Limit theorems for one and two-dimensional random walks in random scenery
Fabienne Castell, Nadine Guillotin-Plantard, Françoise Pene

To cite this version:

HAL Id: hal-00578802
https://hal.archives-ouvertes.fr/hal-00578802
Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
LIMIT THEOREMS FOR ONE AND TWO-DIMENSIONAL RANDOM
WALKS IN RANDOM SCENERY

FABIENNE CASTELL, NADINE GUILLOTIN-PLANTARD, AND FRANÇOISE PÈNE

Abstract. Random walks in random scenery are processes defined by
\[Z_n := \sum_{k=1}^{n} \xi_{X_1 + \ldots + X_k}, \]
where \((X_k, k \geq 1)\) and \((\xi_y, y \in \mathbb{Z}^d)\) are two independent sequences of i.i.d. random variables with
values in \(\mathbb{Z}^d\) and \(\mathbb{R}\) respectively. We suppose that the distributions of \(X_1\) and \(\xi_0\) belong to the
normal basin of attraction of stable distribution of index \(\alpha \in (0, 2)\) and \(\beta \in (0, 2)\). When \(d = 1\)
and \(\alpha \neq 1\), a functional limit theorem has been established in [11] and a local limit theorem
in [5]. In this paper, we establish the convergence of the finite-dimensional distributions and a
local limit theorem when \(\alpha = d\) (i.e. \(\alpha = d = 1\) or \(\alpha = d = 2\)) and \(\beta \in (0, 2)\). Let us mention
that functional limit theorems have been established in [2] and recently in [8] in the particular
case where \(\beta = 2\) (respectively for \(\alpha = d = 2\) and \(\alpha = d = 1\)).

1. Introduction

Random walks in random scenery (RWRS) are simple models of processes in disordered media
with long-range correlations. They have been used in a wide variety of models in physics to
study anomalous dispersion in layered random flows [14], diffusion with random sources, or spin
depolarization in random fields (we refer the reader to Le Doussal’s review paper [12] for a
discussion of these models).

On the mathematical side, motivated by the construction of new self-similar processes with
stationary increments, Kesten and Spitzer [11] and Borodin [3, 4] introduced RWRS in dimension
one and proved functional limit theorems. This study has been completed in many works, in
particular in [2] and [8]. These processes are defined as follows. Let \(\xi := (\xi_y, y \in \mathbb{Z}^d)\) and
\(X := (X_k, k \geq 1)\) be two independent sequences of independent identically distributed random
variables taking values in \(\mathbb{R}\) and \(\mathbb{Z}^d\) respectively. The sequence \(\xi\) is called the random scenery.
The sequence \(X\) is the sequence of increments of the random walk \((S_n, n \geq 0)\) defined by \(S_0 := 0\)
and \(S_n := \sum_{i=1}^{n} X_i\), for \(n \geq 1\). The random walk in random scenery \(Z\) is then defined by
\[Z_0 := 0 \text{ and } \forall n \geq 1, \quad Z_n := \sum_{k=0}^{n-1} \xi_{S_k}. \]

Denoting by \(N_n(y)\) the local time of the random walk \(S\) :
\[N_n(y) := \#\{k = 0, \ldots, n - 1 : S_k = y\}, \]
it is straightforward to see that \(Z_n\) can be rewritten as \(Z_n = \sum_{y} \xi_y N_n(y)\).

As in [11], the distribution of \(\xi_0\) is assumed to belong to the normal domain of attraction of
a strictly stable distribution \(S_\beta\) of index \(\beta \in (0, 2]\), with characteristic function \(\phi\) given by
\[\phi(u) = e^{-|u|^\beta (A_1 + i A_2 \text{sgn}(u))} \quad u \in \mathbb{R}, \]

2000 Mathematics Subject Classification. 60F05; 60G52.
Key words and phrases. Random walk in random scenery; local limit theorem; local time; stable process
This research was supported by the french ANR project MEMEMO2 and RANDYMECA.
Our first result is concerned with a functional limit theorem for

\[\text{F unctional limit theorem.} \]

Our first result gives a limit theorem for the distribution of attraction of a stable distribution on \([0, \infty) \). Then the following weak convergences hold in the space of càdlàg real-valued functions defined

\[\xi \]

where

\[\sup_{t > 0} |E [\xi_0 \mathbf{1}_{\{\xi_0 \leq t\}}]| < +\infty. \]

(1)

Under these conditions (for \(\beta \in (0, 2) \)), there exists \(C_\xi > 0 \) such that we have

\[\forall t > 0, \; \mathbb{P} (|\xi_0| \geq t) \leq C_\xi t^{-\beta}. \]

(2)

Concerning the random walk, the distribution of \(X_1 \) is assumed to belong to the normal basin of attraction of a stable distribution \(S_\alpha \) with index \(\alpha \in (0, 2] \).

Then the following weak convergences hold in the space of càdlàg real-valued functions defined on \([0, \infty)\) and on \(\mathbb{R} \) respectively, endowed with the Skorohod \(J_1 \)-topology (see [1, chapter 3]):

\[
\left(n^{-1/\alpha} S_{[nt]} \right)_{t \geq 0} \xrightarrow{\mathcal{L}} (U(t))_{t \geq 0}
\]

and

\[
\left(n^{-\frac{1}{\beta}} \sum_{k=0}^{[nx]} \xi_{ke_1} \right)_{x \in \mathbb{R}} \xrightarrow{\mathcal{L}} (Y(x))_{x \in \mathbb{R}}, \text{ with } e_1 = (1, 0, \cdots, 0) \in \mathbb{Z}^d,
\]

where \(U \) and \(Y \) are two independent Lévy processes such that \(U(0) = 0, Y(0) = 0, U(1) \) has distribution \(S_\alpha' \), \(Y(1) \) and \(Y(-1) \) have distribution \(S_\beta \).

Functional limit theorem.

Our first result is concerned with a functional limit theorem for \((Z_{[nt]})_{t \geq 0} \). Intuitively speaking,

- when \(\alpha < d \), the random walk \(S_n \) is transient, its range is of order \(n \), and \(Z_n \) has the same behaviour as a sum of about \(n \) independent random variables with the same distribution as the variables \(\xi_x \). Therefore, \(n^{-1/\beta}(Z_{[nt]})_{t \geq 0} \) weakly converges in the space \(D([0, \infty)) \) of càdlàg functions endowed with the Skorohod \(J_1 \)-topology, to a multiple of the process \((Y_t) \), as proved in [4];
- when \(\alpha > d \) (i.e. \(d = 1 \) and \(1 < \alpha \leq 2 \)), the random walk \(S_n \) is recurrent, its range is of order \(n^{1/\alpha} \), its local times are of order \(n^{1-1/\alpha} \), so that \(Z_n \) is of order \(n^{1-\frac{1}{\alpha} + \frac{1}{\beta}} \). In this situation, [3] and [11] proved a functional limit theorem for \(n^{-1-\frac{1}{\alpha} + \frac{1}{\beta}} (Z_{[nt]})_{t \geq 0} \) in the space \(C([0, \infty)) \) of continuous functions endowed with the uniform topology, the limiting process being a self-similar process, but not a stable one;
- when \(\alpha = d \) (i.e. \(\alpha = d = 1 \), or \(\alpha = d = 2 \)), \(S_n \) is recurrent, its range is of order \(n/\log(n) \), its local times are of order \(\log(n) \) so that \(Z_n \) is of order \(n^{1/2} \log(n)^{\frac{d-1}{d}} \). In this situation, a functional limit theorem in the space of continuous functions was proved in [2] for \(d = \alpha = \beta = 2 \), and in [8] for \(d = \alpha = 1 \) and \(\beta = 2 \).

Our first result gives a limit theorem for \(\alpha = d \) (and so \(d \in \{1, 2\} \)) and for any value of \(\beta \in (0, 2) \) in the finite distributional sense.

Theorem 1. Let us assume that \(\beta \in (0, 2) \) and that

(a) either \(d = 2 \) and \(X_1 \) is centered, square integrable with invertible variance matrix \(\Sigma \) and then we define \(A := 2\sqrt{\det \Sigma} \);
(b) or \(d = 1 \) and \(\left(\frac{\xi_0}{n} \right) \) converges in distribution to a random variable with characteristic function given by \(t \mapsto \exp(-a|t|) \) with \(a > 0 \) and then we define \(A := a \).
Then, the finite-dimensional distributions of the sequence of random variables
\[
\left(\frac{Z_{[nt]}}{(n^{1/\beta} \log(n))^{(\beta-1)/\beta}} \right)_{t \geq 0}, n \geq 2
\]
converges to the finite-dimensional distributions of the process
\[
\left(\frac{\Gamma(\beta + 1)}{(\pi A)^{\beta-1}} Y(t) \right)_{t \geq 0}.
\]
Moreover, if \(\beta < 2 \), the sequence
\[
\left(\frac{Z_{[nt]}}{(n^{1/\beta} \log(n))^{(\beta-1)/\beta}} \right)_{t \geq 0}, n \geq 2
\]
is not tight in \(\mathcal{D}([0, \infty)) \) endowed with the \(J_1 \)-topology.

Local limit theorem.

Our next results concern a local limit theorem for \((Z_n)_n \). The \(d = 1 \) case was treated in [5] for \(\alpha \in (0; 2] \setminus \{1\} \) and all values of \(\beta \in (0; 2] \). Here, we complete this study by proving a local limit theorem for \(\alpha = d = 1 \) (and \(\beta \in (0; 2] \)). By a direct adaptation of the proof of this result, we also establish a local limit theorem for \(\alpha = d = 2 \) (we just adapt the definition of "peaks", see section 3.5). Let us notice that the same adaptation can be done from [5] (case \(\alpha < 1 \)) to get local limit theorems for \(d \geq 2, \alpha < d \) and \(\beta \in (0; 2] \).

We give two results corresponding respectively to the case when \(\xi_0 \) is lattice and to the case when it is strongly non-lattice. We denote by \(\varphi_\xi \) the characteristic function of \(\xi_0 \).

Theorem 2. Assume that \(\xi_0 \) takes its values in \(\mathbb{Z} \). Let \(d_0 \geq 1 \) be the integer such that \(\{u : |\varphi_\xi(u)| = 1\} = \frac{\pi \sigma}{d_0} \mathbb{Z} \). Let \(b_n := n^{1/\beta}(\log(n))^{(\beta-1)/\beta} \). Under the previous assumptions on the random walk and on the scenery, for \(\alpha = d \in \{1, 2\} \), for every \(\beta \in (0, 2] \), and for every \(x \in \mathbb{R} \),

- if \(\mathbb{P}(n \xi_0 - |b_n x| \notin d_0 \mathbb{Z}) = 1 \), then \(\mathbb{P}(Z_n = |b_n x|) = 0 \);
- if \(\mathbb{P}(n \xi_0 - |b_n x| \in d_0 \mathbb{Z}) = 1 \), then
\[
\mathbb{P}(Z_n = |b_n x|) = d_0 \frac{C(x)}{n^{1/\beta}(\log(n))^{(\beta-1)/\beta}} + o(n^{-1/\beta}(\log(n))^{-(\beta-1)/\beta})
\]
uniformly in \(x \in \mathbb{R} \), where \(C(\cdot) \) is the density function of \(\tilde{Y}_1 \).

Theorem 3. Assume now that \(\xi_0 \) is strongly non-lattice which means that
\[
\limsup_{|u| \to +\infty} |\varphi_\xi(u)| < 1.
\]
We still assume that \(\alpha = d \in \{1, 2\} \) and \(\beta \in (0; 2] \). Then, for every \(x, a, b \in \mathbb{R} \) such that \(a < b \), we have
\[
\lim_{n \to +\infty} b_n \mathbb{P}(Z_n \in [b_n x + a; b_n x + b]) = C(x)(b - a),
\]
with \(b_n := n^{1/\beta}(\log(n))^{(\beta-1)/\beta} \) and where \(C(\cdot) \) is the density function of \(\tilde{Y}_1 \).
Before proving the theorem, we prove some technical lemmas. For any real number $\gamma > 0$, any integer $m \geq 1$, any $\theta_1, \ldots, \theta_m \in \mathbb{R}$, any $t_0 = 0 < t_1 < \ldots < t_m$, we consider the sequences of random variables $(L_n(\gamma))_{n \geq 2}$ and $(L'_n(\gamma))_{n \geq 2}$ defined by

$$L_n(\gamma) := \frac{1}{n(\log n)^{\gamma - 1}} \sum_{x \in \mathbb{Z}^d} \left| \sum_{i=1}^m \theta_i (N_{[nt_i]}(x) - N_{[nt_{i-1}]}(x)) \right|^\gamma$$

and

$$L'_n(\gamma) := \frac{1}{n(\log n)^{\gamma - 1}} \sum_{x \in \mathbb{Z}^d} \left| \sum_{i=1}^m \theta_i (N_{[nt_i]}(x) - N_{[nt_{i-1}]}(x)) \right|^\gamma \text{sgn} \left(\sum_{i=1}^m \theta_i (N_{[nt_i]}(x) - N_{[nt_{i-1}]}(x)) \right).$$

Lemma 4. For any real number $\gamma > 0$, any integer $m \geq 1$, any $\theta_1, \ldots, \theta_m \in \mathbb{R}$, any $t_0 = 0 < t_1 < \ldots < t_m$, the following convergences hold \mathbb{P}-almost surely

$$\lim_{n \to +\infty} L_n(\gamma) = \frac{\Gamma(\gamma + 1)}{(\pi A)^{\gamma - 1}} \sum_{i=1}^m |\theta_i|^\gamma (t_i - t_{i-1})$$

and

$$\lim_{n \to +\infty} L'_n(\gamma) = \frac{\Gamma(\gamma + 1)}{(\pi A)^{\gamma - 1}} \sum_{i=1}^m |\theta_i|^\gamma \text{sgn}(\theta_i)(t_i - t_{i-1}).$$

Proof. We fix an integer $m \geq 1$ and $2m$ real numbers $\theta_1, \ldots, \theta_m, t_1, \ldots, t_m$ such that $0 < t_1 < \ldots < t_m$ and we set $t_0 := 0$. To simplify notations, we write $b_{i,n}(x) := N_{[nt_i]}(x) - N_{[nt_{i-1}]}(x)$. Following the techniques developed in [6], we first have to prove (3) and (4) for integer γ: for every integer $k \geq 1$, \mathbb{P}-almost surely, as n goes to infinity, we have

$$\frac{1}{n(\log n)^{k-1}} \sum_{x \in \mathbb{Z}^d} \left(\sum_{i=1}^m \theta_i b_{i,n}(x) \right)^k \to \frac{\Gamma(k + 1)}{(\pi A)^{k-1}} \sum_{i=1}^m |\theta_i|^k (t_i - t_{i-1}).$$

(5)

Let us assume (5) for a while, and let us end the proof of (3) and (4) for any positive real γ. Given the random walk $S := (S_n)_n$, let $(U_n)_{n \geq 1}$ be a sequence of random variables with values in \mathbb{Z}^d, such that for all n, U_n is a point chosen uniformly in the range of the random walk up to time $[nt_m]$, that is

$$\mathbb{P}(U_n = x | S) = R_{[nt_m]}^{-1}(x) \mathbb{1}_{\{N_{[nt_m]}(x) \geq 1\}},$$

with $R_k := \#\{y : N_k(y) > 0\}$. Moreover, let U' be a random variable with values in $\{1, \ldots, m\}$ and distribution

$$\mathbb{P}(U' = i) = (t_i - t_{i-1})/t_m$$

and let T be a random variable with exponential distribution with parameter one and independent of U'.

Then, for \mathbb{P}—almost every realization of the random walk S, the sequence of random variables

$$\left(W_n := \frac{\pi A}{\log(n)} \sum_{i=1}^m \theta_i b_{i,n}(U_n) \right)_n$$

converges in distribution to the random variable $W := \theta_{U'}T$. Indeed, the moment of order k of W_n given S is

$$\mathbb{E}(W^n_k | S) = \frac{(\pi A)^k}{n(\log n)^{k-1}} \sum_{x \in \mathbb{Z}^d} \left(\sum_{i=1}^m \theta_i b_{i,n}(x) \right)^k \frac{n}{\log(n) R([nt_m])}.$$
Using (5) and the fact that \(((\log n) R_n/n) n\) converges almost surely to \(\pi A\) (see [9, 13]), the moments \(E(W_n^k|S)\) converges a.s. to \(E(W^k) = \Gamma(k + 1) \sum_{i=1}^{\infty} \theta_i^k (t_i - t_{i-1})/t_m\), which proves the convergence in distribution of \(W_n\) to \(W\). This ensures, in particular, the convergence in distribution of \(|W_n|\gamma\) and of \(|W_n|\gamma \sgn(W_n)\) (given \(S\)) to \(|W|\gamma\) and \(|W|\gamma \sgn(W)\) respectively (for every real number \(\gamma \geq 0\) and for \(P\) almost every realization of the random walk \(S\)). Since any moment of \(|W_n|\) can be bounded from above by an integer moment, we deduce that, for any \(\gamma \geq 0\), we have \(P\)-almost surely
\[
\lim_{n \to +\infty} E(|W_n|\gamma |S) = E(|W|\gamma) \quad \text{and} \quad \lim_{n \to +\infty} E(|W_n|\gamma \sgn(W_n) |S) = E(|W|\gamma \sgn(W)),
\]
which proves lemma 4.

Let us prove (5). Let \(k \geq 1\). According to Theorem 1 in [6] (proved for \(\alpha = d = 2\), but also valid for \(\alpha = d = 1\)), we have
\[
\forall i \in \{1, \ldots, m\}, \quad \lim_{n \to +\infty} \frac{1}{n (\log n)^{k-1}} \sum_{x \in \mathbb{Z}^d} (b_{i,n}(x))^k = \frac{\Gamma(k + 1)}{(\pi A)^{k-1}} (t_i - t_{i-1}), \quad P - a.s. \quad (6)
\]

We define
\[
\Sigma_n(\theta_1, \ldots, \theta_m) := \sum_{x \in \mathbb{Z}^d} \left(\sum_{i=1}^{m} \theta_i b_{i,n}(x) \right)^k - \sum_{x \in \mathbb{Z}^d} \sum_{i=1}^{m} (\theta_i)^k (b_{i,n}(x))^k. \quad (7)
\]

According to (6), it is enough to prove that \(P\)-a.s., \(\Sigma_n(\theta_1, \ldots, \theta_m) = o(n (\log n)^{k-1})\). We observe that \(\Sigma_n(\theta_1, \ldots, \theta_m)\) is the sum of the following terms
\[
\sum_{x \in \mathbb{Z}^d} \prod_{j=1}^{k} (\theta_{i_j} b_{i_j,n}(x)). \quad (8)
\]

over all the \(k\)-tuple \((i_1, \ldots, i_k) \in \{1, \ldots, m\}^k\), with at least two distinct indices. We observe that
\[
|\Sigma_n(\theta_1, \ldots, \theta_m)| \leq \max(|\theta_1|, \ldots, |\theta_m|)^k \Sigma_n(1, \ldots, 1).
\]

But, we have
\[
\Sigma_n(1, \ldots, 1) = \sum_{x \in \mathbb{Z}^d} (N_{[nt_m]}(x))^k - \sum_{x \in \mathbb{Z}^d} \sum_{i=1}^{m} (b_{i,n}(x))^k
\]
\[
= \sum_{x \in \mathbb{Z}^d} (N_{[nt_m]}(x))^k - \sum_{i=1}^{m} \sum_{x \in \mathbb{Z}^d} (b_{i,n}(x))^k = o(n \log(n)^{k-1}),
\]
according to (6). \(\square\)

Lemma 5. For any \(\rho > 0\),
\[
\sup_{x \in \mathbb{Z}^d} N_n(x) = o(n^\rho) \quad a.s.
\]

Proof. See Lemma 2.5 in [2]. \(\square\)

Proof of Theorem 1. Let an integer \(m \geq 1\) and \(2m\) real numbers \(\theta_1, \ldots, \theta_m, t_1, \ldots, t_m\) such that
\(0 < t_1 < \ldots < t_m\). We set \(t_0 := 0\). Again, we use the notation \(b_{i,n}(x) := N_{[nt_i]}(x) - N_{[nt_{i-1}]}(x)\).

Let us write \(Z_n := \frac{1}{n^{1/\beta}(\log n)^{(\beta - 1)/\beta}} \sum_{i=1}^{m} \theta_i (Z_{[nt_i]} - Z_{[nt_{i-1}]}).\) We have to prove that
\[
E[e^{iZ_n}] \to \prod_{i=1}^{m} \phi \left(\theta_i (t_i - t_{i-1})^{1/\beta} \left(\frac{\Gamma(\beta + 1)}{(\pi A)^{\beta - 1}} \right)^{1/\beta} \right), \quad (9)
\]
as n goes to infinity. We observe that $\bar{Z}_n = \frac{1}{n^{1/\beta}(\log(n))^{(\beta-1)/\beta}} \sum_{x \in \mathbb{Z}^d} \sum_{i=1}^m \theta_i b_{i,n}(x) \xi_x$. Hence we have

$$E[e^{i\bar{Z}_n}|S] = \prod_{x \in \mathbb{Z}^d} \varphi_x \left(\frac{\sum_{i=1}^m \theta_i b_{i,n}(x)}{n^{1/\beta}(\log(n))^{(\beta-1)/\beta}} \right).$$

Observe next that

$$|\varphi_x(t) - \exp \left(-|t|^\beta (A_1 + iA_{2\text{sgn}}(t)) \right) | \leq |t|^\beta h(|t|) \quad \text{for all } t \in \mathbb{R},$$

with h a continuous and monotone function on $[0, +\infty)$ vanishing in 0. This implies in particular the existence of $\varepsilon_0 > 0$ and $\sigma > 0$ such that $\max(|\varphi_x(t)|, \exp(-A_1|t|^\beta)) \leq e^{-\sigma|t|^\beta}$ for any $t \in [-\varepsilon_0, \varepsilon_0]$. According to lemma 5, \mathbb{P}-almost surely, for every n large enough, we have

$$b_n := \sup_x \left| \frac{\sum_{i=1}^m \theta_i b_{i,n}(x)}{n^{1/\beta}(\log(n))^{(\beta-1)/\beta}} \right| \leq \varepsilon_0$$

and so

$$E[e^{i\bar{Z}_n}|S] - \prod_{x \in \mathbb{Z}^d} e^{-\sum_{i=1}^m \theta_i b_{i,n}(x)|^\beta/h(b_n)e^{-\sigma \sum_{y \in \mathbb{Z}^d} \sum_{i=1}^m \theta_i b_{i,n}(y)|^\beta/b_n^\beta} \right) \right|$$

is less than $\sum_{x \in \mathbb{Z}^d} \sum_{i=1}^m \theta_i b_{i,n}(x)|^\beta/h(b_n)e^{-\sigma \sum_{y \in \mathbb{Z}^d} \sum_{i=1}^m \theta_i b_{i,n}(y)|^\beta/b_n^\beta} \right) \right|$. Hence, according to lemmas 4 and 5, \mathbb{P}-almost surely, we have

$$\lim_{n \to +\infty} E[e^{i\bar{Z}_n}|S] = e^{-\frac{\Gamma(\beta+1)}{\Gamma(\beta)} \sum_{i=1}^m |\theta_i|^\beta(t_i-t_{i-1})(A_1+iA_{2\text{sgn}}(\theta_i))}$$

which gives (9) thanks to the Lebesgue dominated convergence theorem.

Finally we prove that the sequence

$$\left(\frac{Z_{[nt]}}{n^{1/\beta}(\log(n))^{(\beta-1)/\beta}} \right)_{t \in [0;1]}$$

is not tight in $D([0,\infty))$. It is enough to prove that it is not tight in $D([0,1])$. To this aim, let $b_n = n^{1/\beta}(\log(n))^{(\beta-1)/\beta}$, and $(Z_n(t), t \in [0,1])$ denote the linear interpolation of $(Z_{[nt]}, t \in [0,1])$, i.e.

$$Z_n(t) = Z_{[nt]} + (nt-[nt])\xi_{S_{[nt]}}.$$

Then, $\forall \varepsilon > 0$,

$$\mathbb{P} \left[\sup_{t \in [0,1]} |Z_n(t) - Z_{[nt]}| \geq \varepsilon b_n \right] = \mathbb{P} \left[\max_{i=0}^{n-1} |\xi_{S_i}| \geq \varepsilon b_n \right]$$

$$= \mathbb{P} \left[\exists x \in \{S_0, \ldots, S_{n-1}\} \text{ s.t. } |\xi_x| \geq \varepsilon b_n \right]$$

$$\leq \mathbb{E}(\# \{S_0, \ldots, S_{n-1}\}) \mathbb{P} [|\xi_0| \geq \varepsilon b_n]$$

$$\leq C \frac{n}{\log(n)} \varepsilon^{-\beta} b_n^{-\beta} = C \varepsilon^{-\beta} \log(n)^{-\beta},$$

where the last inequality comes from (2) and Theorem 6.9 of [13]. Therefore, if $\left(\frac{Z_{[nt]}}{b_n} \right)_{t \in [0;1]}$ converges weakly to $\left(\tilde{Y}_t \right)_{t \in [0,1]}$, the same is true for $\left(\frac{Z_n(t)}{b_n} \right)_{t \in [0;1]}$. Using the fact that
the sequence $\left(\frac{Z_{n(t)}}{b_n^2} \right)_{t \in [0;1]}$ is a sequence in the space $\mathbb{C}([0,1])$ and that the Skorohod J_1-topology coincides with the uniform one when restricted to $\mathbb{C}([0,1])$, one deduces that $\left(\frac{Z_{n(t)}}{b_n^2} \right)_{t \in [0;1]}$ converges weakly in $\mathbb{C}([0,1])$, and that the limiting process $\left(\tilde{Y}_t \right)_{t \in [0,1]}$ is therefore continuous, which is false as soon as $\beta < 2$.

\section{Proof of the local limit theorem in the lattice case}

\subsection{The event Ω_n}

Set $N^*_n := \sup_y N_n(y)$ and $R_n := \# \left\{ y : N_n(y) > 0 \right\}$.

\begin{lemma}
For every $n \geq 1$ and $1 > \gamma > 0$, set

$$\Omega_n = \Omega_n(\gamma) := \left\{ R_n \leq \frac{n}{(\log \log(n))^{1/4}} \text{ and } N^*_n \leq n^\gamma \right\}.$$ \hspace{1cm} (10)

Then, $\mathbb{P}(\Omega_n) = 1 - o(b_n^{-1})$. Moreover, the following also holds on Ω_n:

$$(\log \log(n))^{1/4} \leq N^*_n \quad \text{and} \quad V_n \geq n^{1-\gamma(1-\beta)}.$$ \hspace{1cm} (11)

\end{lemma}

\begin{proof}
We first prove that

$$\mathbb{P} \left(R_n \geq n(\log \log(n))^{-1/4} \right) = o(b_n^{-1}).$$ \hspace{1cm} (12)

Let us recall that for every $a, b \in \mathbb{N}$, we have

$$\mathbb{P}(R_n \geq a + b) \leq \mathbb{P}(R_n \geq a)\mathbb{P}(R_n \geq b).$$ \hspace{1cm} (13)

The proof is given for instance in [7]. We will moreover use the fact that $\mathbb{E}[R_n] \sim cn(\log(n))^{-1}$ and $Var(R_n) = O \left(n^2 \log^{-4}(n) \right)$ (see [13]). Hence, for n large enough, there exists $C > 0$ such that we have

$$\mathbb{P} \left(R_n \geq \frac{n}{(\log \log(n))^{1/4}} \right) \leq \mathbb{P} \left(R_n \geq \left[\frac{n(\log \log(n))^{1/4}}{\log(n)} \right] \right)^{[\log(n)(\log \log(n))^{-1/2}]}$$

$$\leq \mathbb{P} \left(|R_n - \mathbb{E}[R_n]| \geq \frac{1}{2} \left[\frac{n(\log \log(n))^{1/4}}{\log(n)} \right] \right)^{[\log(n)(\log \log(n))^{-1/2}]}$$

$$\leq \left(\frac{5\text{Var}(R_n) \log^2(n)}{n^2(\log \log(n))^{1/2}} \right)^{[\log(n)(\log \log(n))^{-1/2}]}$$

$$\leq \left(\frac{Cn^2 \log^2(n) / \log^4(n)}{n^2 \log \log(n)} \right)^{[\log(n)(\log \log(n))^{-1/2}]}$$

$$\leq \left(\frac{C}{(\log(n))^2} \right)^{[\log(n)(\log \log(n))^{-1/2}]} = \exp \left(- \log(n) \sqrt{\log \log(n)} \left(1 - \frac{\log(C)}{2 \log \log(n)} \right) \right).$$

This ends the proof of (11).

Let us now prove that

$$\mathbb{P} [N^*_n \geq n^{\gamma}] = o(b_n^{-1}).$$ \hspace{1cm} (14)
We have
\[
\mathbb{P}(N_n^* \geq n^\gamma) \leq \sum_x \mathbb{P}(N_n(x) \geq n^\gamma) \\
= \sum_x \mathbb{P}(T_x \leq n; N_n(x) \geq n^\gamma), \text{ where } T_x := \inf \{n > 1, \text{ s.t. } S_n = x\} \\
\leq \sum_x \mathbb{P}(T_x \leq n) \mathbb{P}(N_n(0) \geq n^\gamma) \\
\leq \mathbb{E}[R_n] \mathbb{P}(T_0 \leq n) n^\gamma.
\]

Hence, (13) follows now from \(\mathbb{E}[R_n] \sim cn(\log(n))^{-1}\), and from \(\mathbb{P}(T_0 > n) \sim C/\log(n)\).

Since \(n = \sum_y N_n(y) \leq R_n N_n^*\), we get that \(N_n^* \geq \frac{n}{R_n} \geq (\log \log(n))^{1/4}\) on \(\Omega_n\).

To prove the lower bound for \(V_n\), note that for \(\beta \geq 1\), \(V_n = \sum_y N_n(y)^{\beta} \geq \sum_y N_n(y) = n\). For \(\beta < 1\,\text{ on }\Omega_n\),
\[
n = \sum_y N_n(y) = \sum_y N_n(y)^\beta N_n(y)^{1-\beta} \leq V_n(N_n^*)^{1-\beta} \leq V_n n^{\gamma(1-\beta)}.
\]

\(\square\)

3.2. Scheme of the proof. It is easy to see (cf the proof of lemma 5 in [5]) that \(\mathbb{P}(Z_n = [b_n x]) = 0\) if \(\mathbb{P}(n \xi_0 - [b_n x] \notin d_0 \mathbb{Z}) = 1\), and that if \(\mathbb{P}(n \xi_0 - [b_n x] \in d_0 \mathbb{Z}) = 1\),
\[
\mathbb{P}(Z_n = [b_n x]) = \frac{d_0}{2\pi} \int_{-\frac{x_0}{d_0}}^{\frac{x_0}{d_0}} e^{-it[b_n x]} \mathbb{E}\left[\prod_y \varphi(t N_n(y))\right] dt.
\]

In view of lemma 6, we have to estimate
\[
\frac{d_0}{2\pi} \int_{-\frac{x_0}{d_0}}^{\frac{x_0}{d_0}} e^{-it[b_n x]} \mathbb{E}\left[\prod_y \varphi(t N_n(y))\mathbb{1}_{\Omega_n}\right] dt.
\]

This is done in several steps presented in the following propositions.

Proposition 7. Let \(\gamma \in (0, 1/(\beta + 1))\) and \(\delta \in (0, 1/(2\beta))\) s.t. \(\gamma^{(1-\beta)+}\frac{1}{\beta} < \delta < 1/\beta - \gamma\). Then, we have
\[
\frac{d_0}{2\pi} \int_{\{t| t \leq \delta / b_n\}} e^{-it[b_n x]} \mathbb{E}\left[\prod_y \varphi(t N_n(y))\mathbb{1}_{\Omega_n}\right] dt = \frac{d_0}{b_n} \frac{C(x)}{b_n} + o(b_n^{-1}),
\]
uniformly in \(x \in \mathbb{R}\).

Recall next that the characteristic function \(\phi\) of the limit distribution of \((n^{-1/\beta} \sum_{k=1}^n \xi_k)\) has the following form:
\[
\phi(u) = e^{-|u|^\beta (A_1 + i A_2 \text{sgn}(u))},
\]
with \(0 < A_1 < \infty\) and \(|A_1^{-1}A_2| \leq |\tan(\pi \beta/2)|\). It follows that the characteristic function \(\varphi\xi\) of \(\xi_0\) satisfies:
\[
1 - \varphi\xi(u) \sim |u|^\beta (A_1 + i A_2 \text{sgn}(u)) \quad \text{ when } u \to 0.
\]

Therefore there exist constants \(\varepsilon_0 > 0\) and \(\sigma > 0\) such that
\[
\max(|\phi(u)|, |\varphi\xi(u)|) \leq \exp\left(-\sigma |u|^\beta\right) \quad \text{for all } u \in [-\varepsilon_0, \varepsilon_0].
\]

Since \(\varphi\xi(t) = \varphi\xi(-t)\) for every \(t \geq 0\), the following propositions achieve the proof of Theorem 2:
Proposition 8. Let δ and γ be as in Proposition 7. Then there exists $c > 0$ such that
\[
\int_{n^{\delta}-b_n}^{n^{\delta}} \mathbb{E} \left[\prod_y \varphi(tN_n(y))|1_{\Omega_n} \right] dt = o(e^{-cn}).
\]

Proposition 9. There exists $c > 0$ such that
\[
\int_{\omega_{n-\gamma}}^{\omega_n} \mathbb{E} \left[\prod_y \varphi(tN_n(y))|1_{\Omega_n} \right] dt = o(e^{-cn}).
\]

3.3. Proof of Proposition 7. Remember that $V_n = \sum_{z \in \mathbb{Z}^d} N_n^\beta(z)$. We start by a preliminary lemma.

Lemma 10.
1. If $\beta > 1$, $\sup_n \mathbb{E} \left[\frac{(n \log(n)^{\beta-1})}{V_n} \right]^{1/(\beta-1)} \leq \frac{\log(n)R_n}{n}$

2. If $\beta \leq 1$, $\forall p \in \mathbb{N}$, $\sup_n \mathbb{E} \left[(\frac{n \log(n)^{\beta-1}}{V_n})^p \right] < +\infty$.

Proof. For $\beta > 1$, using Hölder’s inequality with $p = \beta$, we get
\[
n = \sum_x N_n(x) \leq V_n \frac{\beta-1}{\beta} R_n \frac{1}{\beta-1}
\]
which means that
\[
\left(\frac{n \log(n)^{\beta-1}}{V_n} \right)^{1/(\beta-1)} \leq \frac{\log(n)R_n}{n}
\]
But it is proved in [13] Equation (7.a) that $\mathbb{E}[R_n] = O(n/\log(n))$. The result follows.

The result is obvious for $\beta = 1$. For $\beta < 1$, Hölder’s inequality with $p = 2 - \beta$ yields
\[
n = \sum_x N_n^\beta(x) N_n^{2(1-\beta)} \leq V_n^{1-\beta} \left(\sum_x N_n^2(x) \right)^{\frac{1-\beta}{2-\beta}}
\]
and so
\[
\frac{n \log(n)^{\beta-1}}{V_n} \leq \left(\frac{\sum_x N_n^2(x)}{n \log(n)} \right)^{1-\beta}.
\]
It is therefore enough to prove that there exists $c > 0$ such that
\[
\sup_n \mathbb{E} \left[\exp \left(\frac{c \sum_x N_n^2(x)}{n \log(n)} \right) \right] < \infty.
\]

Note that $\sum_x N_n^2(x) = \sum_{k=0}^{n-1} N_n(S_k)$. By Jensen’s inequality, we get thus
\[
\mathbb{E} \left[\exp \left(\frac{c \sum_x N_n^2(x)}{n \log(n)} \right) \right] \leq \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{E} \left[\exp \left(\frac{N_n(S_k)}{\log(n)} \right) \right].
\]
Observe now that $N_n(S_k) = \sum_{j=0}^k 1_{\{S_j - S_{j-1} = 0\}} + \sum_{j=k+1}^{n-1} 1_{\{S_j - S_{k} = 0\}} = N_{k+1}(0) + N_{n-k}(0) - 1$, where $(N_n'(x), n \in \mathbb{N}, x \in \mathbb{Z}^d)$ is an independent copy of $(N_n(x), n \in \mathbb{N}, x \in \mathbb{Z}^d)$. Hence,
\[
\mathbb{E} \left[\exp \left(\frac{c \sum_x N_n^2(x)}{n \log(n)} \right) \right] \leq \mathbb{E} \left[\exp \left(\frac{N_n(0)}{\log(n)} \right)^2 \right].
\]
But, $\forall t > 0$,
\[
\mathbb{P}(N_n(0) \geq t \log(n)) \leq \mathbb{P}(T_0 \leq n)^{\lceil t \log(n) \rceil},
\]

where T_0 is the stopping time.
and
\[\mathbb{E} \left[\exp \left(c \frac{N_n(0)}{\log(n)} \right) \right] \leq 1 + \int_0^\infty c \exp(ct) \exp \left(- \left\lfloor t \log(n) \right\rfloor \mathbb{P}(T_0 > n) \right) \, dt. \]

Now (16) follows then from the fact that \(\exists C > 0 \) such that \(\mathbb{P}(T_0 > n) \sim C/\log(n) \) for any integer \(n \geq 1 \).

The next step is

Lemma 11. Under the hypotheses of Proposition 7, we have
\[\int_{\{|t| \leq n^{\delta}/b_n\}} e^{-it|\phi_n|} \mathbb{E} \left[\left\{ \prod_y \varphi(tN_n(y)) - e^{-|t|\beta(A_1 + iA_2 \text{sgn}(t))V_n} \right\} 1_{\Omega_n} \right] \, dt = o(b_n^{-1}), \]
uniformly in \(x \in \mathbb{R} \).

Proof. It suffices to prove that
\[\int_{\{|t| \leq n^{\delta}/b_n\}} \mathbb{E}[|E_n(t)|1_{\Omega_n}] \, dt = o(b_n^{-1}) \]
with
\[E_n(t) := \prod_y \varphi(tN_n(y)) - \prod_y \exp \left(-|t|\beta N_n^\beta(y)(A_1 + iA_2 \text{sgn}(t)) \right). \]

Observe that
\[E_n(t) = \sum_y \left(\prod_{z < y} \varphi(tN_n(z)) \right) \left(\varphi(tN_n(y)) - e^{-|t|\beta N_n^\beta(y)(A_1 + iA_2 \text{sgn}(t))} \right) \times \left(\prod_{z > y} e^{-|t|\beta N_n^\beta(z)(A_1 + iA_2 \text{sgn}(t))} \right), \]
where an arbitrary ordering of sites of \(\mathbb{Z}^d \) has been chosen. But on \(\Omega_n \), if \(|t| \leq n^{\delta}b_n^{-1} \), then
\[|t|N_n(z) \leq n^{\gamma+\delta}b_n^{-1}. \]
Since \(\gamma + \delta < \beta^{-1} \), this implies in particular that \(|t|N_n(z) < \varepsilon_0 \) for \(n \) large enough. Thus, by using (15), we get
\[|E_n(t)| \leq \sum_y \left| \varphi(tN_n(y)) - \exp \left(-|t|\beta N_n^\beta(y)(A_1 + iA_2 \text{sgn}(t)) \right) \right| \exp \left(-\sigma|t|\beta \sum_{z \neq y} N_n^\beta(z) \right), \]
for \(n \) large enough. Observe next that (14) implies
\[\left| \varphi(u) - \exp \left(-|u|\beta(A_1 + iA_2 \text{sgn}(u)) \right) \right| \leq |u|\beta h(|u|) \quad \text{for all } u \in \mathbb{R}, \]
with \(h \) a continuous and monotone function on \([0, +\infty)\) vanishing in 0. Therefore by using (17) we get
\[|E_n(t)| \leq |t|\beta h(n^{\gamma+\delta}b_n^{-1}) \sum_y N_n^\beta(y) \exp \left(-\sigma|t|\beta \sum_{z \neq y} N_n^\beta(z) \right). \]

Now, according to (10) and since \(\gamma < \frac{1}{\beta+1} \leq \frac{1}{\beta+(1-\beta)_+} \), if \(n \) is large enough, we have on \(\Omega_n \)
\[\sum_{z \neq y} N_n^\beta(z) \geq V_n/2 \quad \text{for all } y \in \mathbb{Z}. \]
Lemma 12. Under the hypotheses of Proposition 7, we have

\[
\int_{\{t \leq n^\delta b_n^{-1}\}} e^{-|t| b_n x} e^{-|t|^\beta V_n(A_1+iA_2\text{sgn}(t))} \, dt = d_0 \frac{C(x)}{b_n} + o(b_n^{-1}),
\]

uniformly in \(x \in \mathbb{R} \).

Proof. Set

\[
I_{n,x} := \int_{\{t \leq n^\delta b_n^{-1}\}} e^{-it[b_n x]} e^{-|t|^\beta V_n(A_1+iA_2\text{sgn}(t))} \, dt,
\]

which can be rewritten

\[
I_{n,x} = \int_{\{t \leq n^\delta b_n^{-1}\}} e^{-it[b_n x]} \phi(t V_n^{1/\beta}) \, dt.
\]

Since \(|b_n x| - b_n x| \leq 1\), for all \(n \) and \(x \), it is immediate that

\[
I_{n,x} = \int_{\{t \leq n^\delta b_n^{-1}\}} e^{-it b_n x} \phi(t V_n^{1/\beta}) \, dt + O(n^2 \delta b_n^{-2}).
\]

But \(\delta < (2\beta)^{-1} \) by hypothesis. So actually

\[
I_{n,x} = \int_{\{t \leq n^\delta b_n^{-1}\}} e^{-it b_n x} \phi(t V_n^{1/\beta}) \, dt + o(b_n^{-1}).
\]

Next, with the change of variable \(v = tb_n \), we get:

\[
\int_{\{t \leq n^\delta b_n^{-1}\}} e^{-it b_n x} \phi(t V_n^{1/\beta}) \, dt = b_n^{-1} \left\{ V_n^{-1/\beta} b_n f(x V_n^{-1/\beta} b_n) - J_{n,x} \right\},
\]

(18)

where \(f \) is the density function of the distribution with characteristic function \(\phi \) and where

\[
J_{n,x} := \int_{\{|v| \leq n^\delta\}} e^{-ivx} \phi(v b_n^{-1} V_n^{1/\beta}) \, dv.
\]

By lemma 4 (applied with \(m = 1, t_1 = \theta_1 = 1, \gamma = \beta \), \(W_n := b_n V_n^{-1/\beta} \) converges almost surely, as \(n \to \infty \), to the constant \(\Gamma(\beta + 1)^{-1/\beta}(\pi A)^{1-1/\beta} \). Moreover, Lemma 10 ensures that the sequence \((W_n, n \geq 1) \) is uniformly integrable, so actually the convergence holds in \(L^1 \). Let us deduce that

\[
\mathbb{E}[g_x(W_n)] = \mathbb{E}[g_x(W)] + o(1),
\]

(19)

where \(g_x : z \mapsto z f(xz) \) and the \(o(1) \) is uniform in \(x \). First

\[
|\mathbb{E}[g_x(W_n)] - \mathbb{E}[g_x(W)]| \leq \sup_{x, z \in \mathbb{R}} |(g_x)'(z)| \mathbb{E}[|W_n - W|]
\]

\[
\leq \sup_u |f(u) + uf'(u)| \mathbb{E}[|W_n - W|].
\]

This proves (19). We observe that \(\mathbb{E}[g_x(W)] = C(x) \).
In view of (18), it only remains to prove that $E[J_n x 1_{\Omega_n}] = o(1)$ uniformly in x. But this follows from the basic inequality

$$ E[|J_n x 1_{\Omega_n}|] \leq \int_{|v| \geq \eta} E \left[e^{-A_1 |v|^\delta \frac{\Delta t}{b_n}} 1_{\Omega_n} \right] dv, $$

and from the lower bound for V_n given in (10) and from the choice $\delta > (1 - \beta)_+/\beta$. □

3.4. Proof of Proposition 8. Recall that on Ω_n, $N_n(y) \leq n^\gamma$, for all $y \in \mathbb{Z}^d$. Hence by (15),

$$ K_n := \int_{n^{\delta}/b_n}^{e \gamma n^{-\gamma}} E \left[\prod_{y} (\xi(t N_n(y)) 1_{\Omega_n}) \right] dt \leq \int_{n^{\delta}/b_n}^{e \gamma n^{-\gamma}} E \left[\exp \left(-\sigma t^\beta V_n \right) 1_{\Omega_n} \right] dt. $$

With the change of variable $s = tV_n^{1/\beta}$, we get

$$ K_n \leq \mathbb{E} \left[V_n^{-1/\beta} \int_{n^{\delta}/b_n}^{e \gamma n^{-\gamma} V_n^{1/\beta}} \exp \left(-\sigma s^\beta \right) ds 1_{\Omega_n} \right], $$

$$ \leq \frac{1}{n^{\beta} \gamma (1 - \beta)_+} \int_{\delta - (1 - \beta)_+}^{+\infty} \exp \left(-\sigma s^\beta \right) ds, $$

which proves the proposition since $\delta > (1 - \beta)_+/\beta$.

3.5. Proof of Proposition 9. We adapt the proof of [5, Proposition 10]. We will see that the argument of "peaks" still works here. We endow \mathbb{Z}^d with the ordered structure given by the relation $<$ defined by

$$(\alpha_1, ..., \alpha_d) < (\beta_1, ..., \beta_d) \iff \exists i \in \{1, ..., d\}, \ \alpha_i < \beta_i, \ \forall j < i, \ \alpha_j = \beta_j. $$

We consider $C^+ = (x_1, ..., x_T) \in (\mathbb{Z}^d \setminus \{0\})^T$ for some positive integer T such that:

- $x_1 + ... + x_T = 0$;
- for every $i = 1, ..., T$, $\mathbb{P}(X_1 = x_i) > 0$;
- there exists $I_1 \in \{1, ..., T\}$ such that
 - for every $i = 1, ..., I_1$, $x_i > 0$,
 - for every $i = I_1 + 1, ..., T$, $x_i < 0$.

Let us write $C^- = (x_{T-i+1})_{i=1}^T$. We define $B := \sum_{i=1}^I x_i$. We observe that

$$ p := \mathbb{P}((X_1, ..., X_T) = C^+) = \mathbb{P}((X_1, ..., X_T) = C^-) > 0. $$

We notice that $(X_1, ..., X_T) = C^+$ corresponds to a trajectory visiting B only once before going back to the origin at time T (and without visiting $-B$). Analogously, $(X_1, ..., X_T) = C^-$ corresponds to a trajectory that goes down to $-B$ and comes back up to 0 (and without visiting B), and staying at a distance smaller than $\tilde{d}/2$ of the origin with $\tilde{d} := \sum_{i=1}^T |x_i|$ (where $|\cdot|$ is the absolute value if $d = 1$ and $|(a, b)| = \max(|a|, |b|)$ if $d = 2$). We introduce now the event

$$ D_n := \left\{ C_n > \frac{np}{2T} \right\}, $$

where

$$ C_n := \# \left\{ k = 0, ..., \left\lfloor \frac{n}{T} \right\rfloor - 1 : (X_{kT+1}, ..., X_{(k+1)T}) = C^\pm \right\}. $$

Since the sequences $(X_{kT+1}, ..., X_{(k+1)T})$, for $k \geq 0$, are independent of each other, Chernoff's inequality implies that there exists $c > 0$ such that

$$ \mathbb{P}(D_n) = 1 - o(e^{-cn}). $$
We introduce now the notion of "loop". We say that there is a loop based on \(y \) at time \(n \) if \(S_n = y \) and \((X_{n+1}, \ldots, X_{n+T}) = C^\pm \). We will see (in Lemma 13 below) that, on \(\Omega_n \cap D_n \), there is a large number of \(y \in \mathbb{Z}^d \) on which are based a large number of loops. For any \(y \in \mathbb{Z}^d \), let

\[
C_n(y) := \# \left\{ k = 0, \ldots, \left\lfloor \frac{n}{T} \right\rfloor - 1 : S_{kT} = y \text{ and } (X_{kT+1}, \ldots, X_{(k+1)T}) = C^\pm \right\},
\]

be the number of loops based on \(y \) before time \(n \) (and at times which are multiple of \(T \)), and let

\[
p_n := \# \left\{ y \in \mathbb{Z} : C_n(y) \geq \frac{\log \log(n)^{1/4} p}{4T} \right\},
\]

be the number of sites \(y \in \mathbb{Z} \) on which at least \(a_n := \left\lfloor \frac{\log \log(n)^{1/4} p}{4T} \right\rfloor \) loops are based.

Lemma 13. On \(\Omega_n \cap D_n \), we have, \(p_n \geq c'n^{1-\gamma} \) with \(c' = p/(4T) \).

Proof. Note that \(C_n(y) \leq N_n^* \) for all \(y \in \mathbb{Z}^d \). Thus on \(\Omega_n \cap D_n \), we have

\[
\frac{np}{2T} \leq \sum_{y \in \mathbb{Z}^d : C_n(y) < a_n} C_n(y) + \sum_{y \in \mathbb{Z}^d : C_n(y) \geq a_n} C_n(y)
\]

\[
\leq R_n a_n + N_n^* p_n \leq \frac{np}{4T} + p_n n^\gamma,
\]

according to lemma 6. This proves the lemma.

We have proved that, if \(n \) is large enough, the event \(\Omega_n \cap D_n \) is contained in the event

\[
\mathcal{E}_n := \{ p_n \geq c'n^{1-\gamma} \}.
\]

Now, on \(\mathcal{E}_n \), we consider \((Y_i)_{i=1, \ldots, [c'n^{1-\gamma}]} \) (with \(c'' := c'/2\bar{d} \) if \(d = 1 \) and with \(c'' := c'/2\bar{d}^2 \) if \(d = 2 \)) such that

- on each \(Y_i \), at least \(a_n \) loops are based,
- for every \(i, j \) such that \(i \neq j \), we have \(|Y_i - Y_j| > \bar{d}/2 \).

For every \(i = 1, \ldots, [c''n^{1-\gamma}] \), let \(t_i^{(1)}, \ldots, t_i^{(a_n)} \) be the \(a_n \) first times (which are multiples of \(T \)) when a loop is based on the site \(Y_i \). We also define \(N_n^0(Y_i + B) \) as the number of visits of \(S \) before time \(n \) to \(Y_i + B \), which do not occur during the time intervals \([t_i^{(j)}, t_i^{(j)} + T], \) for \(j \leq a_n \).

Since our construction is basically the same as in [5, section 2.8], the proof of the following lemma is exactly the same as the proof of [5, Lemma 16] and we do not prove it again.

Lemma 14. Conditionally to the event \(\mathcal{E}_n \), \((N_n(Y_i + B) - N_n^0(Y_i + B))_{i \geq 1} \) is a sequence of independent identically distributed random variables with binomial distribution \(\mathcal{B}(a_n; \frac{1}{2}) \). Moreover this sequence is independent of \((N_n^0(Y_i + B))_{i \geq 1} \).

Let \(\eta \) be a real number such that \(\gamma < \eta < (1 - \gamma)/\beta \) (this is possible since \(\gamma < 1/(\beta + 1) \)). We define

\[
\forall n \geq 1, \quad d_n := n^{-\eta}.
\]

Let now \(\rho := \sup \{|\varphi_{\mathcal{E}}(u)| : d \left(u, \frac{2\pi}{d_n} \mathbb{Z}\right) \geq c_0\} \). According to Formula (15) and since \(\lim_{n \to \infty} d_n = 0 \), for \(n \) large enough, we have

\[
|\varphi_{\mathcal{E}}(u)| \leq \rho \mathbf{1}_{d(u, 2\pi Z) \geq c_0} + \exp \left(-\sigma d \left(u, \frac{2\pi}{d_n} \mathbb{Z}\right)^\beta\right) \mathbf{1}_{d(u, 2\pi Z) < c_0}.
\]

\[
\leq \exp \left(-\sigma d_n^\beta\right),
\]
as soon as \(d \left(u, \frac{2\pi Z}{d_0} \right) \geq d_n. \) Therefore, for \(n \) large enough,
\[
\prod_z |\varphi_z(tN_n(z))| \leq \exp \left(-\sigma \frac{d_n}{d_0} \# \left\{ z : d \left(tN_n(z), \frac{2\pi Z}{d_0} \right) \geq d_n \right\} \right).
\]
(20)

Then notice that
\[
d \left(tN_n(z), \frac{2\pi Z}{d_0} \right) \geq d_n \iff N_n(z) \in I := \bigcup_{k \in \mathbb{Z}} I_k,
\]
where for all \(k \in \mathbb{Z},
\[
I_k := \left[\frac{2k\pi}{d_0} + \frac{d_n}{t}, \frac{2(k+1)\pi}{d_0} - \frac{d_n}{t} \right].
\]
In particular \(\mathbb{R} \setminus I = \bigcup_{k \in \mathbb{Z}} J_k \), where for all \(k \in \mathbb{Z},
\[
J_k := \left(\frac{2k\pi}{d_0} - \frac{d_n}{t}, \frac{2k\pi}{d_0} + \frac{d_n}{t} \right).
\]

Lemma 15. Under the hypotheses of Proposition 9, for every \(i \leq \left\lfloor c^n n^{1-\gamma} \right\rfloor \), \(t \in (\varepsilon_0 n^{-\gamma}, \pi/d_0) \) and \(n \) large enough,
\[
\mathbb{P} \left(N_n(Y_i + B) \in I \mid E_n, \ N_n^0(Y_i + B) \right) \geq \frac{1}{3} \quad \text{almost surely.}
\]

Assume for a moment that this lemma holds true and let us finish the proof of Proposition 9. Lemmas 14 and 15 ensure that conditionally to \(E_n \) and \((N_n^0(Y_i + B), i \geq 1) \), the events \(\{N_n(Y_i + B) \in I\}, i \geq 1, \) are independent of each other, and all happen with probability at least \(1/3 \). Therefore, since \(\Omega_n \cap D_n \subseteq E_n \), there exists \(c > 0 \), such that
\[
\mathbb{P} \left(\Omega_n \cap D_n, \ \# \left\{ i : N_n(Y_i + B) \in I \right\} \leq \frac{c^n n^{1-\gamma}}{4} \right) \leq \mathbb{P} \left(B_n \leq \frac{c^n n^{1-\gamma}}{4} \right) = o(\exp(-c n^{1-\gamma})),
\]
where for all \(n \geq 1 \), \(B_n \) has binomial distribution \(B \left(\left\lfloor c^n n^{1-\gamma} \right\rfloor ; \frac{1}{3} \right) \).

But if \(\# \left\{ z : N_n(z) \in I \right\} \geq \frac{c^n n^{1-\gamma}}{4} \), then by (20) and (21) there exists a constant \(c > 0 \), such that
\[
\prod_z |\varphi_z(tN_n(z))| \leq \exp \left(-c n^{1-\gamma} d_n^2 \right),
\]
which proves Proposition 9 since \(1 - \gamma - \beta \eta > 0 \).

Proof of Lemma 15. First notice that by Lemma 14, for any \(H \geq 0, \)
\[
\mathbb{P} \left(N_n(Y_i + B) \in I \mid E_n, \ N_n^0(Y_i + B) = H \right) = \mathbb{P} \left(H + b_n \in I \right),
\]
where \(b_n \) is a random variable with binomial distribution \(B \left(a_n; \frac{1}{3} \right) \). We will use the following result whose proof is postponed.

Lemma 16. Under the hypotheses of Proposition 9, for every \(t \in (\varepsilon_0 n^{-\gamma}, \pi/d_0) \) and \(n \) large enough, the following holds:

(i) For any integer \(k \) such that all the elements of \(I_k - H \) are smaller than \(\frac{a_n}{2} \),
\[
\mathbb{P}(b_n \in (I_k - H)) \geq \mathbb{P}(b_n \in (J_k - H)).
\]

(ii) For any integer \(k \) such that all the elements of \(I_k - H \) are larger than \(\frac{a_n}{2} \),
\[
\mathbb{P}(b_n \in (I_k - H)) \geq \mathbb{P}(b_n \in (J_{k+1} - H)).
\]
Now call k_0 the largest integer satisfying the condition appearing in (i) and k_1 the smallest integer satisfying the condition appearing in (ii). We have $k_1 = k_0 + 1$ or $k_1 = k_0 + 2$. According to Lemma 16, we have

$$\mathbb{P}(H + b_n \in I_k) \geq \sum_{k \leq k_0} \mathbb{P}(H + b_n \in I_k) + \sum_{k \geq k_1} \mathbb{P}(H + b_n \in I_k)$$

$$\geq \sum_{k \leq k_0} \mathbb{P}(H + b_n \in J_k) + \sum_{k \geq k_1} \mathbb{P}(H + b_n \in J_{k+1})$$

$$= \mathbb{P}(H + b_n \not\in I) - \mathbb{P}(H + b_n \in J_{k_0+1} \cup J_1).$$

Hence,

$$\mathbb{P}(H + b_n \in I) \geq \frac{1}{2} [1 - \mathbb{P}(H + b_n \in J_{k_0+1} \cup J_1)].$$

Let $\bar{b}_n := 2 \left(b_n - \frac{a_n}{2} \right) \sqrt{a_n}$. Since $\lim_{n \to +\infty} a_n = +\infty$, $(\bar{b}_n)_n$ converges in distribution to a standard normal variable, whose distribution function is denoted by Φ. The interval J_{k_1} being of length $2d_n/t$,

$$\mathbb{P}(H + b_n \in J_{k_1}) = \mathbb{P}(\bar{b}_n \in [m_n, M_n]), \text{ with } M_n - m_n = 4 \frac{d_n}{t \sqrt{a_n}}$$

$$\leq \Phi(M_n) - \Phi(m_n) + C \frac{M_n - m_n}{\sqrt{a_n}} \quad \text{(by the Berry–Esseen inequality)}$$

$$\leq \frac{M_n - m_n}{\sqrt{2\pi}} + C \frac{d_n}{\sqrt{a_n}}$$

$$\leq C' \frac{d_n}{\varepsilon_0 n^{-\gamma} \sqrt{a_n}} + C \frac{d_n}{\sqrt{a_n}},$$

for $t \geq \varepsilon_0 n^{-\gamma}$, and some constants $C > 0$ and $C' > 0$. Since $\lim_{n \to +\infty} a_n = +\infty$ and $\lim_{n \to +\infty} d_n n^\eta (a_n)^{-1/2} = 0$ (since $\eta > \gamma$), we conclude that $\mathbb{P}(H + b_n \in J_{k_1}) = o(1)$. The same holds for $\mathbb{P}(H + b_n \in J_{k_0+1})$, so that for n large enough,

$$\mathbb{P}(H + b_n \in I) \geq \frac{1}{2} [1 - o(1)] \geq \frac{1}{3}.$$

Together with (22), this concludes the proof of Lemma 15.

Proof of Lemma 16. We only prove (i), since (ii) is similar. So let k be an integer such that all the elements of $I_k - H$ are smaller than $\frac{a_n}{2}$. Assume that $(J_k - H) \cap \mathbb{Z}$ contains at least one nonnegative integer (otherwise $\mathbb{P}(b_n \in (J_k - H)) = 0$ and there is nothing to prove). Let z_k denote the greatest integer in $J_k - H$, so that by our assumption $\mathbb{P}(b_n = z_k) > 0$ (remind that $0 \leq z_k < \frac{a_n}{2}$). By monotonicity of the function $z \mapsto \mathbb{P}(b_n = z)$, for $z \leq \frac{a_n}{2}$, we get

$$\mathbb{P}(b_n \in J_k - H) \leq \mathbb{P}(b_n = z_k) \#((J_k - H) \cap \mathbb{Z}) \leq \mathbb{P}(b_n = z_k) \left[\frac{2d_n}{t} \right].$$

In the same way,

$$\mathbb{P}(b_n \in I_k - H) \geq \mathbb{P}(b_n = z_k) \#((I_k - H) \cap \mathbb{Z}) \geq \mathbb{P}(b_n = z_k) \left[\frac{2d_n}{t} \right].$$

Hence

$$\mathbb{P}(b_n \in I_k - H) \geq \frac{2d_n}{t} \left[\frac{2d_n}{t} \right] \mathbb{P}(b_n \in J_k - H).$$
But $\pi/(d_0 t) \geq 1$ and $\lim_{n \to +\infty} d_n = 0$ by hypothesis. It follows immediately that for n large enough, we have $2d_n < \pi/(2d_0 t)$, and so

$$\frac{2\pi}{d_0 t} - \frac{2d_n}{t} \geq \frac{3\pi}{2d_0 t} \geq 1 + \frac{\pi}{2d_0 t} \geq \left\lceil \frac{\pi}{2d_0 t} \right\rceil \geq \left\lceil \frac{2d_n}{t} \right\rceil .$$

This concludes the proof of the lemma.

4. Proof of the Local Limit Theorem in the Strongly Nonlattice Case

As in [5], the proof in the strongly nonlattice case is closely related to the proof in the lattice case.

We assume here that ξ is strongly nonlattice. In that case, there exist $\varepsilon_0 > 0$, $\sigma > 0$ and $\rho < 1$ such that $|\varphi_\xi(u)| \leq \rho$ if $|u| \geq \varepsilon_0$ and $|\varphi_\xi(u)| \leq \exp(-\sigma|u|^\beta)$ if $|u| < \varepsilon_0$.

We use here the notations of Section 3 with the hypotheses on γ, and δ of Proposition 7. Let h_0 be the density of Polya's distribution: $h_0(y) = \frac{1}{\pi} \frac{1-\cos(y)}{y^2}$, with Fourier transform $\hat{h}_0(t) = (1 - |t|)_+$. For $\theta \in \mathbb{R}$, let $h_{\theta}(y) = \exp(i\theta y) h_0(y)$ with Fourier transform $\hat{h}_\theta(t) = \hat{h}_0(t + \theta)$. As in [10, thm 5.4], it is enough to show that for all $\theta \in \mathbb{R}$,

$$\lim_{n \to \infty} b_n \mathbb{E}[h_{\theta}(Z_n - b_n x)] = C(x) \hat{h}_\theta(0). \quad (23)$$

By Fourier inverse transform, we have

$$b_n \mathbb{E}[h_{\theta}(Z_n - b_n x)] = \frac{b_n}{2\pi} \int_{\mathbb{R}} e^{-iub_n x} \mathbb{E} \left[\prod_{x \in \mathbb{Z}^d} \varphi_\xi(uN_n(x)) \right] \hat{h}_\theta(u) \, du .$$

Since $\hat{h}_\theta \in L^1$, we can restrict our study to the event Ω_n of Lemma 6. The part of the integral corresponding to $|u| \leq n^\beta b_n^{-1}$ is treated exactly as in Proposition 7. The only change is that we have to check that

$$\lim_{n \to \infty} b_n \int_{\{|u| \leq n^\beta b_n^{-1}\}} \mathbb{E} \left[e^{-|u|^\beta V_n(A_1 + iA_2 \text{sgn}(u))} 1_{\Omega_n} \right] (\hat{h}_\theta(u) - \hat{h}_\theta(0)) \, du = 0 ,$$

which is obviously true since $V_n \geq n^{1-\gamma(1-\beta)}_+$ and since $2\gamma(1 - \beta)_+ < 2\delta \beta < 1$, using the fact that \hat{h}_θ is a Lipschitz function.

Now, since \hat{h}_θ is bounded, the part corresponding to $n^\beta b_n^{-1} \leq |u| \leq \varepsilon_0 n^{-\gamma}$ is treated as in the proof of Proposition 8 (since it only uses the behavior of φ_ξ around 0, which is the same).

Finally, it remains to prove that

$$\lim_{n \to \infty} b_n \int_{\{|u| \geq \varepsilon_0 n^{-\gamma}\}} e^{-iub_n x} \mathbb{E} \left[\prod_{x \in \mathbb{Z}^d} \varphi_\xi(uN_n(x)) 1_{\Omega_n} \right] \hat{h}_\theta(u) \, du = 0 . \quad (24)$$

We note that, if $|u| \geq \varepsilon_0 n^{-\gamma}$ and $x \in \mathbb{Z}^d$, we have

$$|\varphi_\xi(uN_n(x))| \leq \exp(-\sigma|u|^\beta N_n^\beta(x)) 1_{\{\|uN_n(x)\| \leq \varepsilon_0\}} + \rho 1_{\{\|uN_n(x)\| \geq \varepsilon_0\}} \leq \exp(-\sigma \varepsilon_0^\beta n^{-\gamma \beta} N_n^\beta(x)) 1_{\{\|uN_n(x)\| \leq \varepsilon_0\}} + \rho 1_{\{\|uN_n(x)\| \geq \varepsilon_0\}} .$$

For n large enough, $\rho \leq \exp(-\sigma \varepsilon_0^\beta n^{-\gamma \beta})$. Therefore, if n is large enough, then for all x and u such that $N_n(x) \geq 1$ and $|u| \geq \varepsilon_0 n^{-\gamma}$, we have

$$|\varphi_\xi(uN_n(x))| \leq \exp(-\sigma \varepsilon_0^\beta n^{-\gamma \beta}) .$$
Hence,
\[
|E \left[\prod_x \phi_\xi(uN_n(x)) 1_{\Omega_n} \right]| \leq E \left[\exp(-\sigma \varepsilon_0^\beta n^{-\gamma(1+\beta)} R_n) 1_{\Omega_n} \right] \leq \exp(-\sigma \varepsilon_0^\beta n^{1-\gamma(1+\beta)}) .
\]
Therefore, since \(\gamma(1+\beta) < 1\), we have
\[
\lim_{n \to \infty} b_n \int_{\{|u| \geq \varepsilon_0 n^{-\gamma}\}} e^{-iub_n x} E \left[\prod_x \phi_\xi(uN_n(x)) 1_{\Omega_n} \right] \hat{h}_\theta(u) \, du = 0 .
\]
This concludes the proof of Theorem 3. □

Acknowledgments:
The authors are deeply grateful to Bruno Schapira for helpful and stimulating discussions.

References

LATP, UMR CNRS 6632. CENTRE DE MATHEMATIQUES ET INFORMATIQUE. UNIVERSITE AIX-MARSEILLE I. 39, RUE JOLIOT CURIE. 13 453 MARSEILLE CEDEX 13. FRANCE.

E-mail address: Fabienne.Castell@cmi.univ-mrs.fr

INSTITUT CAMILLE JORDAN, CNRS UMR 5208, UNIVERSITE DE LYON, UNIVERSITE LYON 1, 43, BOULEVARD DU 11 NOVEMBRE 1918, 69622 VILLEURBANNE, FRANCE.

E-mail address: nadine.guillotin@univ-lyon1.fr

UNIVERSITE EUROPEENNE DE BRETAGNE, UNIVERSITE DE BREST, DEPARTEMENT DE MATHEMATIQUES, 29238 BREST CEDEX, FRANCE.

E-mail address: francoise.pene@univ-brest.fr