On the automorphism group of the first Weyl algebra
Matthias Kouakou, Alexis Tchoudjem

To cite this version:
Matthias Kouakou, Alexis Tchoudjem. On the automorphism group of the first Weyl algebra. 2011. <hal-00578624v2>

HAL Id: hal-00578624
https://hal.archives-ouvertes.fr/hal-00578624v2
Submitted on 21 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the automorphism group of the first Weyl algebra

M.K. Kouakou and A. Tchoudjem
Université de Cocody
UFR-Mathématiques et Informatique
22 BP 582 Abidjan 22 Côte d’Ivoire
e-mail : makonankouakou@yahoo.fr
and
Université Claude Bernard Lyon I
Institut Camille-Jordan
69622 Villeurbanne cedex France
tchoudjem@math.univ-lyon1.fr

March 21, 2011

Abstract

Let $A_1 := \mathbb{k}[t, \partial]$ be the first algebra over a field \mathbb{k} of characteristic zero. One can associate to each right ideal I of A_1 its Stafford subgroup, which is a subgroup of $\text{Aut}_\mathbb{k}(A_1)$, the automorphism group of the ring A_1. In this article we show that each Stafford subgroup is equal to its normalizer. For that, we study when the Stafford subgroup of a right ideal of A_1 contains a given Stafford subgroup.

Introduction

Let \mathbb{k} be a commutative field of characteristic zero. We note A_1 the first Weyl algebra over \mathbb{k} i.e. :

$$A_1 := A_1(\mathbb{k}) = \mathbb{k}[t, \partial]$$
where \(\partial, t \) are related by \(\partial t - t \partial = 1 \).

Definition 1 For a right ideal \(I \) of \(A_1 \), the Stafford subgroup associated to \(I \) is :

\[
H(I) := \{ \sigma \in \text{Aut}_\kappa(A_1) : \sigma(I) \simeq I \}
\]

(where the symbol “\(\simeq \)” means “\(\sigma(I) \) is isomorphic to \(I \) as a right-\(A_1 \)-module”).

By [5], it is known that each subgroup \(H(I) \) is isomorphic to an automorphism group \(\text{Aut}_\kappa(\mathcal{D}(X)) \), where \(\mathcal{D}(X) \) is the \(\kappa \)-algebra of differential operators over an algebraic affine curve \(X \).

A natural question is :
“are the Stafford subgroups normal in \(\text{Aut}_\kappa(A_1) \)”?

The answer is no.

Stafford showed that if \(X_2 \) is the famous algebraic plane curve defined by the equation :

\[
x^2 = y^3
\]

and if \(I_2 \) is the right ideal of \(A_1 \) :

\[
I_2 := \{ d \in A_1 : d(\kappa[t]) \subseteq \kappa[t^2, t^3] \}
\]

then the subgroup \(H(I_2) \) is isomorphic to \(\text{Aut}_\kappa(\mathcal{D}(X_2)) \) and is equal to its own normalizer in \(\text{Aut}_\kappa(A_1) \).

We will show in this paper that the subgroup \(H(I) \) is equal to its own normalizer for all right ideal \(I \) of \(A_1 \).

We begin by giving some definitions and by fixing some notations that will be used in this paper.

1 Definitions and some properties

The ring \(A_1 \) contains the subrings \(R := \kappa[t] \) and \(S := \kappa[\partial] \). It is well known that \(A_1 \) is a two-sided noetherian integral domain. Since the characteristic of \(\kappa \) is zero, \(A_1 \) is also hereditary (cf [4]) i.e. every non zero right ideal of \(A_1 \) is a projective right-\(A_1 \)-module.

The ring \(A_1 \) has a quotient division ring, denoted by \(Q_1 \). For any finitely generated right-submodule \(M \) of \(Q_1 \), the dual \(M^* \), as a left-\(A_1 \)-module will be identified with the set \(\{ u \in Q_1 : uM \subseteq A_1 \} \), and \(\text{End}_{A_1}(M) \) with the set \(\{ d \in Q_1 : dM \subseteq M \} \) (cf [3]).
The division ring \(Q_1 \) contains the subrings \(D := \mathbb{k}(t)[\partial] \) and \(E := \mathbb{k}(\partial)[t] \). The elements of \(D \) are \(\mathbb{k} \)-linear endomorphisms of \(\mathbb{k}(t) \). More precisely, if
\[
d := a_n\partial^n + \ldots + a_1\partial + a_0 \quad \text{for some } a_i \in \mathbb{k}(t) \quad \text{and if } h \in \mathbb{k}(t), \text{ then :}
\]
\[
d(h) := a_n h^{(n)} + \ldots + a_1 h^{(1)} + a_0 h,
\]
where \(h^{(i)} \) denotes the \(i \)-th derivative of \(h \) and \(a_i h^{(i)} \) is a product in \(\mathbb{k}(t) \).

We note that:
\[
\forall d, d' \in \mathbb{k}(t)[\partial], \forall h \in \mathbb{k}(t), (dd')(h) = d(d'(h)).
\]

For \(V \) and \(W \) two vector subspaces of \(\mathbb{k}(t) \), we set :
\[
\mathcal{D}(V, W) := \{ d \in \mathbb{k}(t)[\partial] : d(V) \subseteq W \}.
\]

Notice that \(\mathcal{D}(R, V) \) is a right \(A_1 \)-submodule of \(Q_1 \) and \(\mathcal{D}(V, R) \) is a left \(A_1 \)-submodule of \(Q_1 \). If moreover \(V \subseteq R \), then \(\mathcal{D}(R, V) \) is a right ideal of \(A_1 \). When \(V = R \), one has \(\mathcal{D}(R, R) = \mathcal{A}_1 \).

If \(I \) is a right ideal of \(A_1 \), we set :
\[
I \star 1 := \{ d(1) : d \in I \}.
\]

It is clear \(I \star 1 \) is a \(\mathbb{k} \)-vector subspace of \(\mathbb{k}[t] \) and that :
\[
I \subseteq \mathcal{D}(R, I \star 1).
\]

The inclusions \(A_1 \subset k(\partial)[t] \) and \(A_1 \subset k(t)[\partial] \) show that, at least, two notions of degree can be defined on \(A_1 \): the degree in “\(t \)” or \(t \)-degree and the degree in “\(\partial \)” or \(\partial \)-degree. Naturally, those degree notions extend to \(Q_1 \). We will note them, respectively, \(\text{deg}_t \) and \(\text{deg}_\partial \).

2 Primary decomposable subspaces

In order to describe the right ideals of \(A_1 \), it is convenient to use the notion of primary decomposable subspaces of \(\mathbb{k}[t] \).

Recall that \(\mathbb{k} \) is not necessarily algebraically closed.

Let \(b, h \in R = \mathbb{k}[t] \) and \(V \) a \(k \)-subspace of \(R \). We set:
\[
\mathcal{O}(b) := \{ a \in R : a' \in bR \},
\]

3
where a' denotes the formal derivative of a.

E.g.: one has $\mathcal{O}(t^{n-1}) = k + t^n k[t]$.

We set also:

$$S(V) := \{a \in R : aV \subseteq V\} \text{ and } \mathcal{C}(R, V) := \{a \in R : aR \subseteq V\}.$$

Clearly $\mathcal{O}(b)$ and $S(V)$ are k-subalgebras of R. If $b \neq 0$, the Krull dimension of $\mathcal{O}(b)$ is $\dim_k(\mathcal{O}(b)) = 1$.

The set $\mathcal{C}(R, V)$ is an ideal of R contained in both $S(V)$ and V. Moreover, if $\mathcal{O}(b) \subseteq S(V)$ then $b^2 R \subseteq V$ i.e. $b^2 \in \mathcal{C}(R, V)$.

Definition 2 A non-zero k-vector subspace V of $k[t]$ is said to be primary decomposable (p.d. for short) if $S(V)$ contains a k-subalgebra $\mathcal{O}(b)$, with $b \neq 0$. In this case $\mathcal{C}(R, V)$ is a non zero ideal of R. A p.d. subspace V of $k[t]$ is said irreducible (p.d.i.) if V is not contained in a proper ideal of $k[t]$.

In [1], R.C. Cannings and M.P. Holland have shown that for p.d. V of R, there is the equality

$$\mathcal{D}(V, V) = \text{End}_{A_1}(\mathcal{D}(R, V)).$$

It is shown in [4] that for any non zero right ideal I of A_1, there exists $x \in Q_1$ and $\sigma \in \text{Aut}_k(A_1)$ such that:

$$x\sigma(I) = \mathcal{D}(R, k[X_n]),$$

where $n \in \mathbb{N}$ and $k[X_n] := k + t^n k[t]$ is the ring of regular functions on an affine algebraic affine curve X_n.

We will show that the inclusion:

$$H(\mathcal{D}(R, k[X_n])) \subseteq H(\mathcal{D}(R, V))$$

where V is a proper p.d.i. subspace of R, implies:

$$k[X_n] = V.$$

That result will lead us to the conclusion that the subgroup $H(\mathcal{D}(R, k[X_n]))$ is equal to its own normalizer in $\text{Aut}_k(A_1)$.

4
3 The characteristic elements of a right ideal

The first step in the classification of right ideals of the first Weyl algebra A_1 is the following:

Theorem 3.1 (Stafford [8, lemma 4.2]) If I is a non-zero right ideal of A_1, then there exist $e, e' \in Q_1$ such that:

(i) $eI \subseteq A_1$ and $eI \cap k[t] \neq \{0\}$;

(ii) $e'I \subseteq A_1$ and $e'I \cap k[\partial] \neq \{0\}$.

With (i) we see that any non-zero right ideal I of A_1 is isomorphic to another ideal I' such that $I' \cap k[t] \neq \{0\}$.

Remark: the element e (resp. e') of the theorem is a minimal ∂–degree element of I^* (resp. a minimal t–degree element of I^*).

Corollary 3.2 There exists an unique element (modulo the multiplicative group k^*) $f \in I$ such that the full set of elements of I with minimum t–degree be exactly:

$$f k[\partial].$$

In the same way, there exists an unique element (modulo the multiplicative group k^*) $e^* \in I^*$ such that the full set of elements of I^* with minimum t–degree be exactly:

$$k[\partial] e^*.$$

Proof: For example, for f : let $e' \in I^*$ such that $e'I \cap k[\partial] \neq \{0\}$. Let $s \in k[\partial]$ such that $e'I \cap k[\partial] = sk[\partial]$. We can take : $f := e'^{-1}s$. q.e.d.

Definition 3 The elements $e^* \in I^*$ and $f \in I$ are called the characteristic elements of the ideal I.

If V is a p.d. subspace and if $I = \mathcal{D}(R, V)$, we will also say that e^* and f are the characteristic elements of the p.d.i. subspace V.

Remark: if e^*, f are the characteristic elements of a right ideal I, then $e^* f \in k[\partial]$ and:

$$e^* I \cap k[\partial] = e^* f k[\partial].$$
E.g.: the characteristic elements of $\mathbb{k}[X_n] = \mathbb{k} + t^n\mathbb{k}[t]$ are:

$$e_n^* := t^{-n}(t\partial) \in \mathcal{D}(\mathbb{k}[X_n], R),$$

$$f_n := (t\partial - 1)...(t\partial - (n - 1)) \in \mathcal{D}(R, \mathbb{k}[X_n])$$

and $e_n^* f_n = \partial^n$.

We now recall some important properties of the p.d.i. subspaces V and of the associated right ideals $\mathcal{D}(R, V)$.

Lemma 3.3 Let I be a right ideal of A_1 such that $I \cap \mathbb{k}[t] \neq \{0\}$.

— If $V := I \ast 1 := \{d(1) : d \in I\}$, then V is a p.d. subspace of R and $I = \mathcal{D}(R, V)$.

— For any p.d. subspace W of R, one has

$$\mathcal{D}(R, W) \ast 1 = W \text{ and } \mathcal{C}(R, W) = \mathcal{D}(R, W) \cap \mathbb{k}[t].$$

For a proof cf [1, theorem §3.2].

Henceforth, θ will denote the \mathbb{k}-automorphism of A_1 such that:

$$\theta(\partial) = t \text{ and } \theta(t) = -\partial.$$

According to [1], the above lemma has the following consequence:

Corollary 3.4 For any non zero right ideal I of A_1,

i) there is a unique $x \in Q_1$ (modulo the multiplicative group \mathbb{k}^*) and a unique p.d.i. subspace V of R such that $xI = \mathcal{D}(R, V)$;

ii) there is a unique $y \in Q_1$ (modulo the multiplicative group \mathbb{k}^*) and a unique p.d.i. subspace W of R such that: $\theta(yI) = \mathcal{D}(R, W)$.

Now let us give some properties which characterize a p.d.i. subspace V of R.

Proposition 3.5 Let V be a p.d.i. subspace of R and $m := \dim_{\mathbb{k}} R/V$.

i) For any $0 \neq d \in \mathcal{D}(R, V)$, $d(R) \subseteq V$ and $\deg_t(d) \geq \dim_{\mathbb{k}} R/V$.

ii) If $0 \neq f \in \mathcal{D}(R, V)$ has minimal t-degree, then $f(R) = V.$
iii) Let e^* and f be the characteristic elements of V. As $e^* \in \mathcal{D}(R, V)^*$ and as $\mathcal{D}(R, V) \cap \mathbb{k}[t] \neq \{0\}$, we have $e^* \in \mathbb{k}(t)[\partial]$. Moreover if:

$$f = t^m c_m(\partial) + t^{m-1} c_{m-1}(\partial) + ... + c_0(\partial)$$

for some $c_i(\partial) \in \mathbb{k}[\partial]$, and if

$$e^* = b_m(\partial)t^{-m} + u$$

where $b_m(\partial) \in \mathbb{k}[\partial]$, $u \in \mathbb{k}(t)[\partial]$ and $\deg(u) < -m$, then:

$$e^* f = b_m(\partial)c_m(\partial).$$

Those properties have all been proved in [3, remarques 1,2,3].

Remarks:

— Note that the \mathbb{k}-vector space R/V has finite dimension since $\{0\} \neq \mathcal{C}(R, V) \subseteq V$.

— How to calculate f'? We take any $f' \in \mathcal{D}(R, V)$ with minimal t–degree m, and we expand f' as polynomial in t:

$$f' = t^m a_m(\partial) + t^{m-1} a_{m-1}(\partial) + ... + a_0(\partial)$$

where $a_i(\partial) \in \mathbb{k}[\partial]$ for all i.

If $p(\partial) := \text{hcf}(a_m(\partial), a_{m-1}(\partial), ..., a_0(\partial))$ then we get $f' = f p(\partial)$ (modulo \mathbb{k}^*).

4 About the automorphisms that stabilizes an ideal

Let I be a right ideal of A_1 such that $I \cap \mathbb{k}[t] \neq \{0\}$ or $I \cap \mathbb{k}[\partial] \neq \{0\}$. In this paragraph we wish to determine the automorphisms $\sigma \in \text{Aut}_\mathbb{k}(A_1)$ such that $\sigma(I) = I$.

We introduce some particular automorphisms of A_1.

If $p \in R$ we define $\sigma := \text{exp(ad}(p))$ by:

$$\forall d \in A_1, \sigma(d) := d + [d, p] + \frac{1}{2!}[[d, p], p] + \frac{1}{3!} [[[d, p], p], p] + ...$$

where $[d, p] := dp - pd$ for all $d \in A_1$.

7
As the application:

\[A_1 \to A_1, \quad d \mapsto [d, p] \]

is a locally nilpotent derivation, σ is a well defined automorphism of the ring \(A_1 \). Moreover \(\sigma^{-1} = \exp(\text{ad}(-p)) \).

The following theorem is fundamental in this paper.

Theorem 4.1 Let \(V \) be a p.d. subspace of \(R \) and \(\sigma := \exp(\text{ad}(p)) \) where \(p \in k[t] \). Then \(\sigma(\mathcal{D}(R, V)) = \mathcal{D}(R, V) \) if and only if \(p \in S(V) \).

Proof:

Suppose that \(p \in S(V) \).

Let \(d \in \mathcal{D}(R, V) \).

Clearly \(dp \) and \(pd \) are both in \(\mathcal{D}(R, V) \), so \([d, p] \in \mathcal{D}(R, V) \), and this implies the first inclusion: \(\sigma(\mathcal{D}(R, V)) \subseteq \mathcal{D}(R, V) \). In the same way, since \(-p \in S(V)\) we get the second inclusion \(\sigma^{-1}(\mathcal{D}(R, V)) \subseteq \mathcal{D}(R, V) \) and then the equality \(\sigma(\mathcal{D}(R, V)) = \mathcal{D}(R, V) \).

Now suppose that \(\sigma(\mathcal{D}(R, V)) \subseteq \mathcal{D}(R, V) \).

Let us take an element \(f \in \mathcal{D}(R, V) \).

In the formal power series ring \(\mathbb{k}[T] \), let

\[
\log(1 + T) := \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} T^k .
\]

In the ring \(\mathbb{k}[T] \), there is the equality:

\[
\log(1 + (e^T - 1)) = T .
\]

If we specialize in \(T = \text{ad}p \), we get:

\[
\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} (\sigma - \text{Id}_{A_1})^k(f) = [f, p]
\]

(the left hand side sum is finite because \(f \in A_1 \) and \(p \in R \)).

Now, all the terms \(f, \sigma(f), \sigma^2(f), ..., \sigma^n(f), ... \) belong to \(\mathcal{D}(R, V) \), so do the terms:

\[
(\sigma - \text{Id}_{A_1})^k(f)
\]
Therefore, \([f, p] \in \mathcal{D}(R, V)\) and we have :

\[
[f, p](1) = f(p) - pf(1) \in V
\]

\[
\implies pf(1) \in V.
\]

But we have :

\[
V = \mathcal{D}(R, V) \star 1
\]

\[
= \{f(1) : f \in \mathcal{D}(R, V)\}
\]

so \(pV \subseteq V\) i.e. \(p \in S(V)\).

A similar result holds with \(\partial\) instead of \(t\) :

Corollary 4.2 Let \(I\) be a right ideal of \(A_1\) such that \(I \cap k[\partial] \neq \{0\}\). Let \(W\) be the p.d. subspace of \(R\) such that \(\theta(I) = \mathcal{D}(R, W)\). Let \(q(\partial) \in k[\partial]\) and \(\tau := \exp(\text{ad}(q(\partial)))\).

Then:

\[
\tau(I) = I \iff \theta(q(\partial)) \in S(W).
\]

5 The Stafford subgroups

Recall that if \(I\) is a right ideal of \(A_1\) the Stafford subgroup of \(I\) is noted \(H(I)\). In the definition, the notion of isomorphism of right \(A_1\) modules appears. Now, as the ring \(A_1\) is hereditary, if \(I, J\) are isomorphic right ideals of \(A_1\), then there exists \(x \in Q_1\) such that \(xI = J\). So, if \(I\) is a right ideal of \(A_1\), then we have :

i) \(\forall \sigma \in \text{Aut}_{k}(A_1), H(\sigma(I)) = \sigma H(I)\sigma^{-1}\);

ii) \(\forall 0 \neq z \in Q_1, H(zI) = H(I)\).

We will simply note \(H(V) := H(\mathcal{D}(R, V))\) for any p.d. subspace \(V\) of \(R\).

Following the above remark, a Stafford subgroup of \(\text{Aut}_{k}(A_1)\) is of the form \(H(V)\) for some p.d.i. subspace of \(R\).

Proposition 5.1 Let \(V\) and \(W\) be two p.d.i. subspaces of \(R\).

If \(H(V) \subseteq H(W)\) then :

i) \(S(V) \subseteq S(W)\) and ii) \(C(R, V) \subseteq C(R, W)\) .
Proof:

i) Let $p \in S(V)$. By the theorem 4.1, $\sigma := \exp(\text{ad}(p)) \in H(V)$, thus $\sigma \in H(W)$. So there exists $0 \neq a \in Q_1$ such that $\sigma(\mathcal{D}(R,W)) = a\mathcal{D}(R,W)$. So $a\mathcal{D}(R,W) \subseteq A_1$. In particular, $a \in \mathbb{k}(t)[\partial]$. We have also:

$$\deg_\partial a \leq \deg_\partial d$$

for all $d \in \mathcal{D}(R,W)$. Therefore, $\deg_\partial a = 0$ and $a \in \mathbb{k}(t)$. But:

$$\sigma(\mathcal{D}(R,W)) \star 1 = a\mathcal{D}(R,W) \star 1$$

$$= aW$$

thus $aW \subseteq R$ and $a \in R$ because $RW = R$. Since $\sigma(t) = t$, we have:

$$a^{-1}\mathcal{D}(R,W) = \sigma^{-1}(\mathcal{D}(R,W))$$

so $a^{-1} \in \mathbb{k}[t]$ too. Therefore, $a \in \mathbb{k}^*$ and

$$\sigma(\mathcal{D}(R,W)) = \mathcal{D}(R,W)$$

$$\implies p \in S(W)$$

by the theorem 4.1, again.

ii) If $a \in \mathcal{C}(R,V)$, then:

$$\mathcal{C}(R,V) = V$$

$$\implies aV \subseteq V$$

$$\implies aR \subseteq S(V)$$

$$\implies aR \subseteq S(W)$$

(by i))

$$\implies aRW \subseteq W$$

$$\implies aR \subseteq W$$

i.e. $a \in \mathcal{C}(R,W)$.

q.e.d.

10
Proposition 5.2 Let I and J be two right ideals of A_1 such that: $\theta(I) = \mathcal{D}(R, V)$ and $\theta(J) = \mathcal{D}(R, W)$ with V and W two p.d.i. subspaces of R. Then:

$$H(I) \subseteq H(J) \implies I \cap k[\partial] \subseteq J \cap k[\partial].$$

Proof: We apply the proposition 5.1 to $\theta(I)$ and $\theta(J)$. q.e.d.

Now, we deduce the following for the characteristic elements of p.d. subspaces of R:

Corollary 5.3 Let V and W be two p.d.i. subspaces of R such that $H(V) \subseteq H(W)$.

If $e^*_V \in \mathcal{D}(R, V)^*$ and $f_V \in \mathcal{D}(R, V)$ are the characteristic elements of V and $e^*_W \in \mathcal{D}(R, W)^*$, $f_W \in \mathcal{D}(R, W)$ are those of W, then:

$$e^*_V f_V \in e^*_W f_W k[\partial].$$

Proof: We have $H(\mathcal{D}(R, V)) = H(e^*_V \mathcal{D}(R, V))$ and $H(\mathcal{D}(R, W)) = H(e^*_W \mathcal{D}(R, W))$, so we have the inclusion:

$$H(e^*_V \mathcal{D}(R, V)) \subseteq H(e^*_W \mathcal{D}(R, W)).$$

Now, we can show that e^*_V is the unique element in Q_1 (modulo k^*) such that:

$$\theta(e^*_V \mathcal{D}(R, V)) = \mathcal{D}(R, V')$$

for some p.d.i. subspace V' of R.

By the proposition 5.2 above, we have:

$$e^*_V \mathcal{D}(R, V) \cap k[\partial] \subseteq e^*_W \mathcal{D}(R, W) \cap k[\partial].$$

Since we have $e^*_V \mathcal{D}(R, V) \cap k[\partial] = e^*_V f_V k[\partial]$ and $e^*_W \mathcal{D}(R, W) \cap k[\partial] = e^*_W f_W k[\partial]$, we obtain:

$$e^*_V f_V \in e^*_W f_W k[\partial].$$

q.e.d.

Now we are ready to prove the main proposition.

We will say that a p.d. subspace of R is monomial if it can be generated by monomials.
Proposition 5.4 Let $V \subset R$ be a proper p.d.i. subspace of R such that $H(\mathbb{k}[X_n]) \subseteq H(V)$. Then:

i) V is monomial;

ii) $\mathcal{C}(R, V) = t^n \mathbb{k}[t]$;

iii) $V = \mathbb{k}[X_n]$.

Proof:

If $n = 1$, clearly V would be equal to R, contrary to our hypothesis. So let $n \geq 2$. Let $e^* \in \mathcal{D}(R, V)^*$ and $f \in \mathcal{D}(R, V)$ be the characteristic elements of V.

i) We have $\mathbb{k}[X_n] = \mathbb{k} + t^n \mathbb{k}[t]$, $\mathcal{C}(R, \mathbb{k}[X_n]) = t^n \mathbb{k}[t]$ and $t^n \mathbb{k}[t] \subseteq \mathcal{C}(R, V)$. In particular, $t^n \in \mathcal{D}(R, V)$ and as $e^* \in \mathcal{D}(R, V)^*$, we have:

$$e^* = f \in \mathbb{k}[t, t^{-1}, \partial].$$

So, we can use the standard form to describe e^* and f:

$$e^* = t^p a_p(t\partial) + \ldots + t^q a_q(t\partial)$$

$$f = t^r b_r(t\partial) + \ldots + t^s b_s(t\partial)$$

for some integers $p \leq q$ and $r \leq s$ and some polynomials $a_i(T), b_j(T) \in \mathbb{k}[T]$.

The characteristic elements of $\mathbb{k}[X_n]$ are:

$$e^n_n := t^{-n}(t\partial), \ f_n := (t\partial - 1)...(t\partial - (n - 1))$$

and:

$$e^n_n f_n = \partial^n.$$

According to the corollary 5.3, we have:

$$e^n_n f_n \in e^* f \mathbb{k}[\partial]$$

and so

$$e^* f = \partial^l$$

for some integer $0 \leq l \leq n$. That forces $p = q$ and $r = s$. Therefore $V = f(R)$ is spanned by its monomial terms $t^{p+i} f_p(i), i \geq 0$, and is monomial.

In fact, $1 \leq l \leq n$. Otherwise:

$$e^* f = 1 \Rightarrow e^* \in \mathbb{k}(t)$$
and:

\[e^* V = e^* \mathcal{D}(R, V) \star 1 \subseteq R \]

\[\Rightarrow e^* R = e^* RV \subseteq R \]

\[\Rightarrow e^* \in \mathbb{k}[t] \]

\[\Rightarrow e^* = f = 1 \]

\[\Rightarrow V = R \]

which is impossible.

\[* \]

ii) As \(V \) is monomial and irreducible, \(1 \in V \) and so \(\mathbb{k}[X_n] \subseteq V \).

Suppose \(t^{n-1} \in V \) and let us consider the automorphism \(\sigma := \exp(\text{ad}(t^{n-1})) \). Clearly \(t^{n-1} \) would belong to \(S(V) \) since \(V \) is monomial and \(t^n \mathbb{k}[t] \subseteq V \). Then we would have \(\sigma \in H(V) \). By applying \(\sigma \) to \(H(\mathbb{k}[X_n]) \), we get a new inclusion:

\[\sigma H(\mathbb{k}[X_n]) \sigma^{-1} \subseteq \sigma H(V) \sigma^{-1} \]

\[\iff H(\sigma(\mathcal{D}(R, \mathbb{k}[X_n]))) \subseteq H(V) \] \hspace{1cm} (1)

But for all \(d \in A_1 \), for all \(j \geq 0 \):

\[\sum_{j \geq 0} \frac{d(t^{n-1})^j r}{j!} - \sum_{j \geq 1} \frac{t^{n-1} d(t^{n-1})^{j-1} r}{(j-1)!} \mod t^n A_1. \]

So, for all \(d \in A_1 \), for all \(r \in R \):

\[\sigma(d)(r) = \sum_{j \geq 0} \frac{d(t^{n-1})^j r}{j!} - \sum_{j \geq 1} \frac{t^{n-1} d(t^{n-1})^{j-1} r}{(j-1)!} \mod t^n \mathbb{k}[t] \]

(those are in fact finite sums because \(d(t^{n-1})^j r \in t^n \mathbb{k}[t] \) for \(j >> 0 \)).

Thus for all \(d \in \mathcal{D}(R, \mathbb{k}[X_n]) \), for all \(r \in R \), we get:

\[\sigma(d)(r) = (1 - t^{n-1}) \sum_{j \geq 0} \frac{d(t^{n-1})^j r}{j!} \mod t^n \mathbb{k}[t] \]

\[\in (1 - t^{n-1}) \mathbb{k}[X_n] + t^n \mathbb{k}[t] = \mathbb{k}(1 - t^{n-1}) + t^n \mathbb{k}[t]. \]

Let \(U_n := \mathbb{k}(1 - t^{n-1}) + t^n \mathbb{k}[t] \). We have just proved:

\[\sigma(\mathcal{D}(R, \mathbb{k}[X_n])) \subseteq \mathcal{D}(R, U_n). \]

13
In the same way, we can prove:

\[\sigma^{-1}(\mathcal{D}(R, U_n)) \subseteq \mathcal{D}(R, \mathcal{K}[X_n]) \, . \]

Therefore, we have exactly:

\[\sigma(\mathcal{D}(R, \mathcal{K}[X_n])) = \mathcal{D}(R, U_n) \, . \]

Now, the characteristic elements of \(U_n \) are:

\[e^*_U := \partial - 2t - n(\partial) + (-1)^n(n-1) + (n-1) \in \mathcal{D}(U_n, R) \]

\[f_{U_n} = (t\partial - 1)\cdots(t\partial - (n-1)) + (-1)^n(n-1) \in \mathcal{D}(R, U_n) \, . \]

We have:

\[e^*_U f_{U_n} = (\partial - 1)^2 \]

hence:

\[e^*_U f_{U_n} \notin \partial^* \mathcal{K}[\partial] = e^* f \mathcal{K}[\partial] \, . \]

By the corollary 5.3, we deduce:

\[H(\sigma(\mathcal{D}(R, \mathcal{K}[X_n]))) = H(U_n) \nsubseteq H(V) \]

contrary to (1).

So \(t^{n-1} \notin V \) and we have exactly:

\[C(R, V) = t^n \mathcal{K}[t] \, . \]

\[* \]

iii) Now, \(C(R, V) = t^n \mathcal{K}[t] \), and \(t^{n-1} \notin V \). For \(n = 2 \), we have already \(V = \mathcal{K}[X_2] \). So we will suppose \(n \geq 3 \).

Let \(1 \leq n_1 < n_2 < ... < n_s < n - 1 \) be the integers such that \(t^{n_i} \notin V \).

We will show that \(s = n - 2 \) and thus \(V = \mathcal{K}[X_n] \).

We use again the automorphism \(\sigma = \exp(\text{ad}(t^{n-1})) \). We find:

\[\sigma(\mathcal{D}(R, V)) = \mathcal{D}(R, V_\sigma) \]

where \(V_\sigma := \mathcal{K}(1-t^{n-1}) + V \cap t \mathcal{K}[t] \). We set:

\[h(T) := (T - n_1)\cdots(T - n_s) \]
and
\[\lambda := (n - 1)! \frac{h(0)}{h(n - 1)}. \]

We check that the element
\[g_\sigma := h(t^\partial)(t^\partial - (n - 1))\partial^{n-2} + \lambda t h(t^\partial + 1) \]
is an element of \(\mathcal{D}(R, V_\sigma) \). We see that
\[\deg_t(g_\sigma) = s + 1 \]
\[= \dim_k R/V_\sigma \]
(for example because of the short exact sequence:
\[0 \to V_\sigma/(t \mathbb{k}[t] \cap V) \to R/(V \cap t \mathbb{k}[t]) \to R/V_\sigma \to 0 \].

So \(g_\sigma \) has minimum \(t \)-degree. The element \(g_\sigma \) can be expanded as:
\[g_\sigma = t^{s+1}(\partial^{n-1} + \lambda)\partial^s + t^s b_s(\partial) + \ldots + tb_1(\partial) - (n - 1)h(0)\partial^{n-2} \]
for some polynomials \(b_i(T) \in \mathbb{k}[T] \).
Since \(\lambda \neq 0 \), the highest common factor of
\[(\partial^{n-1} + \lambda)\partial^s, b_s(\partial), \ldots, b_1(\partial), \partial^{n-2} \]
must be some \(\partial^r \) where \(0 \leq r \leq s \). So if \(e^*_\sigma, f_\sigma \) are the characteristic elements of \(V_\sigma \), we have \(g_\sigma = f_\sigma \partial^r \). Thus \(f_\sigma \) must be equal to:
\[t^{s+1}(\partial^{n-1} + \lambda)\partial^{s-r} + t^s a_s(\partial) + \ldots + ta_1(\partial) - (n - 1)h(0)\partial^{n-2-r} \]
where \(a_i(\partial) := b_i(\partial)\partial^{-r} \in \mathbb{k}[\partial] \).
But:
\[H(\mathbb{k}[X_n]) \subseteq H(V) \]
\[\implies \sigma H(\mathbb{k}[X_n])\sigma^{-1} \subseteq \sigma H(V)\sigma^{-1} \]
\[\implies H(U_n) \subseteq H(V_\sigma) \]
\[\implies e^*_U f_{U_n} \in e^*_\sigma f_\sigma \mathbb{k}[\partial] \]
by the corollary [3.4]. Now, by the proposition [3.3, iii),
\[e^*_\sigma f_\sigma \in (\partial^{n-1} + \lambda)\partial^{s-r}\mathbb{k}[\partial] \].
As a consequence:

\[
\left(\partial^{n-1} + (-1)^n(n-1)! \right)^2 \in (\partial^{n-1} + \lambda)\partial^{s-r}k[\partial]
\]

which implies that \(s = r \) and \(\lambda = (-1)^n(n-1)!^2 \).

Since \(s = r \), we have:

\[
g_\sigma = f_\sigma \partial^s
\]

and:

\[
g_\sigma(t^i) = 0
\]

for all \(0 \leq i \leq s-1 \). Thus \(h(i+1) = 0 \) for \(i = 0, 1, ..., s-1 \). But \(n_1, ..., n_s \)
are the only roots of \(h \) so:

\[
\forall 0 \leq j \leq s, \ n_j = j .
\]

From the equality \(\lambda = (-1)^n(n-1)! \) we then deduce:

\[
\frac{(-1)^s n_1 \ldots n_s}{(n-2) \ldots (n-1-s)} = (-1)^n
\]

\[
\iff \frac{s!(n-2-s)!}{(n-2)!} = (-1)^{n+s}
\]

\[
\iff \binom{n-2}{s} = (-1)^{n+s}
\]

\[
\iff s = 0 \text{ and } n \text{ is even or } s = n-2 .
\]

If \(s = n-2 \), then \(V = k[X_n] \) and the proof is finished. If \(s = 0 \) and \(n \) is
even, then:

\[
V = k + kt + \ldots + kt^{n-2} + t^n k[t]
\]

with \(n \geq 4 \).

We set \(\sigma := \exp(\text{ad}(t^{n-2})) \). Then we have:

\[
H(k[X_n]) \subseteq H(V)
\]

\[
\iff \sigma H(k[X_n])\sigma^{-1} \subseteq \sigma H(V)\sigma^{-1}
\]

\[
\iff H(W_n) \subseteq H(V_\sigma)
\]

where:

\[
W_n = (1 - t^{n-2})k[X_n] + t^n k[t]
\]

16
\[= \mathbb{k}(1 - t^{n-2}) + t^n \mathbb{k}[t]\]

and

\[V_{\sigma} = (1 - t^{n-2})V + t^n \mathbb{k}[t]\]

\[= \mathbb{k} + \mathbb{k}(t - t^{n-1}) + t^2 + ... + t^{n-2} + t^n \mathbb{k}[t].\]

Now, let \(e^*_W, f_W\) be the characteristic elements of \(W_n\) and \(e^*_\sigma, f_\sigma\) those of \(V_\sigma\). Because of the corollary [5.3] we should have :

\[e^*_W f_W \in e^*_\sigma f_\sigma \mathbb{k}[\partial].\]

But we can check that :

\[e^*_W = \left(\frac{\partial^{n-1}}{(n-1)!} + (-1)^{n-1}\partial \right) t^{1-n} + \left(\frac{\partial^{n-2}}{(n-2)!} + (-1)^{n-1} \right) t^{-n},\]

\[f_W = \frac{(t\partial - 1)...(t\partial - (n-1))}{(n-1)!} + (-1)^{n-1}t^{n-2}(t\partial - 1),\]

\[f_\sigma = t \left(\frac{\partial^{n-1}}{(n-1)!} + \partial \right) - \frac{\partial^{n-2}}{(n-2)!} - 1.\]

We deduce that :

\[e^*_W f_W = \left(\frac{\partial^{n-1}}{(n-1)!} + (-1)^{n-1}\partial \right)^2\]

\[= \left(\frac{\partial^{n-1}}{(n-1)!} - \partial \right)^2\]

because \(n\) is even and :

\[e^*_\sigma f_\sigma \mathbb{k}[\partial] \subseteq \left(\frac{\partial^{n-1}}{(n-1)!} + \partial \right) \mathbb{k}[\partial]\]

which contradicts [4].

Hence \(V = \mathbb{k}[X_n]\).

q.e.d.

Using the description of right ideals of \(A_1\) in [4], we deduce the following:
Corollary 5.5 For any non principal right ideals I and J, the following equivalences are satisfied:

\[H(I) \subset H(J) \]
\[\iff H(I) = H(J) \]
\[\iff \exists x \in \text{Frac}(A_1), \exists \sigma \in \text{Aut}_k(A_1), I = x\sigma(J). \]

We now obtain the announced result.

Proposition 5.6 Let I be any right ideal of A_1. The subgroup $H(I)$ is equal to its own normalizer subgroup in $\text{Aut}_k(A_1)$.

Proof : By [3], we can suppose $I = \mathcal{D}(R, \mathbb{k}[X_n])$. Let $\gamma \in \text{Aut}(A_1)$ such that

\[\gamma H(\mathbb{k}[X_n])\gamma^{-1} = H(\mathbb{k}[X_n]). \]

Then we have

\[H(\gamma(\mathcal{D}(R, \mathbb{k}[X_n]))) = H(\mathbb{k}[X_n]). \]

We have also : $\gamma(\mathcal{D}(R, \mathbb{k}[X_n])) \simeq \mathcal{D}(R, V)$ for some p.d.i. subspace V of R.

Thus, we get $H(\mathbb{k}[X_n]) = H(V)$, so $V = \mathbb{k}[X_n]$ by the proposition [5.4].

Finally, we have $\gamma(\mathcal{D}(R, \mathbb{k}[X_n])) \simeq \mathcal{D}(R, \mathbb{k}[X_n])$ and that means $\gamma \in H(I)$.

q.e.d.

References

