Computing (l,l)-isogenies in polynomial time on Jacobians of genus 2 curves

Romain Cosset 1 Damien Robert 2, 3
1 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
2 LFANT - Lithe and fast algorithmic number theory
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest
Abstract : In this paper, we compute l-isogenies between abelian varieties over a field of characteristic different from 2 in polynomial time in l, when l is an odd prime which is coprime to the characteristic. We use level n symmetric theta structure where n = 2 or n = 4. In a second part of this paper we explain how to convert between Mumford coordinates of Jacobians of genus 2 hyperelliptic curves to theta coordinates of level 2 or 4. Combined with the preceding algorithm, this gives a method to compute (l,l)-isogenies in polynomial time on Jacobians of genus 2 curves.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2015, 84 (294), pp.1953-1975 <10.1090/S0025-5718-2014-02899-8 >


https://hal.archives-ouvertes.fr/hal-00578991
Contributeur : Damien Robert <>
Soumis le : mardi 22 mars 2011 - 18:53:49
Dernière modification le : jeudi 22 septembre 2016 - 14:31:09

Fichier

niveau.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Romain Cosset, Damien Robert. Computing (l,l)-isogenies in polynomial time on Jacobians of genus 2 curves. Mathematics of Computation, American Mathematical Society, 2015, 84 (294), pp.1953-1975 <10.1090/S0025-5718-2014-02899-8 >. <hal-00578991>

Partager

Métriques

Consultations de
la notice

512

Téléchargements du document

211