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ABSTRACT: 

Objective: To identify a consistent pattern of brain MRI imaging in primary complex I 

deficiency. Complex I deficiency, major cause of respiratory chain dysfunction, accounts for 

various clinical presentations, including Leigh syndrome. Human complex I comprises seven 

core subunits encoded by mitochondrial DNA (mtDNA) and 38 core subunits encoded by 

nuclear DNA (nDNA). Moreover, its assembly requires six known and many unknown 

assembly factors. To date, no correlation between genotypes and brain MRI phenotypes has 

been found in complex I deficiencies. 

 
Design and Subjects: We have retrospectively collected the brain MRIs of 30 patients 

carrying known mutation(s) in genes involved in complex I and compared them with the 

brain MRIs of 11 patients carrying known mutations in genes involved in the pyruvate 

dehydrogenase (PDH) complex as well as 10 patients with MT-TL1 mutations. 

 

Results: All complex I deficient patients showed bilateral brainstem lesions (30/30) and 77% 

(23/30) showed anomalies of the putamen. Supra-tentorial stroke-like lesions were only 

observed in complex I-deficient patients carrying mtDNA mutations (8/19) and necrotizing 

leukoencephalopathy in patients with nDNA mutations (4/5). Conversely, the isolated stroke-

like images observed in patients with MT-TL1 mutations, or the corpus callosum 

malformations observed in PDH-deficient patients, were never observed in complex I-

deficient patients. 

 
Conclusion: We identified a common pattern of brain MRI imaging with abnormal signal 

intensities in brainstem and subtentorial nuclei with lactate-peak as a clue of complex I 

deficiency. We suggest that combining clinico-biochemical data with brain imaging can help 

orient genetic studies in complex I deficiency. 
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INTRODUCTION 

 Isolated complex I deficiency, the most frequent cause of respiratory chain defects in 

childhood 1, accounts for various clinical presentations including Leigh Syndrome, Leber 

Hereditary Optic Neuropathy (LHON), Mitochondrial Encephalomyopathy, Lactic Acidosis 

and Stroke-like episodes (MELAS) and numerous other clinical presentations combining 

hypotonia, developmental delay, seizures, cardiomyopathy, optic atrophy or retinopathy and 

other organ involvement 2. 

 Complex I (NADH:ubiquinone oxidoreductase; EC 1.6.5.3), the largest component of 

the respiratory chain, comprises seven core subunits encoded by mitochondrial DNA 

(mtDNA), 38 core subunits encoded by nuclear DNA (nDNA) and a few known (but many 

unknown) assembly factors 1, 2. To date, disease-causing mutations have been identified in 19 

core subunits, including twelve nuclear genes (NDUFS1-4, NDUFS6-8, NDUFV1-2, 

NDUFA1-2 and NDUFA11), seven mtDNA genes and six assembly factors (NDUFAF1-4, 

C8orf38 and C20orf7)3.  

While MRI abnormalities have been reported in patients with respiratory chain 

disorders, including those presenting complex I deficiency, no correlation between genotypes 

and brain MRI phenotypes has been hitherto reported in a large series of patients. 

 We have retrospectively collected brain MRI and/or CT-scan of 30 complex I 

deficient patients carrying known mutations and compared them with the brain MRI of 11 

patients with known mutations in pyruvate dehydrogenase (PDH) genes and 10 patients with 

MT-TL1 mutations. This retrospective study allows us to identify a consistent pattern of brain 

MRI imaging in primary complex I deficiency.  

 

PATIENTS AND METHODS 

Patients 
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A total of 30 patients with complex I deficiency (25 males, 5 females) were included in 

this study. Inclusion criteria were i) known mutation(s) in either mtDNA or nuclear genes, ii) 

availability of brain imaging for review. The mean age at imaging ranged from to 2 months to 

30 years (mean = 6.8 years). Their brain MRIs were compared to those of 11 patients (8 

males, 3 females) with known PDH mutation(s) and 10 patients (5 males, 5 females) with 

MT-TL1 mutation (m.3243A>G or m.3271T>C). Mean ages at imaging ranged from to 4 

months to 9 years (mean = 4.08 years) and from 4 years to 56 years (mean = 21.9 years) for 

PDH-deficient patients and for patients with MT-TL1 mutations respectively. Clinical and 

biochemical features have been previously reported in 31 patients 4-14. Written informed 

consent was obtained from all patients participating in the study. All reported mutations are 

described in Mitomap (http://www.mitomap.org/MITOMAP) and HGMD 

(https://portal.biobase-international.com/) databases. 

 

Brain imaging methods 

The MRI examination consisted of sagittal spin echo (SE) T1, axial fast SE (FSE) T2 

and coronal fluid-attenuated inversion recovery (FLAIR) images. Additional imaging 

sequences were occasionally obtained, including 3D fast spoiled gradient recalled imaging 

(FSPGR), T2*, diffusion weighted images, 1H magnetic resonance spectroscopy (MRS) or 

one of the primary sequences in additional planes. MRS single voxel spectroscopy was most 

commonly performed using PRESS TR=1500 and TE=144; TE=288 was occasionally 

employed. The patients had one spectroscopy in their basal ganglia and eventually one in 

their brain anomalies. Exceptionally, brain MRI was performed with an injection of contrast. 

MRIs were acquired with a 1 or 1.5-Tesla Signa GE. For the majority of patients, scans were 

all collected on the same MRI scanner with the same protocol. For a few patients, brain MRIs 

had been performed many years ago or in other hospitals. Missing images or data were 

reported as non available (na). CT-scan was the only available brain images for two complex 
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I-deficient patients and for four patients with MT-TL1 mutations. The same paediatric 

neuroradiologist reviewed all brain images. 

 Statistical calculations were performed with R version 2.8.0 (The R Foundation for 

Statistical Computing). Qualitative variables were compared by the chi2 (χ2) or the Fisher 

exact tests and quantitative variables were compared using the Students t-test. Statistical 

significance was defined as p < 0.05. All statistical tests were two sided. 

 

RESULTS 

 Among our 30 complex I-deficient patients, 20 carried a mtDNA mutation and ten, a 

nuclear gene mutation (Tables 1-2). Brain MRI anomalies were consistently observed in the 

brainstem of all patients (Tables 1-2). Hyperintensities in the brainstem were found on T2 and 

FLAIR sequences (Fig 1) and appeared as hypointensities on T1. They were very important in 

size and generally symmetrical. Confluent areas of hyperintensitiy were occasionally seen. 

Substantia nigra, periaqueductal gray matter and mamillothalamic and spinothalamic tracts 

and/or medial lemniscus, medial longitudinal fasciculus were occasionally involved. 

Subthalamic nuclei, periaqueductal gray matter and superior colliculus lesions were more 

frequently observed in patients carrying mtDNA than nuclear mutations (data not shown).  

 Brainstem lesions were associated with at least one striatal anomaly (putamen or 

caudate) in 27/30 patients. No patient presented thalamus anomalies without striatal lesions. 

Striatal anomalies were almost consistently present (27/30, 90%) independent of the mutated 

genome. Putamenal (23/30, 77%) and pallidal lesions (16/30, 53%) were frequent as well 

regardless the mutation. Caudate lesions were frequently present (11/30, 37%) and were more 

common in patients with mtDNA as opposed to nuclear mutations (10/20, 50% and 1/10, 

10% respectively) (p <0.05).  
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Interestingly, stroke-like lesions predominantly affecting gray matter and not confined 

to arterial vascular territories were observed in 40% of patients carrying mtDNA mutations 

(8/20) but in none of the patients carrying nDNA mutations (p <0.05) (Fig 2A-C). 

A diffuse supratentorial leukoencephalopathy involving the deep lobar white matter 

was observed in 50% of patients with nDNA mutations (5/10) but in none of the patients 

carrying mtDNA mutations. The leukoencephalopathy was most likely necrotizing in 4/5 

patients, including 3/4 patients with NDUFS1 mutations. FLAIR sequences were available for 

2/4 patients with abnormal white matter containing cysts (Fig 2D). In the 2/4 others patients, 

lesions were markedly hyperintense on T2 and very hypointense on T1 weighted images, 

suggesting cysts (Fig 2E-F). 

Cerebellar hyperintensities were present in 13/29 patients (45%) regardless the 

mutated genome. Cerebellar atrophy was observed in 9/12 patients carrying mtDNA mutation 

aged 5 years (75%) but neither below five years nor in patients carrying nDNA mutations.  

Spinal cord was not usually explored but T2 hyperintensities were observed in all 

three cases studied. When magnetic resonance spectroscopy (MRS) was performed and 

voxels placed over the brain lesions, important lactate peaks were consistently found in all 

patients (10/10), independent of the type of mutation (mtDNA or nDNA). 

 Patients with nDNA mutations presented significantly earlier brain anomalies than 

patients with mtDNA mutations (2.8 years and 8.9 respectively, p <0.05).  

 A group of 11 PDH-deficient patients and 10 patients with MT-TL1 mutations was 

chosen as control group (Tables 3-4). MRI anomalies in complex I-deficient patients were 

observed significantly earlier than in patients with MT-TL1 mutations (mean age: 6.8 years 

versus 21.9 years, p<0.05). Similarly, brainstem lesions associated with at least one striatal 

anomalies were significantly more frequent in complex I-deficient patients (27/30) than in 

PDH-deficient patients (1/11, p<0.001) and were never observed in patients with MT-TL1 

mutations (0/6, p<0.001). Interestingly, stroke-like lesions were equally frequent in patients 
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carrying complex I mtDNA mutations (8/20) and in patients with MT-TL1 mutations (5/11) 

but were never observed in PDH deficient patients. Similarly, brainstem anomalies associated 

with stroke-like images or leukoencephalopathy were common in complex I deficiency but 

were never observed in PDH deficient patients or patients with MT-TL1 mutations. 

Cerebellar hyperintensities were observed in all groups. Cerebellar atrophy before five 

years was observed in PDH deficient patients (3/7) but not in complex I deficient patients 

(0/16, p<0.05). Similarly anomaly of the corpus callosum was very frequent in PDH deficient 

patients (9/10) but never observed in complex I deficient children (0/30, p>0.001). When 

available, CT-scan showed calcifications in basal ganglia in patients with MT-TL1 mutations 

(6/6) but not in complex I deficient patients (0/3, p<0.05).  

 

DISCUSSION 

Based on a retrospective study of 30 cases, we report here on a common pattern of 

brain MRI imaging in patients with mitochondrial diseases and respiratory chain complex I 

deficiency. Bilateral and symmetric brainstem lesions were consistent features in complex I 

deficiency and most patients also presented at least one associated striatal anomaly. This 

association was significantly more frequent in complex I-deficient patients (27/30) than in 

PDH-deficient patients (1/11) or patients with MT-TL1 mutations (0/6)(p<0.001, Tables 3-

4)14. The almost consistent detection of a lactate peak in our series supports the view that 

MRS should be performed in all patients with suspected complex I deficiency. 

 Abnormal brain images were observed significantly earlier in patients with nDNA 

mutations than in patients with mtDNA mutations. The age at onset was not determined by 

the date of the brain imaging; however, this could suggest an earlier clinical presentation for 

patients with nDNA mutations. For mtDNA mutations, heteroplasmic load has been shown to 

correlate with age at onset 15. In this retrospective study, samples were not available anymore 

to quantify it. However, heteroplasmic load may contribute to explain later diagnosis for 
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patients with mtDNA mutation (compared to patients with nDNA mutations) and the 

differences in brain image findings in patients with a same mtDNA mutation. 

 Supra-tentorial stroke-like lesions, similar to that observed in MT-TL1 16, CABC1 17 or 

POLG 18 mutations, were only observed in patients with mtDNA mutations. CT-scans showed 

no evidence of calcifications in these patients with stroke-like lesions. As brainstem lesions 

are usually not observed in patients with mutations in MT-TL1 16 (Table 3), CABC1 17 or 

POLG 18 , the combination of brainstem anomalies with stroke-like images, but without 

calcifications, should help focusing on the mtDNA-encoded complex I genes. In contrast, 

stroke-like images with calcifications and without brainstem anomalies should prompt to 

screen for MT-TL1 mutations 19.   

 In this study, necrotizing leukoencephalopathy was found in patients carrying nuclear 

genes mutations as already described in NDUFA12L 20 and C6ORF66 21 mutations. This 

suggests that a necrotizing leukoencephalopathy in patients with complex I deficiency should 

first prompt to investigate nuclear genes including the NDUFS1, NDUFS3, NDUFS7, 

NDUFA12L and C6ORF66 genes. Brain MRI also help diagnosing other causes of 

necrotizing leukoencephalopathy namely childhood ataxia with central nervous system 

hypomyelination (CACH), megalencephalic leukodystrophy with subcortical cysts (MLC) 

and Aicardi-Goutières syndrome (AGS) 22. 

Apart from complex I deficiency, brain MRI involvement of brainstem and basal 

ganglia anomalies have also been reported in cases of Leigh syndromes ascribed to SURF1 

and MT-ATP6 mutations 23-28. Similarly, brain MRI imaging of patients carrying RanBP2 

mutations is relatively similar to that observed in LS patients and reportedly includes 

brainstem and thalamus lesions 29. Yet, reported RanBP2 patients never presented the striatal 

anomalies that are constantly observed in our complex I deficient patients. Therefore the 

presence of striatal anomalies may help to distinguish between the two diagnoses. 
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 Magnetic resonance spectroscopy (MRS) data were obtained only in 10/30 patients 

and an important lactate peak was consistently found in all patients. MRS is usually regarded 

as a more sensitive tool than CSF lactate 30. For this reason, MRS should explore brainstem or 

white matter (in case of leukoencephalopathy) in complex I deficiency. 

 In conclusion, this retrospective study supports the view that mutations in complex I 

genes cause a common pattern of brain MRI imaging. We suggest giving consideration to 

association of brainstem and basal ganglia anomalies with lactate peak but no corpus 

callosum dysmorphism as a clue of complex I deficiency. When associated with stroke-like 

lesions or cerebellar atrophy, these images should prompt to screen for mtDNA mutations. 

Finally, a necrotizing leukoencephalopathy should prompt to look for nuclear genes 

mutations.  

 Hence, brain imaging may help focusing on specific genes and contribute to faster 

gene identification in respiratory chain deficiency.  

 

TABLES AND FIGURES LEGENDS 
 
Table 1: Neuroradiological and molecular genetic findings in 30 patients with complex I 

deficiency 

Table 2: Comparative neuroradiological findings in 30 patients with primary complex I 

deficiency 

Table 3: Neuroradiological and molecular genetic findings in 11 patients with PDH 

deficiency and 10 patients with MT-TL1 mutations 

Table 4: Comparative neuroradiological findings in 30 patients with primary complex I 

deficiency, 11 patients with PDH deficiency and 10 patients with MT-TL1 mutations 

Figure 1: Characteristic brain MRI. Characteristic brain MRI pattern of primary complex I 

deficiency (patient 1 with ND3 mtDNA mutation at the age of 4 months).  
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(A) Axial T2-weighted images show important bilateral hyperintensities in the brainstem 

(white arrows). (B) Axial T2-weighted images show hyperintensities in the lenticular nuclei 

and thalami (black arrows). (C) MRS spectroscopy (TE 144) of lenticular nuclei shows a 

lactate peak at 1.33 ppm (white arrow). 

Figure 2: Stroke-like and leukoencephalopathy images (axial FLAIR in A-D and T2-weighted 

images in E-F in absence of FLAIR images for patients 23-24).  

(A-C) Multiple stroke-like images (indicated with white stars) associated with basal ganglia 

hyperintensities (white arrows) in two cases (patient 2 with MT-ND3 in A-B;  patient 14 with 

MT-ND5 in C). (D-F) Necrotizing or cystic leukoencephalopathy images (patient 29 with 

NDUFS7 mutations in D; patients 23 and 24 with NDUFS1 mutations in E-F). 

Leukoencephalopathy is indicated with black arrows. White matter cerebellar hyperintensities 

are indicated with a white star. 
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