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Abstract 18 

 In recent years researchers have drawn attention to a need for new methods with 19 

which to identify the spread of behavioural innovations through social transmission in animal 20 

populations. Network-based analyses seek to recognize diffusions mediated by social 21 

learning by detecting a correspondence between patterns of association and the flow of 22 

information through groups. Here we introduce a new order of acquisition diffusion analysis 23 

(OADA) and develop established time of acquisition diffusion analysis (TADA) methods 24 

further.  Through simulation we compare the merits of these and other approaches, 25 

demonstrating that OADA and TADA have greater power and lower Type I error rates than 26 

available alternatives, and specifying when each approach should be deployed. We illustrate 27 

the new methods by applying them to reanalyse an established dataset corresponding to the 28 

diffusion of foraging innovations in starlings, where OADA and TADA detect social 29 

transmission that hitherto had been missed. The methods are potentially widely applicable by 30 

researchers wishing to detect social learning in natural and captive populations of animals, 31 

and to facilitate this we provide code to implement OADA and TADA in the statistical 32 

package R. 33 

 34 

Keywords: Social learning; Network based diffusion analysis; Culture; Traditions; Order of 35 

acquisition 36 

37 
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Introduction 38 

 ‘Social learning’ is broadly defined as learning that is influenced by observation of or 39 

interaction with a conspecific or its products (Heyes, 1994). Social learning can result in 40 

‘social transmission’, which we define as occurring when the acquisition of information or a 41 

behavioural trait by one individual exerts a positive causal influence on the rate at which 42 

another acquires the same information or trait. Social learning appears widespread across 43 

both vertebrate and invertebrate taxa (Hoppitt and Laland, 2008; Leadbeater and Chittka, 44 

2007), whilst experimental work has established that social transmission can result in the 45 

establishment of behavioural traditions (e.g. Galef and Allen, 1995; Whiten et al., 2005). This 46 

has lead to claims of animal cultures in natural populations of apes (McGrew, 1998; Whiten 47 

et al., 1999; van Schaik et al., 2003), cetaceans (Rendell and Whitehead, 2001; Krützen et al., 48 

2005) and monkeys (Perry et al., 2003). However, such claims remain controversial because 49 

studies fail to adequately rule out alternative explanations for local differences in behaviour, 50 

such as local environmental differences, or genetic differences between populations (Laland 51 

and Hoppitt, 2003; Laland and Janik, 2006). There is concern that the current ‘ethnographic’ 52 

method, which infers social transmission only where the alternatives of genetic or 53 

environmental variation can be disregarded, will rule out genuine cases of social transmission 54 

that covary with these factors (Laland and Janik, 2006; Laland and Galef, 2009). 55 

Consequently, in recent years researchers have called for the development of quantitative 56 

methods for inferring social transmission from field and captive study data that can rule out 57 

alternative explanations for the observed effect (Laland and Janik, 2006; Laland and Galef, 58 

2009, and chapters therein). 59 

 One type of  data that has previously been used to infer social transmission in groups 60 

of animals is diffusion data, where researchers monitor the spread of a novel behavioural 61 

trait. For some time the shape of the ‘diffusion curve’ (the cumulative number of individuals 62 
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seen to perform the novel behaviour plotted against time) was used to infer social learning 63 

(e.g. Lefebvre, 1995a; 1995b). The assumption was that if learning were asocial, the rate of 64 

learning would be the same for all individuals, resulting in an r-shaped diffusion curve. In 65 

contrast, if there were social transmission, the rate of learning would increase as the number 66 

of demonstrators increased, resulting in an s-shaped curve (Reader, 2004). However, this 67 

approach has been somewhat discredited, since there are a number of situations in which we 68 

expect to see an s-shaped diffusion curve in the absence of social transmission (Laland and 69 

Kendal, 2003; Reader, 2004), or an r–shaped curve in the presence of social transmission 70 

(Franz and Nunn, 2009). 71 

 An alternative method is to use the order in which individuals acquire a behavioural 72 

trait to infer social transmission from diffusion data, on the assumption that if social 73 

transmission is operating we might expect the spread to follow the patterns of associations 74 

between individuals (Boogert et al., 2008; Morrell et al., 2008). The reasoning here is that 75 

individuals that are closely associated are more likely to learn from each other (Coussi-76 

Korbel and Fragaszy, 1995). A randomisation approach has already been applied to test for 77 

such a pattern (Boogert et al., 2008; see also Morrell et al., 2008), but below we demonstrate 78 

that this approach is vulnerable to both Type I and Type II errors.  79 

Here we propose an alternative method, which we call order of acquisition diffusion 80 

analysis, or OADA, where a model of social learning is fitted to the data by maximum 81 

likelihood, and tested against a model with no social transmission1. Our approach is similar to 82 

a method recently proposed by Franz and Nunn (2009), which they term 'network based 83 

diffusion analysis' (or NBDA). Franz and Nunn’s method exploits data on the time at which 84 

individuals acquire a behavioural trait, rather than the order in which they do so. However, as 85 

                                                 
1 In supplementary electronic material we provide code to run all analyses described in this 
paper in the statistical language R 2.8.1 (R Development Core Team 2008).  Updated versions 
of the code will be made available on the authors’ website (http://lalandlab.st-andrews.ac.uk/) 
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OADA and the randomization approach of Boogert et al. (2008) are also network based 86 

diffusion analyses, for clarity we rename Franz and Nunn’s approach time of acquisition 87 

diffusion analysis (or TADA), and retain NBDA as the more general term for network-based 88 

approaches. We see the OADA and TADA approaches as complementary, and in later sections 89 

of this paper we introduce the OADA model, extend Franz and Nunn’s TADA method, and 90 

provide a full comparison of OADA and TADA models. We end by illustrating the methods 91 

by applying them to a published data set: the diffusion of novel foraging traits in groups of 92 

starlings, Sturnus vulgaris (Boogert et al., 2008).  93 

 94 

Boogert et al.’s (2008) randomisation method 95 

 First, we will describe Boogert et al.’s (2008) randomisation method and illustrate its 96 

limitations. To implement this method, for each group in which a diffusion is recorded, one 97 

needs a matrix containing an appropriate measure of association between individuals (the 98 

association matrix), and the order in which individuals acquired the behavioural trait (the 99 

‘diffusion chain’). The test statistic is then simply the summed strength of associations 100 

between adjacent individuals in each diffusion chain, summed across groups. If social 101 

transmission were occurring preferentially between closely associated individuals, the test 102 

statistic is likely to be larger than if individuals were learning independently. To test this 103 

hypothesis, a null distribution is generated by randomisation (Manly, 2007): the diffusion 104 

chain is randomised for each group, and the test statistic calculated. If the diffusion of 105 

multiple behavioural traits has been observed, one can test the global null hypothesis of no 106 

social transmission by summing the test statistic across traits. Boogert et al. proposed a 107 

second test statistic where, instead of summing the associations between adjacent individuals 108 

on the diffusion chain, one sums the mean association between each individual and all 109 

individuals before it in the diffusion chain. The logic here is that an individual can learn from 110 
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any informed individual, not just the preceding individual on the diffusion chain. These are 111 

referred to as the ‘linear’ and ‘averaging’ metrics, respectively.  112 

 Boogert et al.’s randomisation method is non-parametric, which has the obvious 113 

advantage that researchers need to make few assumptions about the way in which social 114 

transmission and asocial learning proceed in order to test the null hypothesis. A disadvantage 115 

is that it does not allow inferences about the strength of social transmission to be made, 116 

which might be useful for testing hypotheses about the nature of the social learning strategy 117 

deployed (Laland, 2004). A more serious limitation is that it is susceptible to false positives if 118 

closely associated individuals happened to have a similar rate of acquisition through asocial 119 

learning. For instance, individuals of high social rank might have a higher rate of asocial 120 

acquisition due to increased access to the resources required for learning. If, in addition, 121 

individuals happened to associate with those of a similar social rank, this might result in a 122 

false positive for the detection of social transmission (see below). An alternative approach is 123 

to fit the data to a model that includes both variables representing the effects of social 124 

transmission and known variables that might influence asocial learning, thereby controlling 125 

statistically for the latter.  Below we describe OADA and TADA methods that allow this to be 126 

done. 127 

 128 

Order of Acquisition Diffusion Analysis (OADA) 129 

Modelling social transmission 130 

 Our starting model assumes that the rate at which social transmission occurs between 131 

a given dyad of informed and naïve individuals is linearly proportional to the association 132 

between them. This assumption is likely to be reasonable provided that a) the probability a 133 

naïve individual observes, or is exposed to, the performance of the novel trait is proportional 134 

to its association with the demonstrator, and b) all informed individuals are approximately 135 
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equally likely to perform the trait. The rate of acquisition of the trait through social 136 

transmission for individual i at time t, or �S,i(t) , is given by 137 

�S,i(t)�(1� zi(t)) ai, jz j (t)� �
j�1

N

	 ,       (1)  138 

 where zi(t) is a binary indicator variable indicating whether i is naïve (0) or informed (1) at 139 

time t, and ai, j  is the association between individuals i and j, in a population of size N.  140 

 141 

Inclusion of variables influencing asocial learning 142 

 At the same time we assume that it is possible that the individual may acquire the trait 143 

through trial and error or direct interaction with the environment, uninformed by the 144 

behaviour of others. The rate of asocial learning for i, �A,i  can be modelled as: 145 

�A,i �(1� zi(t))exp(
1x1,i � 
2x2,i � ...� 
V xV ,i)      (2) 146 

where x1,i,x2i,,...,xV ,iare the individual-level variables influencing asocial learning, and 147 


1,
2,...,
V  are the coefficients specifying the effect of each. Exponential transformation of 148 

the linear predictor ensures that the predicted rates are always positive, which is common 149 

practise in statistical modelling of rates (Therneau and Grambsch, 2001).  150 

 The question remains of how the effects of asocial learning and social transmission 151 

are combined in the model. Here we suggest two alternative approaches: i) an additive model 152 

(Eqn. 3) and ii) a multiplicative model (Eqn. 4). If social transmission occurs as an 153 

independent process by which individuals can acquire the trait, then the total rate of 154 

acquisition, �i(t), will be the sum of the rates of asocial learning and social transmission, or 155 

�i(t) � �0(t) 1� zi(t)� � s ai, j z j (t)
j�1

N

	 � (1� s)exp 
k xk,i
k�1

V

	
��


�
��

��

��
��

��


�
����

��

��
����,    (3) 156 

where �0(t)  is a baseline rate of acquisition common to all individuals, and s is a parameter 157 

determining the strength of social transmission (0 � s �1). Here s � 0  indicates no social 158 
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transmission and s �1 implies all learning is social. For a natural diffusion, s �1 since the 159 

first individual must have acquired the behaviour through asocial learning. The additive 160 

model is likely to be appropriate if individuals can acquire the trait as a direct consequence of 161 

observation (Hoppitt and Laland, 2008), for instance, by imitation or some other form of 162 

observational learning. 163 

 Conversely, social transmission might often operate in an 'indirect' manner (Hoppitt 164 

and Laland, 2008), if the informed individual’s behaviour influences the naïve individual’s 165 

behaviour in a manner that leads indirectly to learning. For example, Leadbeater and Chittka 166 

(2007) found social transmission could speed the rate at which bumblebees (Bombus 167 

terrestris) learned to discriminate differently-coloured artificial flowers, because they were 168 

attracted to rewarding flowers occupied by informed conspecifics, allowing them to learn by 169 

their own experience that these flowers are rewarding. Here the effect of social transmission 170 

is to increase the time spent in the area in which trait acquisition can occur (local 171 

enhancement, Thorpe, 1956), and so will weight the rate at which it occurs by otherwise 172 

asocial means. For these, and similar cases, we suggest that a multiplicative model is more 173 

appropriate, where 174 

�i(t) � �0(t) 1� zi(t)� � s ai, j z j (t)
j�1

N

	 � (1� s)
��


�
����

��

��
����exp 
k xk,i

k�1

V

	
��


�
��

��

��
��.    (4) 175 

Here the (1-s) term ensures that the effect of social transmission is weighted relative to the 176 

rate at which asocial learning occurs. The choice of model should not be seen as a nuisance. 177 

In cases where the experimenter has reasonable confidence in the likely social learning 178 

mechanism, the appropriate model can be selected. In other cases, both models may be used, 179 

and the model that best fits the data deployed. Indeed, this exercise could potentially be seen 180 

as providing information about the type of social transmission that is operating, although 181 

confidence in such inferences would be enhanced by experimental validation. 182 
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 183 

Model fitting 184 

 To implement an OADA we only need a relative measure of the rate at which 185 

individual i acquires the trait at time t (that is, relative to other naïve individuals), or 186 

Ri(t)� �i(t)/�0(t). The probability that individual i is the next to learn can be written as 187 

pnext,i(t) �
�i(t)

�l (t)
l�1

N

	
�

�0(t)Ri(t)

�0(t) Rl (t)
l�1

N

	
�

Ri(t)

Rl (t)
l�1

N

	
,     (5) 188 

and the probability that it will be the nth individual to acquire the trait, pn,i , is given by 189 

pn,i �
Ri(n)

Rl (n)
l�1

N

	
,         (6) 190 

where Ri(n) is i’s relative rate of acquisition immediately prior to the nth acquisition event. 191 

We can then write  192 

Ri(n) � 1� zi(n)� � s ai, j z j (n)� �
j�1

N

	 � (1� s)exp 
k xk,i� �
k�1

V

	
��


�
��

��

��
��

��


�
����

��

��
����    (7a) 193 

and 194 

Ri(n) � 1� zi(n)� � s ai, j z j (n)� �
j�1

N

	 � (1� s)
��


�
����

��

��
����exp 
k xk,i� �

k�1

V

	
��


�
��

��

��
��,    (7b) 195 

for the additive (Eqn. 3) and multiplicative models (Eqn. 4), respectively, where zi(n) is the 196 

status of individual i prior to the nth acquisition event.  197 

 Equations 6 and 7 enable one to calculate the -log-likelihood of the observed order of 198 

acquisition data for a given set of parameters, s and 
1,
2,...,
n  (e.g. see Morgan, 2009). The 199 

-log-likelihood is easily calculated for multiple groups or multiple traits by adding together 200 

the -log-likelihoods for each separate diffusion. The model is then fit by choosing the 201 

parameter values that minimise the -log-likelihood, using a suitable numerical optimisation 202 
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routine. In the supplementary material we provide R functions that fit both models (see ESM: 203 

“Additional Information” part C).  204 

 To fit the models, we find that the optimisation algorithms used are more likely to 205 

converge if we use the reparameterisation of ��s � s/(1� s) with 0 � ��s � �. This results in an 206 

additive model of 207 

Ri(n) � 1� zi(n)� � ��s ai, j z j (n)
j�1

N

	 � exp 
k xk,i
k�1

V

	
��


�
��

��

��
��

��


�
����

��

��
����,     (8a) 208 

and a multiplicative model of 209 

Ri(n) � 1� zi(n)� � ��s ai, j z j (n)
j�1

N

	 �1
��


�
����

��

��
����exp 
k xk,i

k�1

V

	
��


�
��

��

��
��.     (8b) 210 

To favour convergence of maximum likelihood estimation, we suggest use of Eqn. (8) for 211 

model fitting, and transforming to the more intuitive parameterisation in Eqn. (7) for 212 

interpretation. 213 

 214 

Model selection and hypothesis testing 215 

 To test for social transmission, researchers can use a likelihood ratio test (LRT, see 216 

Morgan, 2009 for details) to compare the fitted model with a nested null model in which s is 217 

constrained to be zero. The significance of other parameters in the model can also be tested in 218 

this way, and the model reduced in a manner analogous to a multiple regression. Confidence 219 

intervals for parameters can be calculated using profile-likelihood techniques (ESM: 220 

Additional Information, part D; Morgan, 2009). Researchers can also use Akaike’s 221 

Information Criterion (AIC) to compare alternative models with different degrees of freedom 222 

(Burnham and Anderson, 2002). This has the advantage that non-nested models can be 223 

compared, such as the best-fitting model containing social transmission and the best-fitting 224 
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model without social transmission, when each contains different individual level variables. 225 

Methods for dealing with tied data are given in the ESM (Additional Information, part F). 226 

 227 

Comparison of OADA with TADA 228 

 Here we describe and extend Franz and Nunn’s NBDA method, which we rename 229 

TADA, in the context of our OADA model, and using our notation. This facilitates a direct 230 

comparison between models reliant on order or time of acquisition.  231 

 TADA makes the same assumptions about social transmission as our model (Eqn. 1), 232 

but the models are fitted to time of acquisition data rather than to order of acquisition data, 233 

meaning the absolute rate of acquisition, �i(t), is modelled, rather than the relative rate Ri(t) , 234 

and the baseline rate of acquisition is taken to be constant �0(t) � �0 . Franz and Nunn suggest 235 

two approaches. The first involves fitting separate models for social transmission and asocial 236 

learning, with �i(t) � �0, and comparing the two models using AIC. However, this approach 237 

is only useful if the diffusion starts with informed individuals in the population, otherwise the 238 

likelihood of the model for social transmission will always be zero, since the likelihood of the 239 

first individual’s acquisition is zero. Similar to OADA, Franz and Nunn’s second approach 240 

involves fitting a two-parameter model, which allows for both social transmission and a 241 

constant rate of asocial learning.  242 

 There are inherent strengths and weaknesses to both TADA and OADA methods. The 243 

fundamental difference is the type of data that is modelled, time or order. We demonstrate 244 

below that time of acquisition data typically possesses more power to detect a social 245 

transmission effect, which is the major advantage of TADA. However, TADA requires 246 

assumptions about the specific distribution of latencies: Franz and Nunn assume an 247 

exponential distribution, where the rate of acquisition at a given time is dependent only on 248 

the status of other individuals in the group. In contrast, OADA makes the less onerous 249 
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assumption that the ratio of acquisition rates between two individuals is dependent only on 250 

the variables included in the model. The flexibility of this ‘proportional hazards’ assumption 251 

has lead to the preference of the Cox proportional hazards model as the most widely used 252 

method for analysing time to event data (Therneau and Grambsch, 2000). The similarity of 253 

OADA to the Cox model is described in the ESM (Additional Information, part A). Below we 254 

show that the vulnerability of TADA and OADA to Type I error varies, and that each is more 255 

reliable than the other in some contexts. 256 

 In its initial form, Franz and Nunn’s TADA is also susceptible to the same problems of 257 

confounding variables as Boogert et al.’s randomisation method. Accordingly, here we 258 

extend TADA to include individual level variables influencing rate of acquisition. By the 259 

above reasoning, the additive model can be written as 260 

�i(t) � �0 1� zi(t)� � s ai, j z j (t)
j�1

N

	 � (1� s)exp 
k xk,i
k�1

V

	
��


�
��

��

��
��

��


�
����

��

��
����,    (9a) 261 

and the multiplicative model as 262 

�i(t) � �0 1� zi(t)� � s ai, j z j (t)
j�1

N

	 �1� s
��


�
����

��

��
����exp 
k xk,i

k�1

V

	
��


�
��

��

��
��,    (9b) 263 

where �0 determines the overall rate of asocial acquisition, and s parameterises the social 264 

transmission effect relative to the rate of asocial acquisition. As for OADA, we find the 265 

reparameterisation  ��s � s/(1� s) works better for maximum likelihood estimation. We have 266 

also found this reparameterisation preferable to independent parameters for the rate of social 267 

and asocial transmission, since in the latter case the estimators for each are highly negatively 268 

correlated (Morgan, 2009). Setting �0 �1/L0 can facilitate convergence of the optimisation 269 

routines. The model can either be fitted by treating time as a continuous variable or by 270 

splitting time into a number of discrete steps, depending on the way in which the data was 271 

collected (details are given in the ESM: Additional Information, part E). Functions to 272 
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implement this extended version of TADA for the multiplicative and the additive models, 273 

using both discrete and continuous methods of fitting, are given in the ESM: Additional 274 

Information part E. 275 

  276 

 277 

Simulation details 278 

 We compared how the OADA, TADA and randomization models performed under 279 

different circumstances. All simulations considered the diffusion of a single learned 280 

behavioural trait through a single hypothetical group of animals of size N. Where the rate of 281 

acquisition of the trait was affected by an individual-level variable, this was generated by 282 

drawing a value for each individual from a normal distribution (x~N(0,1)). We simulated an 283 

association matrix for the population by first generating a matrix of associations that was 284 

normally distributed with a specified correlation, c, with the magnitude of the differences in 285 

the individual-level variable. To make the matrix more realistic, we made the matrix 286 

symmetrical by setting ai, j
� � aj,i

� � (ai, j � aj,i) /2 . We then transformed the associations to 287 

vary between 0 and 1 by ranking the values and dividing each by the maximum rank. To 288 

explore the effect of different levels of connectedness within the group, we set associations 289 

less than a threshold value, T, to zero, and explored how the magnitude of T affected the 290 

utility of the models.  291 

 Order and time of acquisition data were simulated according to either the additive 292 

model (Eqn. 8a) or the multiplicative model (Eqn. 8b) for specified values of �0, s and 
 . At 293 

each point in the diffusion chain, a value was drawn from an exponential distribution with an 294 

appropriate rate parameter for each naïve individual (determined by Eqn. 9a or 9b). The 295 

individual with the lowest value was taken to be the next individual to solve the task, with the 296 

intervals between solving events determined by the value itself. The data was then analysed 297 
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using the additive and multiplicative OADA, the additive and multiplicative TADA, 298 

randomisation tests using Boogert et al.’s linear metric (1000 randomisations) and averaging  299 

metric (100 randomisations only, due to larger computation time). The simulations were 300 

usually run 10,000 times for each combination of simulation parameter values. This was 301 

reduced to 1,000 times when there were individual-level variables due to the increased 302 

computation time required to fit NBDA models. 303 

 Where there were no individual-level effects, we considered a variety of group sizes 304 

(N=10, 20, 50), and social transmission effect sizes (s=0, 0.2, 0.4, 0.6, 0.8, 0.99), and 305 

recorded the power of each technique to detect social transmission. Since there were no 306 

individual-level variables, the multiplicative and additive models are equivalent in this case.  307 

 We explored individual-level effects in simulations in which group size was fixed at 308 

20, 
 =10, and there were a range of social transmission effect sizes (s=0, 0.4, 0.8) and levels 309 

of correlation between the association matrix and differences in the individual-level variable 310 

(c=0,0.4,0.8). We recorded the statistical power to detect social transmission at the 5% 311 

significance level and the OADA and TADA models preferred by AICc. 312 

 In another series of simulations, we allowed the baseline rate of acquisition, �0(t) , to 313 

vary within a diffusion, either i) at random or ii) systematically. For i), to determine the initial 314 

baseline acquisition rate a number was drawn from a normal distribution with mean=log 315 

(0.0002) and a standard deviation of 0,2,4,6 or 8 and then exponentially transformed. This 316 

process was repeated to generate a new baseline acquisition rate after each acquisition event. 317 

For ii), the baseline hazard rate either increased or decreased with successive acquisition 318 

events, with �0(t) � 0.0002exp �p(t)� �, where p(t) is the proportion of demonstrators in the 319 

population at time t, and � determines the strength of the effect. We considered �=-4, -3, -2, -320 

1, 0, 1, 2, 3, 4, s= 0 or 0.8, and 
  = 0.  321 
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 To explore the effect of network connectedness, we altered the threshold value, T, 322 

under which simulated associations were set to zero (T=0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), 323 

decreasing the number of non-zero associations in the network as T increases. Here we 324 

assumed s= 0.4 or 0.8, N= 20 and 
  = 0. Unless otherwise indicated, T=0.8, �0=0.0002. 325 

 326 

Application of the models to Boogert et al. (2008)  327 

 We go on to illustrate the methods by applying OADA and TADA to a published 328 

dataset. Boogert et al. (2008) presented three captive groups of five starlings (Sturnus 329 

vulgaris) with six different artificial foraging tasks. Each task was presented separately for 330 

several sessions. The time (measured cumulatively over sessions) at which each individual 331 

first contacted each task and first solved each task was recorded. Associations between 332 

individuals were calculated as the proportion of discrete point samples a given dyad was 333 

within pecking distance. In addition, a number of individual-level variables were recorded: a) 334 

a measure of asocial learning ability, b) two measures of neophobia: i) the latency to feed in a 335 

novel environment, and ii) average latency to feed next to three novel objects, c) two 336 

measures of social rank: i) competitive rank: time spent dominating a limited resource and ii) 337 

agonistic rank calculated as David’s scores based on agonistic interactions (deVries et al., 338 

2006). The aims of the study were to investigate which individual-level variables predicted 339 

the diffusion dynamics, and whether the order of acquisition of task solution followed 340 

patterns of association. Boogert et al. pursued the former aim by fitting linear mixed models 341 

(LMMs) or generalised linear mixed models (GLMM) to data on the number of times an 342 

individual was first to solve a task within its group, and the latency to solve the task 343 

(excluding the first solver), each with the individual-level variables as predictors. The 344 

question of whether order of acquisition followed patterns of association was tested using the 345 
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randomisation approach described above. Boogert et al reported their analysis showed no 346 

evidence for social transmission. 347 

 Here we implement an alternative approach that uses OADA and our extended version 348 

of TADA, comparing the results of each with the original findings. The methods were applied 349 

to the data from all diffusions, across all groups and tasks, in a global analysis. To test for 350 

social transmission, we first identified the combination of individual level variables best able 351 

to account for the data, in the absence of social transmission. We fitted models with all 352 

possible combinations of individual-level variables and recorded AICc in each case. We 353 

selected the two best models and used these as null models to test for social transmission, 354 

assuming additive and multiplicative functions. We then fit a model with separate social 355 

transmission parameters for each group. We used a LRT to test each of these against zero, 356 

and dropped those that were not significant at the 5% level. We quantified the significance of 357 

the terms left in the model by dropping each from the model and using a LRT. To assess 358 

whether the social transmission parameter differed between specific groups, we fitted a null 359 

model with the parameter constrained to be equal for each group, and used a LRT to compare 360 

this to a model where they were unconstrained. We also obtained approximate confidence 361 

intervals for each parameter using profile likelihood techniques (see ESM: Additional 362 

Information, part D). The same approach was used to fit TADA. Individual level variables 363 

representing an effect of 'group' and 'task' were considered alongside those considered in 364 

OADA. 365 

 366 

Results 367 

Comparison in the absence of individual-level effects 368 

 In the absence of individual-level effects, and for a given group and effect size, TADA 369 

typically had more statistical power to detect social transmission than did OADA, while both 370 
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of these methods were more powerful than the averaging and linear randomization methods 371 

(Fig. 1 a-b). In the case of the randomization methods, the averaging metric usually provided 372 

more power than the linear metric, especially for larger group sizes, where social 373 

transmission is less likely to occur between adjacent individuals in the diffusion chain. In 374 

most cases, power increased with group size, except for the randomisation method with the 375 

linear metric. As expected, statistical power also increased with the strength of social 376 

transmission. 377 

 378 

Effect of individual-level variables 379 

 When there was no correlation between the individual-level variable and association, 380 

the type I error rates were appropriate (~5%) for all methods (Fig. 1d). However, the power 381 

to detect an effect using OADA or TADA was greatly increased by inclusion of the variable in 382 

the model (see Fig. 2).   383 

 As the correlation between the individual-level variable and association increased, 384 

type I error rates were greatly inflated for all methods that did not include an individual-level 385 

variable (see Fig. 1d). However, inclusion of the individual-level variable in both OADA and 386 

TADA methods restored type I error to an appropriate rate, for both multiplicative and 387 

additive models. When social transmission and asocial learning were additive, power to 388 

detect social transmission was little affected so long as the additive model was fitted to the 389 

data (see Fig. 2 a-b). In contrast, when social transmission and asocial learning combined 390 

multiplicatively, power was markedly reduced, though again, there was more statistical 391 

power when the appropriate multiplicative model was used, rather than the additive model 392 

(see Fig. 2 c-d). AICc was generally a successful criterion in selecting the appropriate model 393 

(additive versus multiplicative, see ESM: Additional Information, part B). 394 
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 These simulations demonstrate that the inclusion of individual-level variables in the 395 

analysis of diffusion data is highly desirable, both with respect to controlling type I error 396 

rates, and maximising statistical power. This is an advantage that both OADA and our 397 

extension of TADA have over the randomisation techniques. Again, we see that TADA has 398 

more power than OADA in each case. Our analysis also lends confidence that the procedure 399 

we recommend will select a model (multiplicative or additive) appropriate to the data. 400 

 401 

Varying baseline rate of acquisition 402 

 We manipulated the baseline rate of acquisition, both by increasing the variance of 403 

the underlying distribution (Fig. 3a) and by allowing it to increase or decrease as the 404 

diffusion proceeded (Fig. 3b). In all cases the power and type 1 error rates remained 405 

approximately constant for the OADA method (see Fig. 3), as we would anticipate, since the 406 

baseline hazard function does not change the relative rate of acquisition. In contrast, TADA 407 

was very sensitive to changes in the baseline acquisition rate. When the baseline acquisition 408 

rate varied at random, statistical power dropped as the variance of the underlying distribution 409 

of rates increased (see Fig. 3a), whereas the Type I error rate increased. When the baseline 410 

acquisition rate decreased systematically throughout the diffusion, it obscured a social 411 

transmission effect from the TADA method (see Fig. 3b). Conversely, when the baseline 412 

acquisition rate increased, this resulted in an increase in Type I error for TADA (but see 413 

below). 414 

 These simulations illustrate the relative strengths and weaknesses of OADA and 415 

TADA. If there are fluctuating variables influencing the rate of acquisition that affect all 416 

individuals equally, then OADA is preferable to TADA. Likewise, if there is a factor that 417 

causes a systematic decrease in the baseline acquisition rate, OADA may be more likely to 418 

detect social transmission. This might occur if, for example, an increasing number of 419 
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informed individuals depletes the resources necessary for trait acquisition, or increases the 420 

number of opportunities for scrounging, which might inhibit acquisition (Giraldeau and 421 

Lefebvre, 1987). The increase in Type I error for an increasing baseline acquisition rate could 422 

be seen as a problem with TADA if there is reason to believe that a variable is influencing 423 

trait acquisition in this way. However, a systematic increase in baseline acquisition rate could 424 

be a direct result of the increased number of informed individuals, which would mean it is a 425 

case of social transmission by our definition. This shows that OADA is only sensitive to 426 

social transmission if it results in a difference in the relative rate of acquisition by 427 

individuals, whereas TADA is also sensitive to absolute changes in the rate of acquisition 428 

(Fig. 3b).  429 

 430 

Number of connections in the network 431 

 Network connectedness (the number of non-zero associations) had a different effect 432 

on OADA and TADA (see Fig. 4). For TADA, power either remained approximately constant 433 

(s=0.8) or declined (s=0.4) as connectedness went down (increasing T). In contrast, for 434 

OADA, the power increased in both cases, appearing to converge with the power for TADA 435 

when the proportion of zero associations was large. This is because OADA will detect social 436 

transmission when it results in large differences between the rates at which individuals 437 

acquire the trait, and works best when opportunities for social learning differ greatly between 438 

individuals at a given time. In contrast, TADA is also sensitive to the acceleration in the rate 439 

of acquisition which occurs as a result of an increased number of informed individuals. This 440 

effect will be more pronounced when there are many connections between individuals, 441 

offering many opportunities for social transmission.  442 

 443 

Application of the models to Boogert et al. (2008)  444 
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 Where the magnitude of the social transmission parameter was constant across 445 

groups, the best predictive OADA model included object neophobia and asocial learning, and 446 

no social transmission (henceforth Model 1: AICc = 138.39), but a model with latency to feed 447 

in a novel environment as sole predictor was almost as good (henceforth Model 2: AICc = 448 

138.40). Social transmission was not statistically significant when added to either model as 449 

an additive effect (Model 1: LR=0, p=1; Model 2: LR=0.03, p=0.870) or a multiplicative 450 

effect (Model 1: LR=0.321, p=0.571; Model 2: LR=0.468, p=0.494). However, when the 451 

social transmission parameter was allowed to vary between groups, we found a significant 452 

effect on group 1 in all models (p<0.05, see Table 1), but no evidence for an effect on groups 453 

2 or 3 (p>0.5, see Table 1). For the additive model the social transmission effect on group 1 454 

was also found to be significantly stronger than a putative effect on group 3 (Model 1: 455 

LR=5.64 p=0.018; Model 2: LR=15.95, p<0.001) but not than that on group 2 (Model 1: 456 

LR=0.65 p=0.420, Model 2: LR=1.02, p=0.312). The same result was found for the 457 

multiplicative model: group 1 versus group 3: Model 1: LR=5.15 p=0.023; Model 2: 458 

LR=4.30, p=0.038; group 1 versus group 2: Model 1: LR=0.91 p=0.340; Model 2: LR=0.25, 459 

p=0.614.  The best model, as judged by AICc included object neophobia and asocial learning 460 

performance as individual-level variables, with an additive social transmission effect for 461 

group 1 only (AICc = 135.08), although a multiplicative model worked almost as well (AICc 462 

= 135.14). The AICc when all individual-level variables were dropped from the final model 463 

was 136.15, which is preferred to an additive model including latency to feed in a novel 464 

environment. None of the individual-level variables were significant at the 5% level when 465 

dropped from any of the final models. See Table 1 for full details of the best fitting OADA 466 

models.  467 

 The best predictive TADA model excluding social transmission included latency to 468 

feed in a novel environment as a sole predictor (AICc = 1175.56), so this was used as the null 469 
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model to test for social transmission. When social transmission was added to the null model it 470 

was highly significant for both the additive (LR=15.54, df=1, p<0.001) and multiplicative 471 

model (LR=16.75, df=1, p<0.001). There was no evidence of a difference in the effect of 472 

social transmission between groups for either the additive (LR=0.27, df=2, p=0.872) or 473 

multiplicative model (LR=1.30, df=2, p=0.523). The best model, as judged by AICc , 474 

included latency to feed in a novel environment as an individual-level variable, with a 475 

common multiplicative social transmission effect for all groups (AICc = 1161.02), although 476 

an additive model worked almost as well (AICc = 1162.24). In contrast to the OADA model, 477 

there is a clear indication that latency to feed in a novel environment has a negative 478 

relationship with individuals’ rates of acquisition (Additive model: LR=5.04, df=1, p=0.025; 479 

Multiplicative model: LR=6.80, df=1, p=0.009). See Table 2 for full details of the best fitting 480 

TADA models. 481 

 Consistent with Boogert et al.’s original conclusions, when all groups were analysed 482 

together, there was no evidence of social transmission using the randomisation methods used 483 

by Boogert et al. (linear metric= 206.5; p=0.170; averaging metric= 204.2, p=0.149)2. 484 

However, when groups were analysed separately (this was not done by Boogert et al.), both 485 

randomization metrics provided evidence for social transmission in group 1 (linear 486 

metric=72, p=0.013; averaging metric=69.1, p=0.012; new metric: G1=25.3, p=0.012), but no 487 

evidence for groups 2 and 3 (p>0.15 in all cases).  488 

 Whereas the randomisation tests used by Boogert et al. failed to find evidence of 489 

social transmission, based on the order of acquisition data, our OADA method found evidence 490 

for social transmission in Group 1. When the randomisation methods were reapplied to the 491 

data from each group separately, the same results were found. However, unlike OADA, the 492 

                                                 
2 Note that the P values given here are one-tailed, whereas Boogert et al. calculated two-tailed 
P values by doubling the one-tailed P value, though there was a mistake in the calculation of 
the P value corresponding to the averaging statistic causing it to be reported as half its 
estimated value. 
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randomisation methods do not enable us to construct confidence intervals on the effect of 493 

social transmission in each group. The 95% confidence intervals from OADA reveal that the 494 

data provide no resolution to distinguish social transmission from asocial learning in group 2, 495 

whereas in groups 1 and 3, the data are consistent with a lower and upper limit on social 496 

transmission respectively (see Table 1).  497 

 In contrast to OADA, TADA provided evidence of social transmission in all groups, 498 

with no evidence of differences between them. This is probably the result of increased power 499 

resulting from inclusion of time of acquisition data, which is reflected in the narrower 95% 500 

confidence intervals for social transmission (see Table 2). The findings of TADA and OADA 501 

are less contradictory than they might appear at first. The TADA confidence intervals for 502 

social transmission are within the OADA confidence intervals for the effect for Groups 1 and 503 

2 and overlap with the OADA confidence intervals for Group 3. The only real discrepancy is 504 

the finding from OADA, that social transmission was significantly stronger in Group 1 than it 505 

was in Group 3. 506 

 The results concerning individual-level variables are qualitatively similar for both 507 

OADA and TADA. TADA suggested that an individual’s latency to feed in a novel 508 

environment was the best predictor of time of acquisition. In OADA this variable was also 509 

found to be a good predictor of the order of acquisition, though a model including object 510 

neophobia and asocial learning ability was approximately as good. However, when the model 511 

included social transmission for Group 1, none of these variables were significant at the 5% 512 

level. In Boogert et al.’s original analysis, significant differences in latency to solve were 513 

found between tasks (not significant in TADA), but no other variable was found to be 514 

significant (however, latency to feed in a novel environment was found to be correlated with 515 

the latency to contact the task). The critical differences between the TADA presented here and 516 

Boogert et al.’s analysis are: a) social transmission was accounted for; b) first-solvers were 517 
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not excluded from the analysis; c) individuals not solving the task were modelled as non-518 

solvers rather than assigned a 'ceiling' value, which can distort an analysis of latencies 519 

(Crawley, 2002); and d) we compared all possible subsets of variables, rather than using 520 

backward selection, which can be misleading when predictors are correlated (Weisberg,  521 

1980). 522 

 The simulations presented above suggest that we should prefer TADA to OADA 523 

because of its greater power provided we are happy to assume that the baseline rate of 524 

acquisition is constant. We can think of no reason to reject this assumption in Boogert et al.’s 525 

diffusion experiment: the diffusions were conducted under laboratory conditions, reducing 526 

the possibility for external influences on the birds’ rate of acquisition. In addition, there were 527 

multiple versions of each task available and each was replenished as soon as it was solved, 528 

ensuring that informed individuals could not block naïve individuals from accessing the task. 529 

In any case, the blocking of naïve individuals would result in a decrease in the power of 530 

TADA to detect an effect (see above), whilst the failure of OADA to find a social transmission 531 

effect for groups 2 and 3 is likely to be a result of the reduced power of the analysis relative 532 

to TADA.  533 

 In summary, these new more powerful methods lead us to the conclusion that there is 534 

strong evidence for social transmission in all three groups of starlings, a finding starkly 535 

contrasting with that of Boogert et al. (2008). 536 

 537 

Discussion 538 

 The above simulations bring home the desirability of including individual-level 539 

variables in an analysis to detect social transmission from diffusion data. The analyses 540 

establish that the inclusion of individual-level variables both increases statistical power and 541 

reduces type I error rates. In addition, the sensitivity of the diffusion analyses to network 542 
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structure prompts us to recommend that researchers use methods that can generate confidence 543 

intervals for the strength of social transmission, rather than relying on a rejection/acceptance 544 

procedure. For these reasons, our OADA and refined TADA methods are preferable to 545 

established randomisation approaches.  546 

 The simulations clearly show that TADA yields more statistical power than 547 

OADA. Consequently, in choosing which approach to utilise, we suggest that researchers use 548 

TADA unless there is good reason to suppose that the baseline rate of acquisition has changed 549 

over time. This might be the case, if, for example, the availability of a resource necessary to 550 

acquire the trait has varied over time, in which case the weaker assumption of proportional 551 

hazards is more appropriate, and the OADA method should be deployed (also see below). In 552 

principle, one could modify TADA to incorporate a non-constant baseline rate of acquisition. 553 

However, the success of this method would depend on the researcher choosing an appropriate 554 

baseline function. OADA has the advantage that it is insensitive to the shape of the baseline 555 

function.  556 

 The power of either method will depend critically on the association measure used in 557 

the analysis. Both models are built on the assumption that the rate of transmission between 558 

individuals is proportional to the association between them, and, if our interest is in testing 559 

for the presence or absence of social transmission, an association measure should be chosen 560 

for which this is likely to be true. We suggest that researchers utilise the association measure 561 

that is most relevant to the experimental context. For example, in the analysis of the diffusion 562 

of foraging task solutions (Boogert et al., 2008) presented above, a measure of association 563 

that reflects how often individuals feed together might have been preferable to the general 564 

proximity measure that was used. Note that the estimated effect of social transmission 565 

depends on the scaling of the association measures used, so if the effect of social 566 

transmission is compared between populations or species, either the same association 567 
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measure needs to be used, or a case needs to be made that each association measure 568 

quantifies opportunities for social learning on a common scale. Franz and Nunn (2009) 569 

suggest an alterative approach: that different measures of association, reflecting different 570 

social and individual variables, can be used to fit separate NBDA’s in order to identify which 571 

factors are important in determining diffusion dynamics. A third possible future application 572 

of NBDA is to use order or time of acquisition data to infer network structure. This could be 573 

of use in cases where it is known or assumed that behaviour is transmitted socially, but social 574 

transmission-relevant association data is difficult to acquire. For example, in humpback 575 

whales (Megaptera novaeangliae) novel vocalisations are easily recorded, but association 576 

data is likely to be difficult to obtain in high latitudes (Noad et al., 2000). 577 

 There is clearly scope for a far more extensive investigation of how network structure 578 

influences both the overall rate of social transmission (Franz and Nunn, 2009) and the power 579 

of OADA and TADA to detect it. The simulations presented here must be viewed as a 580 

relatively crude first step. Nonetheless they are sufficient to show that network structures that 581 

promote social transmission (e.g. where all individuals are connected) are not necessarily the 582 

same as those that make it more likely to be detected, especially by OADA. Consequently, if 583 

researchers are to use these methods to make comparisons of the levels of social transmission 584 

between groups or species, which might have different network structures, we recommend 585 

that they obtain power estimates or (preferably) confidence intervals for the social 586 

transmission effect, rather than relying solely on presence/absence arguments based on 587 

hypothesis tests. 588 

 As discussed above, if all individuals have equal opportunity to learn from each other, 589 

OADA will have no power to detect social learning. In TADA, this situation can be modelled 590 

by setting all associations to 1, in which case TADA is effectively reduced to a diffusion 591 

curve analysis, since it is only sensitive to the acceleratory effect that an increasing number 592 
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of informed individuals has on the rate of acquisition. However, in principle, our extended 593 

version of TADA may constitute an improved method for diffusion curve analysis (DCA), 594 

since it can statistically control for individual-level variables, which might otherwise obscure 595 

the underlying pattern.  596 

The sensitivity of TADA to acceleration in the rate of acquisition could also be seen as 597 

a weakness. It has been noted that DCA is vulnerable to false positives if the latency to 598 

acquire a trait by asocial learning has a unimodal distribution (Reader, 2004), and TADA is 599 

also vulnerable under these circumstances. A unimodal distribution of latencies can arise if 600 

the process of trait acquisition has multiple steps, each of which is completed at a similar 601 

constant rate (Kendal, 2003). For example, to solve a foraging task an individual might first 602 

have to approach the task, and then interact with it in an appropriate way. If each of these 603 

component processes occurs at a similar constant rate, the overall latency to solve the task 604 

asocially would have an approximately gamma distribution with shape parameter k=2, which 605 

would in turn result in an apparent acceleration in the rate of acquisition. 606 

 Though the models presented here, and the original TADA presented by Franz and 607 

Nunn (2009), assume a linear relationship between association and rate of social 608 

transmission, the methods could be adapted to accommodate other models of social 609 

transmission. For instance, the models could be refined to detect social transmission from the 610 

spatial spread of a behavioural trait through time (e.g. Fisher and Hinde, 1949). Here one 611 

merely needs to propose a relationship between the rate of transmission and the distance 612 

between individuals. If this is linear, or the distances can be transformed to linearise the 613 

relationship, researchers can use the above methods to fit the model. 614 

The possibility that NBDA might allow us to infer something about the mechanism of 615 

social transmission is an issue worth pursuing. Given the fact that currently the ability to 616 

detect specific social learning mechanisms is restricted to the experimental laboratory, a 617 
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method that could infer learning mechanisms from diffusion data could be extremely 618 

valuable. Above we suggested that if social transmission operates indirectly through social 619 

influences such as local enhancement, the multiplicative model is likely to provide a better fit 620 

to the data. In contrast, we suggest that if social transmission operates directly as an 621 

independent learning process, such as imitation, the additive model might provide a better fit. 622 

However, such findings should only be taken as suggestive of mechanism at this stage, since 623 

there are a number of issues that might complicate this apparent dichotomy. For instance, if 624 

asocial and social learning ability covary between individuals, the multiplicative model might 625 

fit the data well even if the mechanism is additive in nature. Future extensions of NBDA 626 

could investigate these issues by including the effect of individual-level variables on the rate 627 

of social transmission (s). There is also the possibility that a number of social transmission 628 

processes, both direct and indirect, might operate in parallel. Either of these processes might 629 

result in a lack of resolution between multiplicative and additive models, as observed in our 630 

reanalysis of Boogert et al.’s data. 631 

 There are further improvements that can be made to the models in their current form. 632 

As it stands, if the models are fit to multiple diffusions involving the same individuals, they 633 

assume that the rate of acquisition by the same individual on different tasks is independent, 634 

conditional on the variables included in the model. In principle, this assumption could be 635 

dropped by incorporating a random effect for individuals. However, this is currently only 636 

implemented for the multiplicative OADA method, using our multiCoxFit function (see ESM: 637 

Additional Information, part A), which fits a Cox Proportional Hazards model with 'frailty' or 638 

'cluster' terms (Therneau and Grambsch, 2000). A more general model would allow the user 639 

to specify a correlation structure between the rates of acquisition, for example, a spatial 640 

correlation structure (cf. Pinheiro and Bates, 2000). In the spatial analysis described above, 641 
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this might allow us to control for the fact that two proximate individuals acquire the trait at a 642 

similar time because they have similar access to the resources necessary for trait acquisition. 643 

 NBDA appears to be a relatively novel approach to the statistical analysis of network 644 

data. Statistical methods have been developed to investigate properties of flow through 645 

networks, such as telecommunication interactions and traffic flow on roads and the internet. 646 

(Kolaczyk, 2009). In contrast to NBDA, such models are more concerned with estimation of 647 

the strength of connections in the network, rather than testing for the presence of flow against 648 

an alternative hypothesis. In addition, such models assume that flow involves the continued 649 

transfer of material between nodes, rather than the switching of nodes from one state to 650 

another that is a feature of NBDA. In this respect, NBDA bears more resemblance with 651 

epidemiological models of the spread of a disease (e.g. Keeling, 1999) or the spread of 652 

rumours and fashions (Newman et al., 2006). However, such models assume that disease or 653 

information spreads through connections in the network, and usually aim to investigate 654 

theoretically the effect of network structure on the dynamics of spread (e.g. Meyers et al. 655 

2006). In contrast, NBDA aims to test whether trait acquisition does spread through a given 656 

network, given real data on network connections and the pattern of trait acquisition. We are 657 

not aware of any equivalent epidemiological models that allow statistical inference about the 658 

transmission process based on an observed network (see Kolaczyk, 2009, p279).  659 

Nonetheless, existing network models (e.g. Newman et al., 2006) could be used to 660 

investigate the effect of network structure on the spread of a behavioural trait as a result of 661 

social transmission. However, modifications might be necessary. For example, 662 

epidemiological models usually assume individuals move from ‘susceptible’ to ‘infected’ and 663 

then ‘recovered’ categories, sometimes then moving back to the ‘susceptible’ category 664 

(Watts, 1999).  Whilst ‘naïve’ and ‘informed’ categories correspond closely to ‘susceptible’ 665 

and ‘infected’ categories, there is no obvious role for a ‘recovered’ category in the diffusion 666 
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of many behavioural traits. A move back to the ‘susceptible’ category is only applicable if 667 

individuals forget the behavioural trait. In addition, we have assumed that a behavioural trait 668 

can arise spontaneously in an individual through asocial learning, a feature which is absent 669 

from epidemiological models. Watts’ (2002) model of information cascades in networks 670 

suggests another way in which NBDA could be formulated. In his model, individuals adopt a 671 

trait when they are connected to a threshold number of individuals displaying that trait. 672 

NBDA could be modified to investigate the factors that make an individual more likely to be 673 

an early adopter (low threshold), or one of the early (medium threshold) or late majority 674 

(high threshold). 675 

 Currently, methods for analysing diffusion data tend to assume that individuals fall 676 

into one of two binary categories, 'naïve' or 'informed', and that both social transmission and 677 

asocial learning result in a transition from the naïve to the informed state. Linked to this is the 678 

assumption that all informed individuals demonstrate the trait at the same rate once they are 679 

informed. OADA and TADA are no exceptions to these assumptions. In many cases the 680 

reduction to 'naïve' and 'informed' categories is a useful simplification that enables us to 681 

model social transmission in a relatively straight-forward manner. However, it is worth 682 

noting that there may be some cases where this simplification is not appropriate, and that 683 

both OADA and TADA might fail to adequately model the underlying process. An 684 

individual’s rate of performance of a trait is, in reality, a complex function of its own history 685 

of trait performance, observation and reward. Accordingly, we envisage that the process of 686 

acquisition may sometimes be better captured by a learning rule, such as Rescorla-Wagner 687 

(e.g. Kendal et al., 2009). However, this would make modelling a diffusion a much more 688 

challenging task, especially when data is limited. 689 

 Nonetheless, we envisage that the novel OADA method presented here, as well as 690 

Franz and Nunn’s (2009) Network Based Diffusion Analysis and our TADA extensions of it, 691 
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will provide a useful toolkit for those wishing to detect and quantify social transmission in 692 

networks of animals, in captivity and the field. We hope that these methods will rejuvenate 693 

interest in collecting and analysing diffusion data, and add statistical rigour to the study of 694 

social transmission and culture be it in nonhuman animals or in humans. 695 
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