salient difference between these models and the present one is their account of short scale
interactions between dislocations, absent in the present model. We note however that recent results [39, 40] obtained
in yet a different framework, the propagation of an interfacial crack front, recently show avalanches with the very same
exponent κ = 1.25 as in the present model. This observation may be far more than a simple coincidence. Indeed, as
shown above, most of the plastic events occur along the directions at ±π/4 along which the Eshelby elastic interaction
obeys the same spatial dependence in 1/r2 as the long range elastic interaction characteristic of the interfacial crack
growth. The latter model may then be viewed as a ultimate one-dimensional reduction of the present model of
amorphous plasticity

B. Avalanche cut-off

As discussed in [30] we thus could check that the introduction of a gaussian cut-off allows us to obtain reasonable
fits of the full set of data:

P (S) ∼ ∆S−κ exp

[

−
(

S

S∗

)2
]

(4)

This gives us the opportunity to test the dependence of the avalanche cut-off S∗ on the “machine stiffness” k. Note
here that in the framework of extremal dynamics, obtaining a size-independent mechanical behavior (stress vs strain)
requires the change of variable ε = t/L2 to be performed, with t being the avalanche size as above defined. Similarly,
this leads to rewrite the stiffness as k = K/L2, K being an elastic constant independent of the system size. Looking
at Fig. 3(a) which displays the dependence of the avalanche cut-off size, this allows to distinguish between two scaling
regimes depending on whether the elastic constant K is smaller or larger than K∗ = 1:

S∗ ∝
{

L/K for K < K∗

L/
√
K for K > K∗

, (5)

In both cases we recover that the avalanche cut-off scales linearly with the system size L, consistently with results
by Zaiser and Nikitas [30]. As illustrated in Fig. 4, a closer look at the spatial structure shows that the avalanches are
highly anisotropic and once again we recover the quadrupolar symmetry of the elastic interaction. For large values
of K, avalanches remain mainly one-dimensional while for lower values of K, two-dimensional-like patterns start to
appear. One recovers here the competition between localization (at short times) and diffusion (at longer times) as
discussed in Ref. [16].

C. Typical size of avalanches

With this knowledge about the avalanche cut-off the typical size 〈S〉 of an avalanche can thus be estimated,

〈S〉 ≈
∫ S∗

1 s1−κds
∫ S∗

1
s−κds

≈ κ− 1

2− κ

(L/Kυ)2−κ − 1

1− (L/Kυ)1−κ
. (6)

where κ ≈ 1.25, υ = 1 or υ = 1/2 depending on whether K < K∗ or K > K∗.
In Fig. 3(b), we displayed the average avalanche size 〈S〉 versus the system size L for several values of the elastic

constant K. Numerical results are well reproduced by the analytical equation Eq. (6). Note that as soon as the
elastic constants approaches K∗ = 1, the apparent scaling can be very different from the naive scaling obtained at
very large sizes K or low values of K: 〈S〉 ∝ (L/E)β where β = 2 − κ ≈ 0.75. The value of the machine stiffness in
experimental testing is thus prone to affect the apparent scaling of the typical size of avalanches. Albeit the quality
of the fits to power-laws is quite satisfactory, we believe that the apparent dependence of the exponent with k is the
mere reflection of the corrections which can be rationalized by the above argument. The present results should be
compared with those obtained by Maloney and Lemâıtre [13] who measured an an average avalanche size 〈S∆t〉 ∝ L
on Lennard-Jones two-dimensional model glasses under quasi-static shear and with those of Lemâıtre and Caroli [41],
〈S∆t〉 ∝ L or L0.3 for a mean field model based on an effective mechanical noise accounting for the elastic interactions.
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IV. CRITICAL THRESHOLD AND FINITE SIZE FLUCTUATIONS

As discussed in the introduction, the rapid development of micro and nano electromechanical systems is a strong
motivation for the understanding of their mechanical behavior. In such systems the ratio between the “micro” size
(grain domain, etc.) and the “macro” system size is low and strong fluctuations are expected from piece to piece.
In that context, the present modeling of amorphous plasticity as a depinning phenomenon if of high interest. As

any phase transition, the depinning transition exhibit finite size effects which can be quantitatively characterized with
the help of critical exponents.
In contrast to usual studies of criticality, the present context invites us to focus on the critical threshold rather than

on the critical exponents. While the former is reputed of low interest since it depends on the microscopic details, it
gives us here the yield stress value at macroscopic scale. The fluctuations of this threshold for finite systems will thus
directly give the expected fluctuations of the yield stress for small pieces.
We develop below a study of finite-size effects which follow the lines of previous works about the depinning of elastic

lines [42].
As defined in the description of the model, each elementary zone is characterized by a local plastic criterion

σc(x) = σγ(x) − σres(x) (where x refers to the spatial location) which can be separated in two contributions: σγ

corresponds to the yield threshold of the local structure in absence of internal stress; σres is the internal stress induced
by the successive plastic reorganizations that have occurred in the material. For each configuration of the system,
a loading that do not trigger any local slip event obeys Σext < Σc = minx σc(x) and the macroscopic yield stress is
then defined as the maximum value of this macroscopic load over the whole set of configurations, Σ∗ = maxΣc; when
the external stress lies below that value, Σ∗, plastic deformation will eventually stop after a finite strain while above
it the material can flow indefinitely. To recast this definition in the previous language of avalanches, the macroscopic
yield stress is the one which corresponds to the existence of an infinite size avalanche at vanishing stiffness k = 0.
The distribution of these current yield stress values P (Σc) is shown in Fig. 5(a). Note that Σc can take here

negative or positive values since it is associated to a fluctuating part of the material properties. (Changing the
material yield limit will trivially translate both the distribution and the critical threshold Σ∗.) The same distribution
is shown in 5(b) in logarithmic scale. The entire distribution depends on the local yield stress distribution, here a
uniform distribution, and hence has no specific value. However, close to its maximum, the distribution contains only
information relative to macroscopically pinned or quasi pinned configurations. Hence the behavior of the distribution
close to the maximum stress contains generic features which are difficult to extract from such a graph.
To isolate those universal features, it is proposed to part the distribution into conditional probability distribution

functions depending on a characteristic which signals that the configuration is close to pinning. We chose the distance
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FIG. 3: (Color online) (a) Scaling of the avalanche cut-off S∗ vs the rescaled stiffness K = kL2. The cut-off S∗ scales linearly
with the system size L but exhibits either an inverse or an inverse square root dependence on the stiffness K depending on K is
lower or larger than the characteristic stiffness K∗ = 1. (b) Mean avalanche size 〈S〉Kdependence on system size L for stiffness
values K = 10−3, 10−2, 10−1, 1. The simulation data is shown as symbols while the analytic expression Eq. 6 provides the
continuous curves. The dash-dotted lines show the apparent scaling associated to these different cases. The apparent scaling
exponents are very dependent on the stiffness value.
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FIG. 4: Maps of cumulated plastic activity during avalanches obtained with stiffness values (from left to right) K = 10−1, 100

and 101 for a system of size L = 256. The avalanche sizes were measured to be S = 1616, 324 and 81 respectively.
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FIG. 5: (Color online) (a) Distribution P (Σc) of the current yield stress Σc sampled over time. The macroscopic yield stress Σ∗

is given by the maximum of the distribution. (b) Representation in semi-logarithmic coordinates of the conditional distributions
P (Σc, ℓ) such that the next slip event is located at a distance ℓ from the current point. P (Σc, ℓ) can be interpreted as the
distribution of yield stress fluctuations for a subsystem of size ℓ. (c) Dependence of the width w of the distributions P (Σc, ℓ)
vs. its mean value 〈Σc(ℓ)〉 for different ℓ. The linear behavior obtained for large values of ℓ allows to estimate the asymptotic
yield limit Σ∗ through extrapolation to w = 0.

ℓ between successive slip events as a clear indication of such a pinned configuration. P (Σc, ℓ) is introduced as the
fraction of the initial distribution P (Σc) such that the plastic event occurred at a distance ℓ from the previous one.
This trick gives us a simple way of analyzing finite size effects. Indeed, writing that plastic activity has to move by a
distance ℓ simply means that over a domain of extension ℓ, the system has reached a pinned configuration. P (Σc, ℓ)
thus gives direct access to the distribution of effective thresholds for systems of size ℓ. We observe that the larger the
distance (the system size), ℓ , the narrower the distribution P (Σc, ℓ) and the closer its center from the maximum of the
distribution P (Σc). This observation is rationalized in Fig. 5(c) where the width of these conditional distributions is
plotted against their mean. We obtain a linear behavior,i.e., these two quantities obey the same scaling. In particular,
this means that extrapolating this linear behavior to a zero width (which would be obtained for an infinite system)
allows us to give a precise estimate of the critical threshold Σ∗.
The precise knowledge of the critical threshold gives us the opportunity to characterize not only the scaling behavior

of the finite size fluctuations of the yield stress but also of the distance between the mean yield stress and the critical
threshold. The two scaling behaviors are displayed in Fig. 6. We see that for a typical size ℓ both the width w(ℓ) of
the yield stress fluctuations and the distance to threshold Σ∗ − Σc(ℓ) obey the same scaling:

w(ℓ) ∝ ℓ−b ; Σ∗ − Σc(ℓ) ∝ ℓ−b with b ≈ 0.94 (7)

The macroscopic yield stress is hampered by finite size systematic corrections roughly inversely proportional to the
system size. While in the context of elastic line depinning, a similar power-law correction was observed, the exponent
b could be related to the roughness exponent [42], in the present case, we could not build a similar scaling relation.
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FIG. 6: (Color online) (a) shows the difference between the asymptotic macroscopic yield stress, Σ∗ and the mean yield stress
〈Σc(ℓ)〉 vs. distance ℓ, for a system of size L = 256. A power-law fit of exponent b ≈ 0.94 is shown as a dotted line. (b) is a
plot of the standard deviation of depinning stress w as a function of the distance ℓ, for a system of size L = 256. A similar
power-law fit of exponent b ≈ 0.94 is shown as a dotted line.

V. PLASTIC PRECURSORS

As discussed in Ref. [16], the plastic strain obeys a strong anisotropic scaling resulting from the quadrupolar
symmetry of the elastic stress redistribution. Most of the plastic events occur consecutively to a previous plastic
event located along a direction at ±π/4 (maximum shear directions).
However, it appears that only a tiny fraction of the sites is prone to slip. It is possible to distinguish these

precursory sites when looking at the full distribution of the local plastic thresholds σc(x). Such distributions are
displayed in Fig. 7(a) for different system sizes. The dashed vertical line at the abscissa of the critical threshold σ∗

allows us to separate two populations. The left part corresponds to the weakest sites of the lattice. For one particular
configuration, the weakest site gives the current yield stress Σc. The right part corresponds to the sub-critical sites,
their local threshold being larger than the critical value Σ∗ they are unconditionally stable. For one configuration
however, not only the weakest site but also a few others can be characterized by a overcritical local threshold i.e.

σc(x) < Σ∗. They are thus very likely to initiate a slip event, and hence can be termed “precursors”. A scaling
analysis of this population is of interest. It is clear from Fig. 7(a) that the fraction of precursors decreases when the
size L of the system increases. The right panel 7(b) shows the size dependence of this population in logarithmic scale.
We obtain P [σc(x) < Σ∗] ∝ L−s with s ≈ 1.34. This scaling can be interpreted as the fact that these precursory sites
live on a fractal support of dimension dF = 2− s ≈ 0.66.
The identification of a set of precursors can be illustrated graphically. In Fig. 8 we superimposed the plastic

activity observed during avalanches with the set of identified precusors (represented as colored symbols) just before
the avalanche take place. One can clearly see that avalanches indeed initiate from some of these over-critical sites.
One also observes a striking intermittence of this population which can fluctuate from one to a few tens. It is of
interest to follow the fate of these precursors during the avalanche. The red upward triangle indicate sites taking part
in the avalanche. Blue and green symbols indicate sites not taking part of the avalanche but at the end of the latter,
green dots are still over-critical while blue downward triangles are no longer over-critical. This possibility of healing
is a specificity of the present model. Indeed, in contrast to the case of a depinning front where elastic coupling does
not change sign, the quadrupolar interaction is positive or negative depending on the direction and thus has either a
stabilizing effect (over-critical sites are sent back in the sub-critical part of the distribution) or a destabilizing effect.
However, the presence of greens dots indicate that not all overcritical sites are exhausted during an avalanche. Only
late plastic events will be initiated there. A large part of the dynamics of the model is thus related to this population
of precursors which seems to encode a long term information.
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FIG. 7: (Color online) (a) Distribution of individual depinning stress P (σc(x)) for different system sizes L = 8, 16, 32, 64,
128 and 256; The dotted line indicates the macroscopic yield threshold Σ∗: The overcritical part (σc < Σ∗) depends on L (in
contrast to the subcritical one). (b) The relative weight of the overcritical part P (σc < Σ∗) is observed to scale as a power-law
of the system size. P (σc < Σ∗) ∝ L−s with s ≈ 1.34.

VI. CONCLUSION

The present meso-model of amorphous plasticity, based on the competition between a local yield stress randomness
and long range elastic interaction allowed us to obtain non trivial results about avalanche statistics and finite-size
effects. In particular the exponent reported here for the scale free avalanche distribution, κ ≈ 1.25 is significantly
different from the mean field value (3/2). This suggests that a faithful account of the elastic stress redistribution
due to local restructuring is indeed a crucial ingredient in the modeling of amorphous plasticity to capture faithfully
collective effects. Although original due to this quadrupolar interaction, the present model can still be discussed in the
framework of the depinning transition. This allowed us to track the finite size fluctuation and systematic size effect
of the macroscopic yield stress. In addition, a set of precursory sites of having a fractal support has been identified.
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