State Estimation based on the Concept of Continuous Symmetry and Observability Analysis: The Case of Calibration
Agostino Martinelli

To cite this version:
Agostino Martinelli. State Estimation based on the Concept of Continuous Symmetry and Observability Analysis: The Case of Calibration. IEEE Transactions on Robotics, IEEE, 2011, pp.000000. hal-00578795

HAL Id: hal-00578795
https://hal.archives-ouvertes.fr/hal-00578795
Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
State Estimation based on the Concept of Continuous Symmetry and Observability Analysis: The Case of Calibration

Agostino Martinelli

Abstract—This paper considers the problem of state estimation in autonomous navigation from a theoretical perspective. In particular, the investigation regards problems where the information provided by the sensor data is not sufficient to carry out the state estimation (i.e. the state is not observable). For these systems, the concept of continuous symmetry is introduced. Detecting the continuous symmetries of a given system has a very practical importance. It allows us to detect an observable state whose components are non linear functions of the original non observable state. So far this theoretical and very general concept has been applied to deal with two distinct fundamental estimation problems in the framework of mobile robotics. The former is in the framework of self-calibration and the latter is in the framework of the fusion of the data provided by inertial sensors and vision sensors. For reasons of length, only the former is discussed. In particular, the theoretical machinery is used to address a specific calibration problem. The solution constrains the robot to move along specific trajectories in order to be able to apply the calibration algorithm. This paper provides two distinct contributions. The first is the introduction of this concept of continuous symmetry. The second is the introduction of a simple and efficient strategy to extrinsically calibrate a bearing sensor (e.g. a vision sensor) mounted on a vehicle and, simultaneously estimate the parameters describing the systematic error of its odometry system. Many accurate simulations and real experiments show the robustness, the efficiency and the accuracy of the proposed strategy.

Index Terms—State Estimation and Navigation, Observability, Sensor Fusion, Sensor Calibration.

I. INTRODUCTION

Autonomous navigation often requires to solve different tasks simultaneously (e.g. localization, mapping, obstacle avoidance etc.). Among them, several are estimation tasks, i.e. the robot has to be able to autonomously estimate a given state by integrating the information contained in its sensor data. Typical examples of estimation problems fundamental in many robotics applications are localization, SLAM and self-calibration.

In every estimation problem the following fundamental questions must be answered:

1) Does the system contain the necessary information to perform the estimation of the considered state?
2) If not, is it possible to detect a new state which can be estimated? And, more importantly: what is the link between this new state and the data provided by the robot’s sensors?

The answer to the first question is provided by a well known concept developed in the framework of control theory: the observability. In control theory, a system is defined observable when it is possible to reconstruct its initial state by knowing, in a given time interval, the system inputs and the outputs [8]. Commonly, in wheeled robotics the system inputs are the angular speeds of the wheels. They can significantly differ from the values of the controls delivered to the wheel actuators because of many noise sources. These inputs are evaluated by the robot proprioceptive sensors (typically wheel encoders). The outputs are evaluated by the exteroceptive sensors.

The observability properties can easily be derived in a linear system by performing the Kalman canonical decomposition (see, e.g., [8]). However, in a non linear system, this concept is much more complex and the observability becomes a local property [15]. In this case, the concept of Weak Local Observability was introduced by Hermann and Krener [15]. The word weak means that only the distinguishability of states which are "close" is taken into account1. In other words, if two points which are not close produce exactly the same inputs and outputs, the state is clearly not observable. But, it can still be weakly observable. For more details, the reader is addressed to [15]. The same authors also introduced a criterion, the observability rank criterion, to verify whether a system has this property. In particular, the two theorems 3.1 and 3.11 in [15] state that a system is Weak Local Observable (WLO) if and only if it satisfies the rank criterion2. The application of the rank criterion only requires to perform differentiation. In this paper we assume that a system contains the information to perform the estimation of the state if and only if the system is WLO. Obviously, in order to estimate a state, it is necessary that the system is WLO. However, the contrary cannot be true in some special situations. For instance, this assumption does not take into account the sensor noise. Furthermore, it can be wrong for the kidnapping problem since to solve this problem it is necessary to distinguish states which are in general not close. We believe that this assumption is true in many estimation problems within the framework of autonomous navigation. On the other hand, this assumption

1Two points can be defined close when any ball set centered on one of them also contains the other one.

2Actually, theorem 3.11 states that if the system is WLO, the observability rank condition is satisfied generically. We focus our attention to the word "generically" which means that there are cases where the system is WLO, but the rank condition is not satisfied. However, the probability of this event is very small. For more details we address the reader to [15].
has already been adopted in previous works which investigate several estimation problems in the context of mobile robotics (see section I-B). This assumption allows us to give an answer to the first question by simply performing differentiation.

Answering the second question is in general much harder, and could be done by using the theory of distributions [17]. When a system is not WLO anywhere, there are in general infinite initial states reproducing exactly the same inputs and outputs. Let us consider for instance, the 2D localization problem when the robot moves along a corridor, equipped with odometry sensors and sensors able to perform relative observations (e.g. bearing and range sensors). In this situation, all the initial states differing for a shift along the corridor, reproduce exactly the same inputs and outputs. Intuitively, we remark that the entire system has one continuous symmetry that corresponds with the shift along the corridor. It is obvious that the only quantities that we can estimate (i.e. which are WLO) are invariant with respect to this continuous symmetry (i.e. the robot orientation and the distance of the robot from the corridor walls). The previous consideration regarding this simple localization problem is quite trivial and it’s not required to introduce special mathematical tools. However, there are cases where answering the second question is a very challenging task. The key to deal with these cases is to first provide a mathematical definition of continuous symmetry able to generalize the intuitive idea of symmetry.

In the theory of distributions introduced in [17], the concept of continuous symmetry is implicitly contained in the Frobenius theorem through the Lie brackets. In this paper, we provide a definition of continuous symmetry and from there, we derive a partial differential equation which must be satisfied by all the WLO quantities. The same partial differential equation is derived in [17]. However, the derivation here provided is much simpler since the Lie brackets, the Frobenius theorem and the concept of distribution do not need to be introduced. Therefore, it can be very useful for the mobile robotics community. Our definition of continuous symmetry is inspired by the concept of continuous symmetry adopted in theoretical physics [14]. Our definition allows us an immediate application of the concept of continuous symmetry to real cases. We then consider a fundamental calibration problem: the simultaneous self calibration of the odometry system and the extrinsic calibration of a bearing sensor. In particular, we consider the case when the calibration is carried out by only using a single point feature. To the best of our knowledge, this problem has never been investigated before. Contrary to the 2D localization in a corridor previously mentioned, it is impossible to derive the WLO quantities for this problem without performing analytical computation. We provide the steps to solve this calibration problem on the basis of the analytical results derived in the first part of this paper.

A. Related Works on Sensor Calibration in Mobile Robotics

In recent decades, the problem of sensor calibration has been considered with special emphasis in the field of computer vision. When a camera which has been previously calibrated (i.e. for which both the intrinsic and extrinsic parameters have been determined) is mounted on a robotics system, it is necessary to determine the new extrinsic parameters only. In the case of robot wrists, very successful approaches are based on the solution of a homogeneous transform equation of the form \(AX = XB \) which is obtained by moving the robot wrist and observing the resulting motion of the camera [28], [32]. In particular, in the previous equation, \(A \) describes the configuration change of the wrist, \(B \), the configuration change of the camera and \(X \), the unknown camera configuration in the wrist reference frame. \(A \) and \(B \) are accurately known: \(A \) is obtained by using the encoder data and \(B \) by using the camera observations of a known object before and after the wrist movement [32]. In mobile robotics the situation changes dramatically and the previous methods cannot be applied. Unfortunately, the displacement of a mobile robot obtained by using the encoder data, is not as precise as in the case of a wrist. In other words, the previous matrix \(A \) is roughly estimated by the encoders. A possible solution to this inconvenience could be obtained by adopting other sensors to estimate the robot movement (i.e. the matrix \(A \)). However, most of the times, the objective is to estimate the camera configuration in the reference frame attached to the robot odometry system. Therefore, it is important to introduce a new method with the ability to simultaneously perform the extrinsic camera calibration and the calibration of the robot odometry system. So far, the two problems have been considered separately.

Regarding the odometry, a very successful strategy was introduced by Borenstein and Feng [7] in 1996 called the UMBmark method. It is based on absolute robot position measurements after the execution of several square trajectories. More recently, a method based on two successive least-squares estimations has been introduced [3]. Finally, very few approaches calibrate the odometry without the need of a priori knowledge of the environment and/or of the use of global position sensors (like a GPS) [12], [31], [34].

Regarding the problem of sensor to sensor calibration, several cases have recently been considered (e.g. IMU-camera [27], laser scanner-camera [9], [35], [36] and odometry-camera [24]).

B. Related Works on Observability Analysis in Mobile Robotics

Observability analysis has been carried out by several authors for the localization problem. Roumeliotis [30] applied this analysis to a multi-robot system. The analysis was performed through the linear approximation. The main result of this observability analysis was that the system is not observable and it becomes observable when at least one of the robots in the team has global positioning capabilities. Bonnifait and Garcia investigated the case of one robot equipped with encoders and sensors able to provide the bearing angles of known landmarks in the environment [6]. The observability analysis was carried out by linearizing the system (as in the previous case) and by applying the observability rank condition. As in many nonlinear systems, they found that in some cases, while the associated linearized system is not observable, the
system is \(WLO \). Bicchi and collaborators extended the case of a single robot to the SLAM problem ([5], [20]). They studied one robot equipped with the same bearing sensors of the previous case. They considered landmarks in the environment with a priori known position and landmarks whose position had to be estimated. They found that two landmarks are both necessary and sufficient to make the system observable. They also applied optimal control methods in order to minimize the estimation error. In particular, in [20] they maximized the Cramer-Rao lower bound as defined in [18]. Very recently, the observability rank condition has recently been applied to the SLAM problem [16] [19]. Finally, an observability analysis was performed in order to investigate the properties of the concurrent bias estimation in the map aided localization problem [29].

However, throughout these studies the only thing determined is whether the state defining the system configuration is \(WLO \) or not.

C. Paper Contributions and Paper Structure

In this paper, we take an important step forward which is fundamental when dealing with a non observable problem. Indeed, when a state is not \(WLO \), estimating the state directly brings inconsistencies with catastrophic consequences. On the other hand, when a state is not \(WLO \), suitable functions of its components could be \(WLO \) and therefore could be estimated. We call these functions Observable Modes. The derivation of the observable modes is fundamental in order to properly perform the estimation.

We introduce some mathematical tools to derive the observable modes for systems which are not \(WLO \). These mathematical tools are based on the concept of continuous symmetry which will be defined. This theoretical and very general concept has been applied to deal with two distinct fundamental estimation problems in the framework of mobile robotics. The former is in the framework of self-calibration, and the latter, is in the framework of the fusion of the data provided by inertial (\(IMU \)) and vision sensors. For reasons of length and the sake of simplicity, only the former is discussed. An exhaustive description and discussion about the latter can be found in [22] and [23].

This paper provides two distinct contributions:

- The introduction of the concept of continuous symmetry;
- The use of this concept to introduce a new strategy to robustly, efficiently and accurately estimate the parameters describing both the extrinsic bearing sensor calibration and the odometry calibration.

The second contribution was preliminary discussed in [25] and [26] where the same calibration problem was analyzed. In particular, in [25] a local decomposition for this system was performed in which, the robot accomplishes pure rotations and straight paths. In [26] the local decomposition was extended to all circular trajectory.

As it will be revealed, the application of the concept of continuous symmetry sometimes requires a big effort in terms of analytical computation. On the other hand, the computation has to be done only once and the solution provided is in general, simple.

Section II provides a very simple example to better illustrate the paper’s first contribution. As for the previously mentioned 2D localization in a corridor, analytical methods are not required to detect the observable modes due to the simplicity of the chosen example. The theoretical concepts introduced in section III will be illustrated by referring to this example. In particular, we recall the rank criterion introduced by Hermann and Krener [15] and, we introduce the concept of continuous symmetry. Starting from this definition, we derive a partial differential equation which characterizes all the observable modes in a given system. In section IV we derive these observable modes for our calibration problem. Starting from the decomposition given in section IV, we introduce a very efficient strategy to perform the calibration in section V. Finally, we evaluate its performance in section VI, with simulations (VI-A) and experiments (VI-B). Conclusions are provided in section VII.

II. A SIMPLE EXAMPLE OF LOCALIZATION

We consider a mobile robot moving in a 2D-environment. The configuration of the robot in a global reference frame, can be characterized through the vector \([x_R, y_R, \theta_R]^T \) where \(x_R \) and \(y_R \) are the cartesian robot coordinates, and \(\theta_R \) is the robot orientation. The dynamics of this vector are described by the following non-linear differential equations:

\[
\begin{align*}
\dot{x}_R &= v \cos \theta_R \\
\dot{y}_R &= v \sin \theta_R \\
\dot{\theta}_R &= \omega
\end{align*}
\]

where \(v \) and \(\omega \) are the linear and the rotational robot speed respectively. The robot is equipped with proprioceptive sensors which are able to evaluate these two speeds. We assume that a point feature exists in our environment and, without loss of generality, we fix the global reference frame onto it (see figure 1a). The robot is also equipped with a range sensor, able to evaluate the distance of the point feature. Therefore, our system has the following output:

\[
y = D = \sqrt{x_R^2 + y_R^2} \quad (2)
\]

We also provide the equations for the same system in polar coordinates, i.e. when the robot configuration is described by the coordinates \(D, \phi_R \equiv \arctan \left(\frac{y_R}{x_R} \right) \) and \(\theta_R \).

\[
\begin{align*}
\dot{D} &= v \cos (\theta_R - \phi_R) \\
\dot{\phi}_R &= \frac{v}{D} \sin (\theta_R - \phi_R) \\
\dot{\theta}_R &= \omega \\
y &= D
\end{align*}
\]

Our goal is to answer the two questions mentioned in the previous section for the system characterized by the equations (1-2) or (3). Since the system is very simple, we do not need special mathematical tools.
To check whether we have the necessary information to estimate the robot configuration \([x_R, y_R, \theta_R]^T\), we have to prove that it is possible to uniquely reconstruct the initial robot configuration by knowing the inputs and outputs (observations) in a given time interval. When at the initial time, the distance \(D\) from the origin is available, the estimated robot position belongs to a circumference (see figure 1b). Furthermore, every orientation is possible. As soon as the robot moves accordingly with the inputs \(v(t)\) and \(\omega(t)\), it is possible to find one trajectory starting from each point on the circumference, providing the same distances from the origin by choosing a suitable initial robot orientation (e.g. in fig. 1b the two indicated trajectories provide the same distances from the origin at every time). Therefore, the dimension of the undistinguishable region is 1 and the dimension of the largest WLO subsystem is \(3 - 1 = 2\).

We remark that the system has a continuous symmetry: the system inputs \((v(t)\) and \(\omega(t)\)), and outputs \((y(t)\)), are invariant with respect to a rotation of the global frame about the vertical axis (in the next section we will provide a mathematical definition for a general continuous symmetry). Based on the fact that the dimension of the largest WLO subsystem is two, we know that we can only estimate two independent quantities. Furthermore, these two quantities must satisfy the previous system invariance, i.e. they must be rotation invariant. A possible choice is provided by the two quantities \(D\) and \(\theta\) in figure 1.

\[\theta = \theta_R - \arctan2(y_R, x_R) \]

The new system is characterized by the following equations:

\[\dot{D} = v \cos \theta \]
\[\dot{\theta} = \omega - \frac{v}{D} \sin \theta \]
\[y = D \]

which express the link between the new state \([D, \theta]^T\) and proprioceptive data \((v, \omega)\) and the exteroceptive data \((D)\).

The detection of the previous two observable modes and the derivation of the equations in (5) is fundamental (i.e the answer to the second question stated in the introduction). Indeed, estimating the original state brings inconsistencies with catastrophic consequences.

In the next section, we want to provide some mathematical tools (taken from control theory) in order to perform the same analysis. This will allow us to answer the two questions stated in the introduction, for more complicated estimation problems in the framework of autonomous navigation.

III. Continuous Symmetries and Observability Properties

A general characterization for systems in the framework of autonomous navigation, is provided by the following two equations, which describe the dynamics and the observation respectively:

\[\begin{aligned}
 \dot{S} &= f(S, u) = f_0(S) + \sum_{i=1}^{M} f_i(S)u_i \\
 y &= h(S)
\end{aligned} \]

where \(S \in \Sigma \subseteq \mathbb{R}^n\) is the state, \(u = [u_1, u_2, ..., u_M]^T\) are the system inputs and \(y \in \mathbb{R}\) is the output (we are considering a scalar output for the sake of clarity; the extension to a multi dimensional output is straightforward). Both the systems defined by (1-2) or (3), and the one defined by (5), can be characterized by (6). For instance, for the system in (3), we have: \(S = [D, \phi_R, \theta_R]^T\), \(f_0 = [0, 0, 0]^T\), \(M = 2\), \(u_1 = v\), \(u_2 = \omega\), \(f_1(S) = [\cos(\theta_R - \phi_R), \frac{\sin(\theta_R - \phi_R)}{D}, 0]^T\), \(f_2(S) = [0, 0, 1]^T\), \(h(S) = D\).

A. Observability Rank Criterion

We remind the reader of some concepts in the theory by Hermann and Krener in [15]. We will adopt the following notation: we indicate the \(k^{th}\) order Lie derivative of a field \(\Lambda\), along the vector fields \(v_i, v_{i_2},...,v_{i_k}\) with \(L^k_{v_{i_1},v_{i_2},...,v_{i_k}} \Lambda\). The definition of the Lie derivative is provided by the following two equations:

\[L^0\Lambda = \Lambda, \quad L^k_{v_{i_1},...,v_{i_k+1}} \Lambda = \nabla_S \left(L^k_{v_{i_1},...,v_{i_k}} \Lambda \right) \cdot v_{i_k+1} \]

where the symbol "\(\cdot\)" denotes the scalar product. Now, let us refer to the system in (6), and let us indicate with \(\Theta\), the space of all the Lie derivatives \(L^k_{f_{i_1},...,f_{i_k}} h\), \((i_1, ..., i_k = 1, ..., M)\) where the functions \(f_{i_j}\) \((j = (1, ..., M))\) are defined in (6). We remark that the Lie derivatives quantify the impact of changes in the control input \((u_i)\) on the output function \((h)\). Additionally, we denote with \(dL^k_{f_{i_1},...,f_{i_k}} h\), the gradient of the corresponding Lie derivative (i.e. \(dL^k_{f_{i_1},...,f_{i_k}} h \equiv \nabla_S L^k_{f_{i_1},...,f_{i_k}} h\)), and, we denote with \(dh\), the space spanned by all these gradients.

In this notation, the observability rank criterion can be expressed in the following way: \textit{The dimension of the largest WLO sub-system at a given \(S_0\) is equal to the dimension of \(dh\).}

We remark that the dimension of \(dh\), must be computed by considering the Lie derivatives along all the vector fields \(f_{i_j}\). By only considering a part of these vector fields (or linear combinations of these vector fields), it is possible to obtain a dimension which is smaller than the one of the actual largest WLO sub-system. In mobile robotics, this remark corresponds to the well known property that the observability of a state, could need to consecutively move the robot along all the
directions allowed by its drive system. When only special controls are set (i.e. when the robot is constrained to move along special trajectories), the state observability could be lost. In this case it is fundamental to find the part of the original state which is observable, i.e. to perform a system decomposition for the considered trajectories.

We consider again the simple example introduced in section II, and we show that by using the observability rank criterion, we can answer the first question stated in the introduction. We obtain the same answer already provided in section II.

The computation of the rank for the system in (3) is straightforward. From the last equation in (3), we obtain: \(L^0 h = D \) whose gradient is \(dL^0 h \equiv w_1 = [1, 0, 0] \). The first order Lie derivatives are: \(L^1 h = \cos(\theta_R - \phi_R) \) and \(L^2 h = 0 \). We have: \(dL^1 h \equiv w_2 = [0, \sin(\theta_R - \phi_R), -\sin(\theta_R - \phi_R)] \). It is easy to realize that each vector \(w_i \) obtained by extending the previous computation to every Lie derivative order, has the structure: \(w_i = [\delta_{i,1}, \varsigma_i, -\varsigma_i] \). Indeed, every Lie derivative will depend on \(\theta_R \) and \(\phi_R \) only through the quantity \(\theta_R - \phi_R \), whose sign changes with respect to the change \(\theta_R \leftrightarrow \phi_R \).

Therefore, the rank of the matrix
\[
\Gamma \equiv \{ w_1^T, w_2^T, \ldots, w_i^T, \ldots \}
\]
is equal to two. We conclude that the largest WLO subsystem, has dimension two as derived in section II.

B. Local Decomposition

Let us suppose that the system in (6) is not WLO and that the dimension of the largest WLO subsystem is \(n_{\text{obs}} \). According to the theory of distributions developed in [17], we can find \(n_{\text{obs}} \) independent functions of the components of the original state \(S \), which are WLO and \(n - n_{\text{obs}} \) independent functions of the components of \(S \), which are not WLO. More precisely, if we include the \(n_{\text{obs}} \) WLO functions in the vector \(S_b \), and the other \(n - n_{\text{obs}} \) functions in the vector \(S_a \), we have the following decomposition for the original system:
\[
\begin{aligned}
\dot{S}_a &= \sum_{i=1}^{M} f_{i}^a(S_a, S_b)u_i, \\
\dot{S}_b &= \sum_{i=1}^{M} f_{i}^b(S_b)u_i, \\
y &= h(S)
\end{aligned}
\]
In particular, the subsystem defined by the last two equations in (9), is independent of the value of \(S_a \) and it is WLO. Therefore, by performing this decomposition, we can use the information coming from the dynamics (i.e. the knowledge of \(u(t) \)) and the observations (\(y(t) \)) in order to estimate the observable modes (\(S_b \)). This decomposition extends the Kalman canonical decomposition to the non linear case. It is fundamental in every estimation problem when the state is lost. In this case it is fundamental to find the part of the original state which is observable, i.e. to perform a system decomposition.

In section II, the equations in (5) represent such a decomposition for the system defined by (1-2) or (3).

C. Continuous Symmetries

We refer to the input-output system given in (6). We start by remarking that all the available information that we want to use to estimate the state \(S \), is contained in the sensor data during a given time interval; specifically in the proprioceptive data (used to evaluate the system inputs \(u \)) and the exteroceptive data (used to evaluate the system outputs \(y \)). On the other hand, the knowledge of the system inputs and outputs in a given time interval, is equivalent to the knowledge of all the Lie derivatives at the initial time of the considered interval. This equivalence is the basis of the theory introduced by Hermann and Krener in [15] and, it is a consequence of the two theorems of the implicit functions and of the Taylor expansion. Hence, the points in the configuration space where all the Lie derivatives have the same values, cannot be distinguished by using the system inputs and outputs collected during a given time interval. For this reason, it is fundamental to determine the regions in the configuration space where all the Lie derivatives are invariant. We call them indistinguishable regions. Let us consider the state \(S_0 \) in the configuration space.

Intuitively speaking, we call continuous symmetry in \(S_0 \), a continuous transformation which allows us to determine the associated indistinguishable region (i.e. the region where all the Lie derivatives have the same values as they have in \(S_0 \)).

In the following, we provide a mathematical definition of indistinguishable region and our definition of continuous symmetry respectively. Then, we provide the procedure to determine the indistinguishable regions associated to the continuous symmetries. Finally, we derive theoretical results which play a key role to detect the observable modes for a given input-output system. We address the reader to [22] for additional results.

We introduce the following definition:

Definition 1 (Indistinguishable Region) Given a system described by (6), an indistinguishable region associated to a point \(S_0 \in \Sigma \) is a connected set in \(\Sigma \), which contains \(S_0 \) and the points where all the Lie derivatives have the same value as in \(S_0 \).

As previously mentioned, the points in the configuration space where all the Lie derivatives have the same values, cannot be distinguished by using the system inputs and outputs collected during a given time interval. This is the reason why we call these sets, indistinguishable regions.

Definition 2 (Continuous Symmetry) The vector field \(w_s(S) \ (S \in \Sigma) \), is a continuous symmetry in \(S \) for the system defined in (6), if and only if, it is a non-null vector belonging to the null space of the matrix, whose lines are the gradients of all the Lie derivatives computed in \(S \). Mathematically: \(\nabla_S L^k_{f_{i_1},\ldots,f_{i_k}} h(S).w_s(S) = 0 \), \(\forall k, i_1, \ldots, i_k \).

We now provide the procedure to build an indistinguishable region associated to a given continuous symmetry. Let us consider a point \(S_0 \in \Sigma \) and the curve \(S(S_0, \tau) \) in \(\Sigma \), which is the solution of the differential equation:
\[
\begin{aligned}
\frac{dS}{d\tau} &= w_s(S), \\
S(0) &= S_0
\end{aligned}
\]
(we assume suitable regularity hypotheses on \(w_s(S) \), in order to guarantee the existence of a unique solution).
We prove that the curve \(S(S_0, \tau) \), is an indistinguishable region of \(S_0 \). Before proving this, we prove the following property:

Property 1 A scalar and differentiable function \(g(S) \) \((S \in \Sigma) \) is constant on the curve \(S(S_0, \tau) \), if and only if, its gradient is orthogonal to \(w_s(S) \).

Proof: Proving this property is immediate. We have:

\[
\frac{dg(S(S_0, \tau))}{d\tau} = \nabla g \cdot \frac{dS}{d\tau} = \nabla g \cdot w_s \]

Property 2 The curve \(S(S_0, \tau) \), which is the solution of equation (10), is an indistinguishable region of \(S_0 \).

Proof: According to the definition 2, \(w_s \) is orthogonal to the gradients of all the Lie derivatives. From property 1 we obtain that all the Lie derivatives are constant on the curve \(S(S_0, \tau) \).

It is immediate to extend this result by considering the following differential equation, which generalizes the equation in (10) when the system has \(N_s \) symmetries \((w^1_s, w^2_s, ..., w^{N_s}_s) \):

\[
\frac{dS}{d\tau} = \sum_{i=1}^{N_s} w^i_s(S) \eta_i(\tau), \quad S(0) = S_0
\]

for every choice of the functions \(\eta_1(\tau), ..., \eta_{N_s}(\tau) \) (provided that the chosen functions guarantee a unique solution for the previous differential equation). The equation in (10), corresponds to the case when all the \(\eta_i(\tau) \) are identically 0 with the exception of one of them, which is equal to 1.

To better illustrate the previous concepts, we discuss again the simple example provided in section II. For the system defined in (3), only one continuous symmetry given by the vector \([0, 1, 1]^T\) exists (i.e. belonging to the null space of the matrix \(\Gamma \) in (8)). Let us provide an intuitive interpretation of this continuous symmetry. It is possible to see that this symmetry corresponds to a rotation, which is a global symmetry (independent of \(S \)). Indeed, denoting with \(S_0 = [D_0, \phi_0, \theta_0]^T \), the curve \(S(S_0, \tau) \), i.e. the solution of (10), is in this case:

\[
\{ D(\tau) = D_0, \phi(\tau) = \phi_0 + \tau, \theta(\tau) = \theta_0 + \tau \}
\]

In other words, the continuous transformation defining this indistinguishable region, is the one performing the change \(D_0 \rightarrow D_0, \phi_0 \rightarrow \phi_0 + \tau \) and \(\theta_0 \rightarrow \theta_0 + \tau \) where \(\tau \) is the continuous parameter characterizing the transformation. On the other hand, the previous transformation corresponds to a rotation of an angle \(\tau \). Therefore, this analytical result expresses what we already expected. Indeed, both the outputs and the inputs for the system in (3), are invariant with respect to a global rotation (see fig. 1).

We now provide the main result in order to deal with real systems, and to have an analytical procedure to determine its observable modes. We have the following property:

Property 3 The gradient of any observable mode \((g(S)) \) is orthogonal to \(w_s(S) \) (i.e. \(\nabla g \cdot w_s(S) = 0 \)).

Proof: We proceed by contradiction. Suppose that \(\exists S \) such that \(\nabla g|_{S_0} \cdot w_s(S_0) \neq 0 \). From the Taylor theorem we have: \(g(S(S_0, \tau)) = g(S_0) + \nabla g|_{S_0} \cdot w_s(S_0) \tau + o(\tau^2) \). Hence, \(\exists \tau_M > 0 \) such that \(\forall \tau \in (0, \tau_M], g(S(S_0, \tau)) \neq g(S_0) \). Since \(g(S) \) is an observable mode, the points \(S(S_0, \tau) \), \(\tau \in (0, \tau_M] \), can be distinguished from \(S_0 \). This last sentence contradicts the result of property 2.

The previous condition can be expressed by the following partial differential equation:

\[
\sum_{i=1}^{n} w_{si}(S) \frac{\partial g}{\partial S_i} = 0 \quad (11)
\]

where \(w_{si}(S) \) is the \(i \)-th component of the symmetry \(w_s \).

In other words, for every symmetry there is an associated partial differential equation which must be satisfied by all the observable modes.

We conclude this section by considering the example in section II. In particular, we use (11) to detect the two observable modes. As previously mentioned, this system has only the symmetry \([0, 1, 1]^T\). Hence, the associated equation (11) becomes: \(\frac{\partial g}{\partial \phi} + \frac{\partial g}{\partial \theta} = 0 \) and two independent solutions are \(g = D \) and \(g = \theta_R - \phi_R \). This is the same result we obtained in section II.

It is fundamental to remark, that for this simple example the corresponding symmetry has a very clear physical meaning, being a global rotation. As a result, the corresponding observable modes also have a clear physical meaning, being the quantities invariant under this rotation (not surprisingly they are distance and angle). On the other hand, the definition 2 is very abstract. Hence, there are cases where it is totally impossible to find a physical meaning for the symmetries of a given system, and consequently for its observable modes. In these cases, no intuitive method for derivation of observable modes exists and application of the proposed approach is necessary. This will be the case for the calibration problem analyzed in the next sections.

IV. The Problem of Simultaneous Odometry and Bearing Sensor Calibration

In contrast to the simple example introduced in section II, where a simple intuitive procedure provides the answers to the theoretical questions stated in the introduction, there are cases where the application of the previous concepts and in particular the use of (11), is required.

Here, we discuss a calibration problem. In this case, the proposed method autonomously derives the observable modes whose physical meaning cannot be found.

A. The Considered System

Again we consider a mobile robot moving in a 2D-environment whose dynamics are described by (1). Now we assume that the odometry sensors do not provide directly \(v \) and \(\omega \). We will consider the case of a differential drive, and in order to characterize the systematic odometry errors, we adopt the model introduced in [7]. We have:
\[v = \frac{r_R \omega_R + r_L \omega_L}{2}, \quad \omega = \frac{r_R \omega_R - r_L \omega_L}{B} \tag{12} \]

where \(\omega_R \) and \(\omega_L \) are the control velocities (i.e. \(u = [\omega_R, \omega_L]^T \)) for the right and left wheel, \(B \) is the distance between the robot wheels and \(r_R \) and \(r_L \) are respectively the radius of the right and left wheel.

A bearing sensor (e.g. a camera) is mounted on the robot. We assume that its vertical axis is aligned with the \(z \)-axis of the robot reference frame, and therefore, the transformation between the frame attached to this sensor and the one of the robot, is characterized through the three parameters \(\phi, \rho \) and \(\psi \) (see fig. 2).

\[\phi, \quad \psi, \quad \eta \equiv \frac{r_R}{2p}, \quad \delta \equiv \frac{r_L}{r_R}, \quad \xi \equiv \frac{r_R}{B} \tag{15} \]

which are the original angle parameters and suitable ratios of the original parameters, which contain metric information (i.e. \(\rho, \omega_R, \omega_L \) and \(B \)). From now on, we will refer to the parameters in (15). However, at the end of section V, we show that by adding a simple metric measurement (e.g. the initial distance between the robot and the feature), the original parameters \(\phi, \rho, \psi, r_R, r_L \) and \(B \), can also be estimated.

By using the new parameters in (15), we obtain the following expressions for the dynamics and the observation:

\[\left\{ \begin{array}{l}
\dot{\mu} = -\mu^2 \frac{v}{\rho} \cos(\gamma - \phi) \\
\dot{\gamma} = \xi (\omega_R - \delta \omega_L) - \mu \eta (\omega_R + \delta \omega_L) \sin(\gamma - \phi) \\
\dot{\phi} = \dot{\psi} = \dot{\eta} = \dot{\delta} = \dot{\xi} = 0
\end{array} \right. \]

\[\beta = \left\{ \begin{array}{l}
-\arctan \left(\frac{\sin \gamma}{\mu + \cos \gamma} \right) - \psi + \pi \quad \text{if } \gamma_- \leq \gamma \leq \gamma_+ \\
-\arctan \left(\frac{\sin \gamma}{\mu + \cos \gamma} \right) - \psi \quad \text{otherwise}
\end{array} \right. \]

where \(\gamma_- \) and \(\gamma_+ \) are the two solutions (in \([-\pi, \pi] \)) of the equation \(\cos \gamma = -\mu \) with \(\gamma_+ = -\gamma_- \) and \(\gamma_+ > 0 \). We make the assumption \(0 < \mu < 1 \) as we want to avoid collisions between the robot and the feature (\(D > \rho \)).

By using (1) and the definitions in (13), the dynamics of our system are described by the following equations:

\[\left\{ \begin{array}{l}
\dot{\mu} = -\mu^2 \frac{v}{\rho} \cos(\gamma - \phi) \\
\dot{\gamma} = \omega - \mu \frac{v}{\rho} \sin(\gamma - \phi) \\
\dot{\phi} = \dot{\psi} = \dot{\eta} = \dot{\delta} = \dot{\xi} = 0
\end{array} \right. \tag{14} \]

The state \([\mu, \gamma, \phi, \psi, \eta, \delta, \xi]^T \) is WLO as proven in appendix A. Note that, to achieve the full observability, the robot must move along all the allowed degrees of freedom (i.e. all the inputs \(\omega_R \) and \(\omega_L \) must be considered). In the next subsection we consider circular trajectories (i.e. trajectories characterized by a constant ratio \(\frac{\omega_R}{\omega_L} \)). For them, the overall system is not WLO. We separate the part of the system which is WLO from the rest by using the theory introduced in section III-C. Based on this decomposition, in section V we introduce a very efficient strategy to estimate these parameters. This strategy is based on a closed-form solution which has been derived for circular trajectories. This solution allows a deterministic method (described in section V-A) to be introduced, which can then be used to initialize a method based on a Maximum A Posteriori (MAP) scheme or, more simply, based on a Least Squares (LS) scheme. When the robot controller is not precise enough to follow a circular path with good accuracy, the MAP scheme can be directly applied to the system defined in (16). In this case, the initial state estimated is: \([\mu_0, \gamma_0, \phi, \psi, \eta, \delta, \xi]^T \). Section V-B describes a simple least squares approach, which estimates the initial state observable when the robot accomplishes circular trajectories.

For the sake of clarity, we report all the variables adopted in the considered calibration problem in table I.

B. Deriving the Observable Modes for Circular Trajectories

We consider the motion obtained by setting

\[\omega_R = v; \quad \omega_L = qv \tag{17} \]
At this point we wonder if it is possible to further decompose this system (i.e. to further reduce the number of variables/parameters in order to describe the same system). In answer to this question, it is necessary to apply the rank criterion, i.e. we need to compute the dimension of the linear space containing the gradients of all the Lie derivatives of the system, with the dynamics in (19) and the observation in (16). In the case where this rank is equal to 6 (which is the dimension of the vector \([\mu, \gamma, \phi, \psi, \eta_q, \xi_q]^T\)) in at least one point of the space of the states, we cannot proceed with the decomposition. In appendix C, we prove that this rank is smaller than 6 in every point of the states’ space.

In order to further decompose this system, we need to adopt the method illustrated in section III. As we will see, the method is able to autonomously introduce new quantities whose physical meaning cannot be found. Finding a physical meaning for the quantities automatically introduced by the proposed method, is equivalent to finding an alternative, and probably easier procedure able to solve the same problem.

In the following, we provide the steps necessary to perform this decomposition. We first consider the simpler system:

\[
\begin{align*}
\dot{\mu} & = -\mu^2 \eta_q \nu \cos(\gamma - \phi) \\
\dot{\gamma} & = \xi_q \nu - \mu \eta_q \nu \sin(\gamma - \phi) \\
\dot{\eta}_q & = \dot{\xi}_q = \dot{\phi} = \dot{\psi} = 0 \\
\end{align*}
\]

where we removed the variable \(\psi\). The state \([\mu, \gamma, \phi, \eta_q, \xi_q]^T\) is 5-dimensional. On the other hand, the dimension of the linear space containing the gradients of all the Lie derivatives of the system with the dynamics in (20), and the observation in (16), is smaller than 5 (the proof follows the same steps as the proof given in appendix C). By using the matlab symbolic computation, it is possible to detect the following symmetry:

\[
w_s = \begin{bmatrix} \mu \cos \gamma + 1, \sin \gamma, \xi_q \sin \phi - \eta_q \mu, \xi_q \cos \phi \end{bmatrix}^T
\]

Since this subsystem is defined by a 5-dimensional state, having one symmetry means that we have four independent observable modes, which must satisfy the partial differential equation given in (11) associated to the previous symmetry:

\[
(\mu \cos \gamma + 1) \frac{\partial \Psi}{\partial \mu} + \sin \gamma \frac{\partial \Psi}{\partial \gamma} + \xi_q \sin \phi - \eta_q \mu \frac{\partial \Psi}{\partial \eta_q} + \xi_q \cos \phi \frac{\partial \Psi}{\partial \phi} = 0
\]

Finding four independent solutions is not difficult since we know that all the Lie derivatives are solutions. However, we need to express the dynamics and the system output using only these solutions, as in the decomposition given in (9). Therefore, we cannot simply use the Lie derivatives, since their expression is very complicated (with the exception of the zero-order which coincides with the output \(\frac{\sin \gamma}{\mu + \cos \gamma}\)). On the other hand, a very simple solution for the previous partial differential equation is provided by \(\xi_q\). By using this solution and the output \(\frac{\sin \gamma}{\mu + \cos \gamma}\), and starting from the expressions of the first and second order Lie derivatives, we were able to detect two other solutions: \(\frac{\mu \cos \gamma}{\eta_q \sin \phi}\) and \(\frac{\mu \mu \sin \gamma}{\eta_q \sin \phi}\). We therefore find the following four independent observable modes:

\[
\sum
\]

\[
\begin{align*}
\dot{\mu} & = -\mu^2 \eta_q \nu \cos(\gamma - \phi) \\
\dot{\gamma} & = \xi_q \nu - \mu \eta_q \nu \sin(\gamma - \phi) \\
\dot{\eta}_q & = \dot{\xi}_q = \dot{\phi} = \dot{\psi} = 0 \\
\end{align*}
\]
\[\Psi_1^q = \frac{\xi_q - \eta_q \sin \phi}{\eta_q \cos \phi}, \quad \Psi_2^q = \frac{\mu \eta_q \cos \phi}{\sin \gamma}, \quad \Psi_3^q = \frac{\mu + \cos \gamma}{\sin \gamma}, \quad \xi_q \]

and the local decomposition of (20) is:

\[
\begin{align*}
\dot{\Psi}_1^q &= \nu \Psi_2^q (\Psi_1^q \Psi_2^q \xi_q) \\
\dot{\Psi}_2^q &= \nu (\Psi_2^q + \Psi_1^q \Psi_3^q - \xi_q - \xi_q \Psi_3^q) \\
\dot{\xi}_q &= 0, \quad \Psi_1^q = 0, \quad y = \frac{1}{\Psi_4}
\end{align*}
\]

We now add the parameter \(\psi \) (with \(\dot{\psi} = 0 \)) to the system in (22) and we consider the output \(y = \beta = \arctan \left(\frac{1}{\Psi_3} \right) - \psi \) instead of \(y = \frac{1}{\Psi_4} \). In other words, we consider our original system described by the new 5-dimensional state \([\Psi_1^q, \Psi_2^q, \Psi_3, \xi_q, \psi]^T\), which is smaller than the dimension of the state \([\mu, \gamma, \phi, \psi, \eta_q, \xi_q]^T\). Again we ask if we can further proceed with the decomposition. In answer to this question it is necessary to apply the rank criterion to the system satisfying the dynamics in (22), and with the observation \(y = \beta = \arctan \left(\frac{1}{\Psi_3} \right) - \psi \). It is possible to prove that the dimension of the linear space containing the gradients of all the Lie derivatives, is always smaller than 5 (which is the dimension of the vector \([\Psi_1^q, \Psi_2^q, \Psi_3, \xi_q, \psi]^T\)): the proof is similar to the proof given in appendix C. Therefore, we re-apply the method from section III.

By using the matlab symbolic computation, it is possible to detect a single symmetry as in the system in (20):

\[w_s = \left[\Psi_1^{q^2} + 1, \Psi_2^q (\Psi_3 - \Psi_1^{q}), \Psi_2^q + 1, 0, 1 \right]^T \]

Since this subsystem is defined by a 5-dimensional state, having one symmetry means that we have four independent observable modes which must satisfy the partial differential equation given in (11) associated to the previous symmetry, i.e.:

\[
(\Psi_1^{q^2} + 1) \frac{\partial G}{\partial \Psi_1^q} + (\Psi_2^q (\Psi_3 - \Psi_1^{q})) \frac{\partial G}{\partial \Psi_2^q} + (\Psi_2^q + 1) \frac{\partial G}{\partial \Psi_3^q} + \frac{\partial G}{\partial \psi} + 0 = 0
\]

Namely, every solution \(G(\Psi_1^q, \Psi_2^q, \Psi_3, \xi_q, \psi) \) of the previous partial differential equation, is a \(WLO \) quantity for the system in (22). Again, a very simple solution is provided by \(\xi_q \). Then, by proceeding as before, we found the following four independent solutions:

\[
A^q = \Psi_3 - \Psi_1^{q^2}, \quad V^q = 1 + \Psi_1^{q^2} \Psi_3, \quad L^q = \psi - \arctan \Psi_1^{q^2}, \quad \xi_q
\]

and the local decomposition is:

\[
\begin{align*}
\dot{A}^q &= \nu (1 + A^q^2) (\xi_q - V^q) \\
\dot{V}^q &= \nu A^q V^q (2V^q - \xi_q) \\
\dot{L}^q &= \xi_q = 0 \\
\beta &= - \arctan (A^q) - L^q + S_p \frac{\pi}{2}
\end{align*}
\]

where \(S_p \) can be \(\pm 1 \) depending on the values of the system parameters and the initial robot configuration. In section IV-C, we derive some important properties relating \(S_p \) to the robot motion. This decomposition has a very practical importance. It tells us that, when the robot accomplishes circular trajectories, the information contained in the sensor data (i.e. the information contained in the function \(\nu(t) \) and \(\beta(t) \)), allows us to estimate only the state \([A^q, V^q, L^q, \xi_q]^T\) and not the original state \([\mu, \gamma, \phi, \psi, \xi, \delta, \eta]^T \). Furthermore, it provides the link between the observable state \([A^q, V^q, L^q, \xi_q]^T\) and the sensor data \(\nu \) and \(\beta \). By using the equations in (24), it would be possible to introduce an observer scheme to perform the estimation of the state \([A^q, V^q, L^q, \xi_q]^T \). On the other hand, because of the non linearity in both the dynamics and the observation, such an approach would be suboptimal. In the rest of this paper we will focus on the calibration problem, i.e. the estimation of the calibration parameters. Since in most cases, it is not important to perform the calibration on line, we will use the previous decomposition to introduce a calibration strategy based on a Least Squares (\(LS \)) scheme. Before introducing the strategy, we need to derive several analytical properties of the observation function.

C. Analytical Properties of the Observation Function

In this section, we summarize some important properties of the observation \(\beta \) obtained when the robot accomplishes circular trajectories. These properties are fundamental to introduce our calibration strategy. For the sake of conciseness, we cannot derive these properties here. However, a detailed derivation is available in [21]. Furthermore, it is possible to directly verify the validity of these properties with a simple substitution. For the sake of simplicity, in the following, we do not use the suffix \(q \) in the three parameters \(A, V, \) and \(L \). On the other hand, since \(\xi \) already exists, we maintain the \(q \) in \(\xi_q \).

It is possible to directly integrate the dynamics in (24) to get an analytical expression for \(\beta \) vs the time, or vs the curve length \(s \), defined by the following equation:

\[
s = s(t) = \int_0^t \nu(\tau)d\tau
\]

The expression of \(\beta \) vs \(s \) is given by the following equations (26-29). In particular, \(\beta \) depends on \(A \) (equation (29)), \(A \) depends on \(V \) (equation (28)), \(V \) depends on \(w \) (equation (27)) and finally \(w \) depends on \(s \) (equation (26)).

\[
w = \xi_q \tan(c + S_w \xi_q s)
\]

\[
V = \frac{\xi_q k (2k - \xi_q) + kw^2 + S_w w \sqrt{k(k - \xi_q)(w^2 + \xi_q^2)}}{(2k - \xi_q^2 + w^2)}
\]

\[
A = S_p \sqrt{\frac{k(2V - \xi_q) - V^2}{V^2}}
\]

\[
\beta = \arctan(A) - L + S_p \frac{\pi}{2}
\]
where S_v, S_y, and S_p are three sign variables, as S_r; they can assume the value of $+1$ or -1. c and k are two time-independent parameters, whose value depends on the initial robot configuration with respect to the feature. In particular:

$$k = \frac{(1 + A_0^2)V_0^2}{2V_0 - \xi_q}$$ \hspace{1cm} (30)

and

$$c = \arctan \left(\frac{(\xi_qk + (\xi_q - 2k)V_0)}{(\xi_qV - V_0^2 + 2kV_0 - \xi_qk)} \right)$$ \hspace{1cm} (31)

The validity of the previous expression for β can be checked by directly computing the time derivatives of V and A in (27) and (28) respectively, and, by verifying that they satisfy (24).

It is a key advantage to have the analytical expression of the observation function $\beta(s)$. Indeed, since this expression depends on the calibration parameters, by experimentally collecting real data, we can estimate these parameters (e.g. with a least square fit, see section V-B). On the other hand, it is necessary to known how the sign variables depend on the curve length s in order to fit real data with the previous analytical expression. We remind the reader that the function $\beta(s)$ provides the bearing angle of the origin in the camera frame when the robot accomplishes circular trajectories. Since the circumference is an analytic curve, the function $\beta(s)$ must be C^∞ (with the exception of the discontinuity of 2π, artificially introduced to set the value of β in the interval $[-\pi, \pi]$). In the following, we derive the dependence of the sign variables on the curve length s by requiring continuity properties for the function $\beta(s)$ and its first derivative. From the expressions (26,29), we infer that the analysis can be restricted to the points where the function w in (26) diverges, and when the function V in (27) vanishes. We call the former points nodes and the latter k-nodes. Their expression is respectively:

$$s_n = -S_w \frac{c}{\xi_q} + j \frac{\pi}{\xi_q} + S_w \frac{\pi}{2\xi_q}$$ \hspace{1cm} (32)

$$s_{kn} = -S_w \frac{c}{\xi_q} + j \frac{\pi}{\xi_q} - S_w S_v \arctan \left(\sqrt{-\frac{k}{\xi_q}} \right)$$ \hspace{1cm} (33)

j being an integer. In other words, there are infinite nodes at the distance of $\frac{\pi}{\xi_q}$ from each other. The k-nodes exist if and only if, $-k\xi_q > 0$. In order to ensure the continuity of $\beta(s)$ and its first derivative, S_v and S_p must flip in correspondence to each node, and S_y and S_p must flip in correspondence to each k-node (see [21] for the details).

We also consider the point where the function $w(s)$ in (26) vanishes. We call them mirror points. Their expression is:

$$s_{mp} = -S_w \frac{c}{\xi_q} + j \frac{\pi}{\xi_q}$$ \hspace{1cm} (34)

for every integer j. From (32) and (33) we have: $s_n = s_{mp} + S_w \frac{\pi}{2\xi_q}$ and $s_{kn} = s_{mp} - S_w S_v \arctan \left(\sqrt{-\frac{k}{\xi_q}} \right)$.

In Fig 3 we represent all the previous points. Fig 3a refers to the case when the k-nodes do not exist ($k\xi_q > 0$). We assumed $S_w = 1$, and for the sake of clarity, we assumed $S_v = S_y = S_p = 1$ on the right of the first indicated node. In both cases, we observe that S_v, S_y and S_p all have the same value when s of $\frac{2\pi}{\xi_q}$ is increased. Since $\frac{2\pi}{\xi_q}$ is a multiple of the period of w, this means that the observation function is a periodic function with period:

$$T_S = \frac{2\pi}{\xi_q}$$ \hspace{1cm} (35)

Fig. 3. Special points where the sign variables change their value. a illustrates the case when k-nodes do not exist and b when they do exist.

Finally, we introduce two operations. Let us consider a generic point s. The former is called shift and associates s with the value $s + \frac{T_S}{2}$. The latter is called reflection. We denote with s_{mp}^R the closest mirror point to s on the right. The reflection associates s with the point \bar{s} which is the symmetric point of s with respect to s_{mp}^R (see fig 3a for an illustration). From this definition we have $s + \bar{s} = 2s_{mp}^R$, i.e.: $\bar{s} = 2s_{mp} - s$.

It is easy to verify that the operations of shift and reflection are commutative. We will indicate with \hat{s}, the point obtained when these two operations are both applied to s (i.e. $\bar{s} \equiv \hat{s}$). By indicating with s_{mp}^R the closest node to s on the right, it results that \hat{s} is the symmetric point of s with respect to s_{mp}^R (see fig 3a for an illustration), namely:

$$\hat{s} = 2s_{mp}^R - s$$ \hspace{1cm} (36)

In [21] we derive the following fundamental theorem whose validity can in any case be checked by a direct substitution:

Theorem 1 (Reflection and shift of the observation) The observation function satisfies the following fundamental equation $\forall s$:

$$\beta(s) + \beta(\hat{s}) = -2L (\mod \pi)$$ \hspace{1cm} (37)

where mod is the remainder of a division.

Proof: The proof of this theorem is provided in [21] \hspace{1cm} □

This theorem is fundamental to estimate the parameters ξ_q, L, k and c for a given trajectory (see the algorithm 1 in the next section). The name reflection comes from the fact that, according to (36), \hat{s} is the reflection of s with respect to the node (s_{mp}^R) in between them.

The previous theorem is basically a consequence of the circular trajectory accomplished by the robot. However, in [21] its proof is carried out by performing a continuity analysis on the observation function. The advantage of this analysis is that it provides the behavior of the sign variables (S_v, S_y and S_p).
V. The Strategy to Estimate the System Parameters

The results obtained in the previous section, allow us to introduce a non-iterative method in order to estimate the observable state $[\xi_q, L, c, k]^T$. We will call this the deterministic method and we will denote it with DET. It will be described in V-A. The performance of DET can be further improved by minimizing a specific cost function. We will denote with LS the method which minimizes this cost function (section V-B). Finally, in V-C we provide a method to estimate the calibration parameters starting from the values of ξ_q and L for three distinct trajectories.

A. The deterministic method

The first step of DET consists in estimating ξ_q by evaluating the period of the observation function, and then by using (35). In fact, this equation does not provide the sign of ξ_q. However, this sign is positive for all the values of $q < \frac{1}{2}$ (i.e. when the robot accomplishes counter clockwise circular trajectories). Once ξ_q is estimated, the next step consists of the evaluation of the position of one node. The algorithm 1, describes the procedure to perform this evaluation. It computes the left hand side of equation (37), called $\theta(s_c, s)$, for every possible node candidate (s_c), which is in the interval $[0, \frac{T_s}{2}]$. The function $\theta(s_c, s)$, is independent of the second argument s when $s_c = s$. Indeed, $\theta(s_c, s) = -2L \forall s$. This means that the standard deviation of $\theta(s_c, s)$ with respect to the second argument (s), is zero when computed in s_n (i.e. $\sigma(s_n) = 0$). When the robot sensors are affected by measurement errors, the function $\sigma(s_c)$ attains its minimum in s_n (see figures 6c, 6d, 7c and 7d).

Algorithm 1 (Returns one Node)

\begin{verbatim}
for $s_c = 0$ to $\frac{T_s}{2}$ do
 $s = 2s_c - s$
 $\hat{\theta}(s_c, s) = \beta(s) + \beta(\hat{s}) \mod \pi$
end for

for $s_c = 0$ to $\frac{T_s}{2}$ do
 $\sigma(s_c) = \text{standard deviation of } \theta(s_c, s)$
end for

$s_n = \text{arg min}_{s_c} \sigma(s_c)$

\end{verbatim}

Once s_n is determined, equations (36) and (37) allow us to immediately evaluate the parameter L. Additionally, equation (32) allows us to evaluate c. In both cases, few possible values for these parameters are actually provided. The correct ones can be selected by combining more than one circular trajectory. The value of k can be estimated from the following expression:

$$k = \frac{\xi_q}{1 - \tan^2 \left(\frac{\beta(m_1) - \beta(m_2)}{2} \right)} \quad (38)$$

where m_1 and m_2 are the positions of two consecutive mirror points (see [21] for the derivation of the previous equation). Fig. 4 displays the steps of the deterministic method.

B. A simple least squares approach

Let us suppose that the camera performs N bearing observations, and let us indicate these values with $\beta_{\phi}^{obs}(i = 1, ..., N)$. Also, let us indicate the corresponding values of the curve length with s_1, s_2 are provided by the odometry sensors. In the absence of measurement errors, $\beta_{\phi}^{obs} = \beta(s_1)$, β being the function defined in (26-29). Since the expression of β depends on the parameters ξ_q, L, c and k, their value can be obtained by minimizing the cost function: $\sum_{i=1}^{N} \frac{(\beta_{\phi}^{obs} - \beta(s_i))^2}{\sigma_i^2}$, where σ_i weights the terms in the sum, according to the measurement errors (it increases with the curve length because of the odometry drift). In section VI, we minimize the previous cost function by using the Levenberg Marquadt algorithm, and, by adopting the DET method for the initialization.

C. Estimation of the Calibration Parameters

Once the parameters ξ_q and L are estimated for at least three independent trajectories (i.e. corresponding to three different values of q, q_1, q_2 and q_3), the calibration parameters ϕ, ψ, η, δ and ξ, can be found by using (18), the first equation in (21) and the last equation in (23). In particular, by having the value of ξ_q for two trajectories, it is possible to get the parameters ξ and δ by using the second equation in (18). Then, by using (18) and the first in (21), we obtain the following equation:

$$\eta_x \Psi_1^q + \eta_y = f_q$$

where $\eta_x \equiv \eta \cos \phi$, $\eta_y \equiv \eta \sin \phi$ and $f_q \equiv \xi \frac{1-q^2}{1+q^2}$. By using two distinct trajectories (corresponding to q_1 and q_2), we can solve the linear system

$$\begin{bmatrix}
\Psi_1^{q_1} & 1 \\
\Psi_1^{q_2} & 1
\end{bmatrix} \begin{bmatrix}
\eta_x \\
\eta_y
\end{bmatrix} = \begin{bmatrix}
f_{q_1} \\
f_{q_2}
\end{bmatrix}$$

where $\Psi_1^{q_i} = \tan(\psi - L^q)$. In this way, we obtain both η_x and η_y in terms of ψ. By using the third equation $\eta_x \Psi_2^q + \eta_y = f_{q_3}$, we can compute ψ.

As mentioned in section IV-A, the information provided by the sensor data only allows us to estimate the parameters ϕ, ψ, η, δ and ξ, i.e. the calibration parameters up to a scale factor. However, by adding a supplementary metric measurement, we can also estimate the original parameters ϕ, ρ, ψ, r_R, r_L and B. Let us suppose that we know the initial distance of the robot from the feature for one of the three trajectories, and, that it is the trajectory defined by $q = q_1$. Once the parameters ϕ, ψ, η, δ and ξ are estimated as previously explained, we also consider the parameters c and k for the trajectory with $q = q_1$. By using (30) and (31), we obtain the values of A_0 and V_0. Then, by using the first two equations in (23), we obtain the corresponding Ψ_2^q and Ψ_1^q at $s = 0$. From the last
two equations in (21), we obtain the initial values r_0 and u_0. On the other hand, knowing the initial distance D_0, allows us to obtain $r = u_D D_0$. Once r is evaluated, we can estimate $r_R = 2pr$ and then $r_L = \delta r_R$ and $B = \frac{r}{2}$.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed calibration strategy by carrying out both simulations and experiments. Since in the simulations the ground truth is available, we compare our strategy with a method based on an Extended Kalman Filter (EKF). This method uses an EKF to integrate the encoders data with the data provided by the camera. The equations of this filter are obtained from the standard EKF equations (e.g. see [4]), whose ingredients are provided in appendix D. From now on, we will refer to this calibration method as C-EKF (Calibration based on the EKF).

A. Simulations

The dynamics of the simulated robot are described by the equations (1) and (12). The robot is equipped with encoder sensors which provide the rotations of the right and the left wheel occurring at every time step. These encoder data are delivered at $50Hz$. Additionally, according to the model introduced in [10], all these measurements are affected by zero mean Gaussian errors, independent of each other. In particular, according to the error model in [10], the variance of each measurement is proportional to the value provided by the sensor. In other words, let us suppose that the true rotations of the right and left wheel which occur at a given time step, are equal to δR and δL. We generate the following measurements: $\delta R = N(\delta R, \sigma_R)$ and $\delta L = N(\delta L, \sigma_L)$, where $N(m, \sigma^2)$ indicates the normal distribution with mean value m and variance σ^2. σ_R and σ_L are the nominal values of the radius of the right and left wheel, and K_R and K_L characterize the non systematic odometry error. We have considered many different values for the parameters characterizing the simulated odometry system (i.e. K_R, K_L, r_R^0, r_L^0, the robot speed and the distance between the wheels (B)). Our strategy was always precise, even when we considered values varying the value of σ in the range $[0,5]$.

Finally, we consider many values for the calibration parameters: ϕ, ψ, r_R, r_L and B. However, the performance of our strategy does not depend on them. For this reason, we show a single case. Table III provides the values of the calibration parameters adopted in the simulations.

Figure 6 displays the results obtained by setting $\sigma = 1$ and the value of K as specified in table II. In this case, we performed three trajectories corresponding to three different values of q: 0.9, 0 and -1. In figure 6 we only display the results related to $q = 0.9$ (figures 6a, 6c and 6d) and $q = -1$ (figures 6b, 6d and 6f). In particular, figures 6a and 6b display the observation functions with the nodes (red stars) for the motion shown in figure 5, and figure 6c shows the function $\sigma(s_c)$. s_c is the supposed position of one node. When s_c is equal to the true node position, the function $\sigma(s_c)$ attains its minimum. In this case, the minimum is equal to zero since it refers to an ideal case. Figures 5d and 5f refer to the case shown in figure 5b.

Figure 7 displays the same results as shown in figure 6, but with a noiser bearing sensor ($\sigma = 3$). In this case, the minimum of $\sigma(s_c)$ is significantly larger than 0 (figures 7c and 7d).

By combining the estimated ξ_q and L for the three considered robot trajectories (i.e. with $q = 0.9$, 0, -1), we finally estimate the five parameters ϕ, ψ, η, δ and ξ. In table IV, we provide the values obtained for different errors on the bearing sensor (i.e. $\sigma = 1$, 3, 5 deg). These results are obtained by using DET for the initialization and then by using LS. The number of exteroceptive observations is 300. Even with a large error on the bearing sensor($\sigma = 5$), it is
Fig. 5. The nodes detection phase from our strategy for the ideal case of perfect sensors when $q = 0.8$.

a, c and e refer to the case when the feature is inside the accomplished trajectory, while b, d and f, when it is outside. a and b display the trajectories, c and d display the observation functions with the estimated nodes and e and f display the functions $\sigma(s_c)$.

Fig. 6. The estimation of the nodes and of the parameters ξ_q, L, c and k when $q = 0.9$ (a, c and e), and $q = -1$ (b, d and f). $\sigma_\beta = 1$deg and $K = 0.001\text{m}^2$.

a and b display the observation functions with the estimated nodes, c and d display the functions $\sigma(s_c)$, and e and f display the observation functions as observed (blue dots), estimated by DET (red dots) and improved by LS (black dots).

Fig. 7. As in figure 6 but with a larger error on β ($\sigma_\beta = 5$deg).

<table>
<thead>
<tr>
<th>σ_β</th>
<th>ϕ (deg)</th>
<th>ψ (deg)</th>
<th>η</th>
<th>δ</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.00</td>
<td>90.00</td>
<td>0.49500</td>
<td>1.01616</td>
<td>0.61236</td>
</tr>
<tr>
<td>1deg</td>
<td>-0.08</td>
<td>90.05</td>
<td>0.49596</td>
<td>1.01610</td>
<td>0.61296</td>
</tr>
<tr>
<td>3deg</td>
<td>0.21</td>
<td>90.08</td>
<td>0.49602</td>
<td>1.01625</td>
<td>0.61167</td>
</tr>
<tr>
<td>5deg</td>
<td>0.15</td>
<td>89.83</td>
<td>0.49103</td>
<td>1.01667</td>
<td>0.61323</td>
</tr>
</tbody>
</table>

TABLE IV

The values of the calibration parameters adopted in our simulation. True values (first line) and values obtained by LS (initialized with DET) for different σ_β.

possible to achieve a high level of accuracy. In particular, on the parameter δ the relative error is smaller than 0.01% when $\sigma_\beta = 1$deg. We also remark that in our simulation, the robot accomplishes the circular trajectory only once. It is possible to further improve the accuracy by moving the robot along more than one loop for every q, and/or, by considering more than three values of q. Table IV refers to a single simulation. In order to have a more indicative result, we performed 100 complete simulations, obtaining 100 values for every estimated parameter. We compute the error of the estimated parameters for every simulation. In table V, we report the mean value for these errors. The parameter i describes how the trajectory satisfies the circular hypothesis (see next paragraph). It is possible to see that the relative error on the estimated parameters is small.

1) Checking the ideal hypothesis of circular path: We investigate the impact of a path which is not perfectly circular. To this goal, we divide the circular path in ten thousand segments. For each one we compute the corresponding displacement for the right and left wheel (Δs_R and Δs_L). Then, we randomly generate the displacements of both of these wheels (Δs_R and Δs_L) with a Gaussian distribution: $\Delta s_R = N(\Delta s_{R, i}^c, (i \times \Delta s_{R, i}^c)^2)$ and $\Delta s_L = N(\Delta s_{L, i}^c, (i \times \Delta s_{L, i}^c)^2)$. We
consider three cases: $i = 0$ (i.e. perfect circular trajectory), $i = 0.02$ and $i = 0.04$. In fig. 8, we plot the ratio $\frac{\Delta s_e}{\Delta s_n}$ vs time when the robot accomplishes a circular trajectory characterized by $q = 0.7$. On the left, the real case obtained by using the robot AMV-1 from the BlueBotics company, and on the right we display the ratio for the simulated robot when $i = 0.02$. We realize that the real case satisfies the circular hypothesis better than the case when $i = 0.02$. Table V shows the effect of i on the estimation process. The results refer to the case where the number of bearing observations is 100.

![Fig. 8. The ratio \(\frac{\Delta s_e}{\Delta s_n} \) vs time when the robot accomplishes a circular trajectory (\(q = 0.7 \)). On the left, the result obtained with the real robot AMV-1 and on the right, our simulated robot when \(i = 0.02 \).](image)

TABLE V
The errors on the estimated parameters averaged on 100 simulations for three different σ_β and three different i.

<table>
<thead>
<tr>
<th>Method</th>
<th>i</th>
<th>σ_{y_β}</th>
<th>$\frac{\Delta \phi}{\Delta \psi}$ %</th>
<th>ΔL deg</th>
<th>Δc deg</th>
<th>$\frac{\Delta \beta}{\Delta \psi}$ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEKF</td>
<td>0.04</td>
<td>5</td>
<td>9.3</td>
<td>4.3</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>2.8</td>
<td>1.5</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>1</td>
<td>5.8</td>
<td>3.5</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1.7</td>
<td>0.75</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td>DET</td>
<td>0.04</td>
<td>5</td>
<td>3.2</td>
<td>3.8</td>
<td>1.1</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>1.4</td>
<td>1.1</td>
<td>0.45</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>1</td>
<td>3.1</td>
<td>0.25</td>
<td>0.28</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1.5</td>
<td>0.081</td>
<td>0.093</td>
<td>2.7</td>
</tr>
<tr>
<td>CEKF_d</td>
<td>0.04</td>
<td>5</td>
<td>1.6</td>
<td>1.2</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>0.55</td>
<td>0.37</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>1</td>
<td>0.87</td>
<td>0.14</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0.11</td>
<td>0.039</td>
<td>0.0</td>
<td>0.04</td>
</tr>
<tr>
<td>LS</td>
<td>0.04</td>
<td>5</td>
<td>0.74</td>
<td>0.41</td>
<td>0.83</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>0.23</td>
<td>0.17</td>
<td>0.22</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>1</td>
<td>0.18</td>
<td>0.11</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0.059</td>
<td>0.040</td>
<td>0.065</td>
<td>0.12</td>
</tr>
</tbody>
</table>

TABLE VI
The errors of the parameters averaged on 100 simulations estimated by all the methods here discussed.

2) Comparison with CEKF: As previously mentioned, we have also adopted an EKF to estimate the observable modes for a given trajectory. In contrast to the deterministic method, it is necessary for this filter to initialize the parameters. We obtained that in order to have the convergence, the initial relative error must not exceed 40%, and regarding L, the initial error must be smaller than $30\deg$. Table VI shows the performance of CEKF, DET and LS. The errors of the parameters are averaged on 100 simulations. CEKF$_d$ differs from CEKF since, in the former, the initialization is performed by using DET. In CEKF, the relative error on the initial state is equal to 30%. It is possible to remark that LS always outperforms the other methods.

3) The effect of systematic errors: Because of imperfect wheel encoders/controller, when the robot is commanded to execute a trajectory with a given q, it actually accomplishes a trajectory characterized by $q + \delta q$. We performed simulations by considering different values of δq (for all three values of q requested by the proposed strategy). The results are shown in table VII.

<table>
<thead>
<tr>
<th>Method</th>
<th>i</th>
<th>σ_{y_β}</th>
<th>$\frac{\Delta \phi}{\Delta \psi}$ %</th>
<th>ΔL deg</th>
<th>Δc deg</th>
<th>$\frac{\Delta \beta}{\Delta \psi}$ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEKF</td>
<td>0.10</td>
<td>1.5</td>
<td>1.6</td>
<td>13</td>
<td>7.9</td>
<td>4.2</td>
</tr>
<tr>
<td>DET</td>
<td>0.05</td>
<td>0.83</td>
<td>0.92</td>
<td>6.3</td>
<td>4.1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.48</td>
<td>0.51</td>
<td>3.3</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.17</td>
<td>0.20</td>
<td>1.4</td>
<td>0.69</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.10</td>
<td>0.08</td>
<td>0.42</td>
<td>0.005</td>
<td>0.445</td>
</tr>
</tbody>
</table>

TABLE VII
The errors averaged on 100 simulations for several δq.

B. Real Experiments
To evaluate the performance of our strategy in a real case, we used the mobile robot e-puck2. In our experiments, we only used the camera and the odometry sensors. In fact, our strategy has been developed to calibrate an omnidirectional bearing sensor. In contrast, the available camera has a very limited angle of view ($\approx 38\deg$). In practice, it is generally not possible to observe a single feature during the entire circular trajectory accomplished by the robot. The only situation where this is possible, occurs when the feature is inside the circular trajectory (as represented in figure 5a) and close to the center. Additionally, the camera must look towards the center of the circumference. This is the case when the angle ϕ is close to $0\deg$ and ψ is close to $90\deg$. Since the available camera looks ahead, we fixed a small mirror onto the front of the robot (see figure 9a). Obviously, in these conditions, our strategy cannot estimate the extrinsic calibration parameters related to the real camera. However, it estimates the parameters of the virtual camera, i.e. the mirrored one. We remark that the goal of this experiment, is not to estimate the configuration of the true camera, but to validate our strategy. Therefore, it is not important whether the camera we are considering, is the real camera or not.

The robot camera provides images with resolution 60×60. Figure 9b is an image of the feature (consisting of a source of light) taken by the e-puck camera during our experiments. The images were provided at a frequency in the range $[0.5, 8]Hz$.

1See [1] for a description of the robot

2See [13] for a detailed description of this robot and its sensors
We performed three complete experiments. In the last two, we increased the radius of the right and left wheel by 0.062 mm using a piece of tape. Each experiment consisted of four independent trajectories with the following values, \(q \): 0.9, 0.7, 0.6, 0.4. In figure 10, we show the results of the parameters \(q \), \(L \), \(c \) and \(k \), related to the case \(q = 0.6 \) without tape, and, the case \(q = 0.4 \) with tape on the left wheel. In both cases we show the observation function with the estimated nodes (10 a, and c) and the observation functions as observed (blue points), estimated by \(DET \) (red points) and improved with LS (black points) (10 b and d).

Table VIII reports the values of the parameters \(\xi_q \), \(L \), \(c \) and \(k \), obtained in our experiments for the different trajectories (i.e. the four considered values of \(q \)) in the three considered cases. From these values, we obtained the calibration parameters for the three cases reported in table IX. Regarding the angles \(\phi \) and \(\psi \), we remark that the difference among the three cases is smaller than 0.3 deg. We believe that in our case, \(\sigma_{\beta} \approx 1 \text{ deg} \) and \(0 < \gamma < 0.02 \). Hence, the difference 0.3 deg is approximately the mean error obtained in our simulations (see the third and fourth column of table V). This is consistent with the fact that the tape does not affect these angle parameters. On the other hand, we remark an important difference for the parameters \(\eta \) and \(\delta \). Regarding \(\eta \), the difference is \(\approx 2\% \), which is larger than the mean error obtained in our simulations (see the fifth column of table V). Regarding \(\delta \), the difference is \(\approx 0.7\% \), which is significantly larger than the mean error obtained in our simulations (see the sixth column of table V). This is consistent with the increased radius of the right wheel. In particular, since the wheel radius is \(\approx 2 \text{ mm} \), we obtain \(\approx 0.06 \text{ mm} \) for the radius change. The variation in the parameter \(\xi \), is very small. In particular, it is \(\approx 0.1\% \) which is approximately the mean error obtained in our simulations (see the last column of table V). This parameter should be affected by the tape, since it depends on \(r_R \). A possible explanation could be that the tape also increased the effective distance between the wheels (i.e. the parameter \(B \)), making \(\xi = \frac{d}{r_R} \) almost unaffected by the tape on the right wheel, and decreasing, with the tape on the left wheel.

Table VIII reports the parameter values obtained in our experiments for the considered trajectories.

```
<table>
<thead>
<tr>
<th>Tape</th>
<th>( \phi ) (deg)</th>
<th>( \psi ) (deg)</th>
<th>( \eta )</th>
<th>( \delta )</th>
<th>( \xi )</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>-5.80</td>
<td>117.18</td>
<td>0.2042</td>
<td>0.9987</td>
<td>0.3798</td>
</tr>
<tr>
<td>Right</td>
<td>-5.67</td>
<td>116.91</td>
<td>0.2080</td>
<td>0.9995</td>
<td>0.3794</td>
</tr>
<tr>
<td>Left</td>
<td>-5.73</td>
<td>117.10</td>
<td>0.2052</td>
<td>1.0027</td>
<td>0.3790</td>
</tr>
</tbody>
</table>
```

Table IX reports the calibration parameters estimated in our experiments.

```
<table>
<thead>
<tr>
<th>Parameter</th>
<th>( L ) (rad)</th>
<th>( c ) (rad)</th>
<th>( k )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.0384</td>
<td>1.8469</td>
<td>-1.4644</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1142</td>
<td>1.6582</td>
<td>-1.2509</td>
</tr>
<tr>
<td>0.6</td>
<td>0.1519</td>
<td>1.5291</td>
<td>-1.1587</td>
</tr>
<tr>
<td>0.4</td>
<td>0.2287</td>
<td>1.3145</td>
<td>-0.9580</td>
</tr>
<tr>
<td>Tape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.0393</td>
<td>1.8435</td>
<td>-1.4703</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1145</td>
<td>1.6535</td>
<td>-1.2845</td>
</tr>
<tr>
<td>0.6</td>
<td>0.1531</td>
<td>1.5279</td>
<td>-1.1547</td>
</tr>
<tr>
<td>0.4</td>
<td>0.2282</td>
<td>1.3103</td>
<td>-0.9737</td>
</tr>
</tbody>
</table>
```

VII. Conclusion

In this paper, we considered the problem of estimation in autonomous navigation from a theoretical perspective. In particular, the investigation regarded problems where the information provided by the sensor data, was not sufficient to carry out the state estimation (i.e. the state was not observable). In order to properly exploit the information in the sensor data, it was necessary to separate the observable part of the system from the rest. We introduced the concept of continuous symmetry to achieve this goal. We illustrated this concept by providing a very simple example, where a global rotational symmetry was evident. In this case, we remarked that the observable modes were the quantities which were rotation invariant (specifically, one distance and one angle). Motivated by this result, we introduced a definition of continuous symmetry which generalizes the intuitive idea of symmetry. This allowed us to introduce a mathematical method which can be applied to derive the observable modes for more complex...
systems. Continuous symmetry defines transformation, and, as for the simple case of rotation, the observable modes are the invariant quantities under this transformation. Since the proposed definition of continuous symmetry is totally abstract (it is a mathematical generalization of an intuitive concept), the corresponding transformation does not necessarily have a physical meaning. Consequently, the observable modes also do not necessarily have a physical meaning. This is a fundamental aspect of our approach. Indeed, the proposed method is able to autonomously derive the observable modes without necessarily knowing their physical meaning.

The concept of continuous symmetry was applied to investigate the observability properties of a calibration problem in wheeled robotics. It allowed us to introduce a non-iterative method to perform the calibration. In [22], [23], we proposed another application of continuous symmetry, which allowed us to analytically derive all the observable modes for the problem of fusing the data from a camera and inertial sensors.

We continue to consider other estimation problems, where the proposed concept of continuous symmetry could play a key role.

APPENDIX A

OBSERVABILITY FOR THE SYSTEM DEFINED BY EQUATION (16)

Let us refer to the system whose dynamics and observation are defined in (16). In order to prove that it is WLO, according to the rank criterion, we provide seven Lie derivatives whose gradients span the entire configuration space. Let us consider the matrix whose lines are the gradients of the Lie derivatives: L^0, L^1, L^2, L^3, L^4, L^5, and L^6, where $L^i = -[\mu^2 \eta \sin(\gamma - \phi), \sin(\gamma - \phi), \sin(\gamma - \phi), \xi, 0, 0, 0] T$. The determinant of this matrix is: $-16 \delta \mu^2 \eta^2 \sin^2(\gamma - \phi)(\cos(\gamma - \phi))((\mu^2 + 2 \mu \cos(\gamma) + 1)^5$, which is different from 0 with the exception of the points where one of the following conditions is satisfied: $\mu \cos(\gamma - \phi) = \cos(\gamma - \phi), \gamma = \phi + j \frac{\pi}{2}$ (j being an integer). By indicating this set of points with Θ, we remark that its interior is empty (i.e. for every $S \in \Theta$, every open ball centered in S, contains at least one point outside Θ). Starting from this fact and by analyzing the dynamics in (16), it is possible to find a control able to move the state outside Θ instantaneously. For instance, by setting $\omega_L = -\omega_R$ and by remarking that $\delta \approx 1$, we obtain from (16), $\mu \approx 0$ and $\gamma \approx 2 \omega_R$. Hence, both the equations defining Θ become unfulfilled.

APPENDIX B

NON WEAK OBSERVABILITY FOR THE SYSTEM DEFINED BY EQUATION (16) WITH THE CONSTRAINT ON ITS INPUT GIVEN IN (17)

Let us refer to the system whose dynamics and observation are defined in (16), when the single input is ν, according to the constraint given in (17). We will show that there are infinite initial states which cannot be distinguished.

Let us consider the initial state $S^0 = [\mu^0, \gamma^0, \phi^0, \psi^0, n^0, \delta^0, \xi^0] T$. All the initial states $S(\lambda) = \begin{bmatrix} \mu^0, \gamma^0, \phi^0, \psi^0, n^0, \delta^0, \xi^0 \end{bmatrix}^T$ (being $\lambda \in \mathbb{R}^+$) provide the same output β for any choice of the input ν. Indeed, the output in (16) only depends on μ, γ and ψ, whose dynamics are independent of λ. This proves the non-observability of the considered system. On the other hand, when $\lambda \rightarrow 0^+$, $S(\lambda) \rightarrow S^0$. Hence, even states which are close to S_0 cannot be distinguished from S_0. Therefore, the system is not weakly observable according to the definition of weak observability given in [15].

APPENDIX C

OBSERVABILITY RANK CRITERION FOR THE SYSTEM WITH THE DYNAMICS IN (19) AND THE OBSERVATION IN (16)

According to the observability rank criterion, we need to calculate the dimension of the linear space containing the gradients of all the Lie derivatives of the observation function in (16) along the dynamics given in (19). On the other hand, since our system is affine in the input, we can restrict the computation to the first $n-1$ Lie derivatives, being n, the dimension of the state $[\mu, \gamma, \phi, \psi, \eta, \xi]^T$, i.e. $n = 6$ and $n-1 = 5$ (see [2], chapter 4). By a direct computation carried out with the help of the mathlab symbolic tool, we obtain that the determinant of the matrix whose lines are the gradients of the first five Lie derivatives and the observation function (which is the zero order Lie derivative), is equal to zero in every point of the space of the states. Therefore, the dimension of the linear space containing the gradients of all the Lie derivatives is always smaller than 6.

APPENDIX D

EKF-BASED APPROACH

Let us consider the state $[A_\nu, V, \xi_q, L]^T$, which contains all the observable modes when the robot accomplishes a circular trajectory. This state can be estimated with an EKF. On the other hand, we found more precise results by estimating the state $X = [A_\nu, V, \xi_q]^T$, whose first component is $A_\nu \equiv AV$. Obviously X is still WLO. In the following, we provide the analytical expression for the Jacobians of the dynamics, and the observation to implement an EKF which estimates X. The dynamics of X are:

$$
\begin{align*}
\dot{A}_\nu &= \nu (A_\nu^2 + V \xi_q - V^2) \\
\dot{V} &= \nu A_\nu (2 V^2 - \xi_q) \\
\dot{\xi}_q &= 0 \\
\beta &= -\arctan \left(\frac{A_\nu}{V} \right) - L + S \frac{\pi}{2}
\end{align*}
$$

The Jacobian of the observation is obtained by differentiating the expression of β with respect to X, i.e. $H \equiv \frac{\partial \beta}{\partial X} = \begin{bmatrix} -V & A_\nu & 0 & -1 \end{bmatrix}$. Regarding the Jacobian of the dynamics, we need first of all to discretize the equations in (39). Let us denote the curve length change occurred in a given time step with δs (i.e. $\delta s = \nu \delta t$, δt being the length of the considered step). The Jacobian of the dynamics with respect to the state X is:
\[
F_x = \begin{bmatrix}
1 + 2\delta s A_v & \delta s (\xi_q - 2V) & \delta s V & 0 \\
\delta s (2V - \xi_q) & 1 + 2\delta s A_v & -\delta s A_v & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
(40)

and with respect to the input \((\delta s)\) is: \(F_u = [A_{\xi q} + V\xi_q - V^2, A_v(2V - \xi_q), 0, 0]^T\).

ACKNOWLEDGMENT

This work was supported by the European Commission FP7-ICT-2007-3.2.2 Cognitive Systems, Interaction, and Robotics under the contract #231855 (sFLY). The author also wishes to thank Jean-Marc Bollon for the help provided with the experiment and Sarah Whittaker for editing the text.

REFERENCES