

An Analysis of Extremely High Nineteenth-Century Winter Neonatal Mortality in a Local Context of Northeastern Italy

Gianpiero Dalla-Zuanna, Alessandro Rosina

▶ To cite this version:

Gianpiero Dalla-Zuanna, Alessandro Rosina. An Analysis of Extremely High Nineteenth-Century Winter Neonatal Mortality in a Local Context of Northeastern Italy. European Journal of Population / Revue européenne de Démographie, 2010, 27 (1), pp.33-55. 10.1007/s10680-010-9219-5 . hal-00578455

HAL Id: hal-00578455 https://hal.science/hal-00578455

Submitted on 21 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An analysis of extremely high 19th century winter neonatal mortality in a local context of northeastern Italy An analysis of extremely high 19th century winter neonatal mortality in a local context of northeastern Italy

Gianpiero Dalla-Zuanna (University of Padua)

Alessandro Rosina (Catholic University of Milan)

Gianpiero Dalla-Zuanna Department of Statistical Sciences, University of Padua Via Cesare Battisti 241, 35100, Italy

gpdz@stat.unipd.it

tel. +39 049 827.4190 fax. +39 049 827.4170

Gianpiero Dalla Zuanna, Alessandro Rosina

Abstract

Beginning in the mid-17th century, infant mortality in Veneto (a region in northeastern Italy) began to increase, starting at 250‰ and rising to 350‰ by the mid-19th century — one of the highest levels ever recorded in modern Europe. This dramatic change — in a period of worsening economic conditions — was due to variations in winter neonatal mortality, which was 3-4 times higher in Veneto than in other areas with similar winter temperatures (such as England).

We combine micro data on neonatal mortality with daily data on temperatures for a specific context during the period of 1816-68 characterized by very high neonatal mortality. We find that the risk of death was particularly intense during the first week of life and strongly correlated with external minimum temperature. Through a comparison of these results with other findings in the literature, we suggest that the increase in winter neonatal mortality in Veneto could have principally been caused by the deteriorating physical condition of mothers, lessening the "quality" of infants who consequently were quite susceptible to cold temperatures.

Keywords: infant mortality, event-history analysis, Italy

Une analyse des niveaux extrêmement élevés de mortalité néonatale hivernale au 19^e siècle dans une région du Nord-Est de l'Italie

Résumé

À partir du milieu du 17^e siècle, la mortalité infantile à Veneto (région au Nord-Est de l'Italie) a augmenté, passant de 250 ‰ à 350 ‰ au milieu du 19^e siècle, l'un des niveaux les plus élevés jamais enregistrés dans l'Europe moderne. Cette évolution dramatique – dans une période de dégradation du contexte économique – était dûe aux fluctuations de la mortalité néonatale pendant

l'hiver, mortalité qui était à Veneto 3 à 4 fois supérieure à celle d'autres régions ayant des températures hivernales similaires (telles que l'Angleterre).

Dans cette analyse, nous avons combiné des microdonnées sur la mortalité néonatale avec les températures quotidiennes relevées dans un contexte régional spécifique au cours de la période 1816-1868, caractérisée par une mortalité néonatale très élevée. Il apparaît que le risque de décès a été particulièrement élevé pendant la première semaine de vie et fortement corrélé avec la température extérieure minimale. A partir d'une comparaison de ces résultats avec d'autres retrouvés dans la littérature, nous émettons l'hypothèse que l'augmentation de la mortalité néonatale en hiver à Veneto était principalement causée par une dégradation de la condition physique des mères, diminuant la « qualité » des enfants et les rendant par conséquent plus sensibles aux basses températures.

Mortalité infantile, analyse des biographies, Italie

An analysis of extremely high 19th century winter neonatal mortality in a local context of northeastern Italy

1. Introduction

Over the last few decades, numerous studies have sought to explain historical differences in the risk of dying during the earliest stages of life (see e.g. Vallin, 1991; Lee, 1991; Preston and Haines, 1991). Nevertheless, two important patterns remain less than fully explained. First, although infant mortality (the risk of dying during the first year of life) during the *ancien régime* was everywhere higher than 100‰, considerable differences existed between populations living in adjacent regions and countries (Livi Bacci, 1997, point 2). For example, in 1850-54, child mortality during the first month of life (neonatal mortality) and during months 1-11 differed greatly among the regions of the Austrian Empire, that included Veneto and Lombardy, which together make up a large portion of Northern Italy (Dalla-Zuanna and Rossi, 2010). In addition, secular trends may have significantly varied between neighboring populations (Livi Bacci, 1997, point 6). Although these issues are not easily disentangled, they are crucial to understanding the historical determinants of infant mortality.

In this paper, we focus on the risk of dying during the earliest stages of life during the 18th and 19th centuries in Veneto, the region home to Venice situated in northeastern Italy. A complete comparative map of infant mortality for the regions of Europe from 1650-1900 is not available. However, it is possible to make comparisons by combining the results from a number of different studies. On the secular trends of infant mortality in several northern Italian regions, refer to the article of Del Panta (1997) and Del Panta and Livi Bacci (1980). For Friuli-Venezia Giulia see Breschi (1999). For a comparison of secular trends in Lower Austria, the Austrian Alpine region, and other regions in the Alps, see Viazzo (1997). Some data for Germany – which partially depict the secular trend of Veneto – were collected by Flinn (1981, Appendix). For some comparative data on the regions of the Austrian Empire around 1850, see Dalla-Zuanna and Rossi (2010).

The history of population change in Veneto during the final centuries of the demographic *ancien régime* provides an informative case for understanding the fundamental role that changing levels of infant mortality played in influencing both population trends and demographic dynamics (Rossi and Rosina, 1998; Dalla-Zuanna et al., 2004). Population stagnation in Veneto during the 18th century (the final decades of the Republic of Venice) and the early 19th century can be directly associated with increased infant mortality (Rosina 1995). Furthermore, the results of our analysis are potentially of interest, and applicable, well beyond the geographical region under study. Veneto shares this particular historical pattern of infant mortality (1650-1850) with other regions in Europe. This is especially true with regard to several bordering Italian regions (Emilia-Romagna, Lombardy, and Friuli-Venezia Giulia), but also to a number of areas in Germany and in the former Austrian Empire. While some mountainous zones experienced distinct demographic trends (Breschi, 1999), infant mortality in several large and crowded regions of Europe (mainly in the plains and low hill terrain) increased during the 18th century. That a similar secular pattern of infant mortality occurred across a number of regions suggests that there may exist a common explanation for this change, especially as other areas of Europe experienced quite different demographic levels and trends.

After a review of the literature on the economic and social situation in Veneto during this century (section 2), our first aim is to describe the remarkable pattern of infant mortality in Veneto during the century of 1750-1850: section 3 clearly shows that the extra-mortality is mainly due to the exceptional neonatal risk of death of winter months. As a consequence, the second aim of this paper is to analyse the statistical association between the external temperature and the risk of dying in the winter during the first 30 days of life, using a person-period data-set that combines the daily risk of dying in a parish during 1818-67 with the daily data of external temperature (sections 4 and 5). In the final section, we discuss several possible interpretations of our results, indicating possible directions for future research.

2. The worsening of living conditions in Veneto during 1750-1850

Studies of Italy's economic history suggest that during the 1700s, the general living conditions of the working class significantly deteriorated. Combined observations of population estimates, real wages, and per capita income from 1700-1859 reveal that while the population doubled (from 13 to 26 million inhabitants), real hourly wages were halved, and per capita income decreased by 20% (Malanima, 2006). One possible interpretation is that the significant increase in population which followed the end of the great epidemics (the last significant plague occurred in 1630 in northern Italy and 1667 in southern Italy) produced excessive population pressure on an area already characterized (at the end of the 17th century) by high levels of urbanization. Indeed, at the time, Italy, along with the Netherlands, had the highest population density in all of Europe. In addition, Malanima (2003, p.288) points out that: Italy completely missed the First Industrial Revolution, the age of coal, iron and mixed farming. It was impossible to adapt the English model to the available natural resources. The lack of coal, the scarcity of iron and the dry soils of the peninsula, with the only exception of part of the Po Valley, was thus an obstacle too difficult to overcome considering the technological level of the time. The relative backwardness of the peninsula grew during the 19th century. From the late Middle Ages to the end of the 19th century, Italy followed the downward curve from a condition of progress to a state of backwardness. Within the larger context of declining living conditions, it is essential to understand the specific social and economic history of Veneto, here examined in light of its current borders, thus excluding the provinces of Pordenone and Udine, which now belong to the region of Friuli-Venezia Giulia. At the beginning of the 19th century, approximately two million inhabitants lived in Veneto; one hundred years later this number had risen to three million (Rosina and Zannini, 2004).

In 1630, the last great plague dealt a devastating blow to the Republic of Venice, wiping out 40% of the population. Over the following century, the number of inhabitants grew rapidly, replacing the human void left by the epidemic and growing to 2.2 million by the mid-18th century, or 40% greater than the size of the population immediately preceding the plague of 1630. As in other places, substantial population growth in Veneto was sustained by an increased productivity guaranteed by corn crops (rather than wheat) and by the spread of "industrial crops" such as the mulberry tree. Inhabitants simultaneously struggled, however, with a dramatic decrease in the real value of wages and the consequent need to increase per capita working hours. Along with the increase in population, entire forests were cut down (even in the high hill areas) in order to make room for the now near omnipresent cultivation of maize and mulberry trees. Although (to the best of our knowledge) thorough research has not been done on this topic, we presume that relentless deforestation led to an increasing scarcity of wood, needed to heat homes in the winter in the absence or prohibitively high price of coal (Lazzarini, 2002. pp. 57-62; Zannini and Gazzi, 2003). In addition to these problems, during the 17th and into the first half of the 18th century. Venice began a slow but steady decline, gradually loosing its secular ability to attract wealth as European commerce began to move out of the Mediterranean and across the Atlantic Ocean.

It is possible to gain a more precise understanding of the relative economic situation in Italy and Veneto compared to the larger European context. The earliest comparison of income across European nations concerns the year 1870 (Maddison, 2003, appendix 2). In this year, *per capita* income in Italy was 50% that of the UK, 58% that of the Netherlands, 59% that of Belgium, 85% that of France and 86% that of Germany. The relative position of Veneto was even worse. In 1891 (the first year for which data are available), *per capita* income in the three regions of northeast Italy (Veneto, Trentino Alto Adige and Friuli) was 15% lower than the average level for Italy as a whole (Malanima and Daniele, 2007). From an economic standpoint, this area was by far the most backward in central-northern Italy, and one of worst off in Western Europe.

In order to consider some consequences of this unhappy economic situation, let us consider the relationship between population and resources in Veneto during 1750-1850. During this period, the nutritional health of several populations in Europe greatly deteriorated (for a review see Livi

Bacci, 1990, chapter 5). Several studies show that northern Italy similarly experienced an extensive decline in the quality of nutrition. In the region of Lombardy, for example, draftees born in 1750 had an average height of 168.5 cm, compared to 164.5 cm for those born during the first half of the 19th century (A'Hearn 2003). Although (as far as we know) data on height of this quality for the 18th-19th centuries are not available for other Italian regions, a number of clues suggest that this dramatic negative trend was also experienced in Veneto. Several studies show - more directly - that northern Italy experienced an extensive decline in the quality of nutrition. Along with the decreasing income, another important factor influencing nutritional health was the progressive (and for the poorest, almost total) substitution of wheat with corn. This modification began during the last decades of the 16th century, and was completed by the beginning of the 19th century (Fornasin, 1999; Livi Bacci, 1990). A serving of *polenta* (corn meal mush) of equal weight to a portion of bread has a significantly lower calorie content. In addition, maize does not have any vitamin PP, thus a diet based solely on polenta facilitates the spread of pellagra, a vitamin deficiency disease (PP stands for Pellagra Prevention). Pellagra affects metabolism and was a leading cause of death in many areas of northern Italy, including a number of districts in Veneto. In 1881, the first year the causes of death were recorded on a national scale, pellagra was high on the list for northeast Italy (Livi Bacci, 1986). As late as 1881, Sormanni wrote: Of weak parents... poorly nourished, are born wispy and sickly offspring. We have witnessed the predominance of this frailness in Lombardy and Veneto, home also to the greatest endemic infections: malaria, scrofula, and pellagra...

3. Winter neonatal mortality: a description

Infant mortality in Veneto steadily increased from 1650 to 1800, starting at 250‰ in the mid-17th century (the ending point of a 300-year period of severe and recurring plagues) and eventually reaching a high of 350‰ by the end of the 18th and during the earliest decades of the 19th century. The levels of infant mortality in Veneto during the period of 1750-1850 are among the highest ever recorded for a large area over a significant amount of time. Indeed, among the regions of the Austrian Empire in 1854, the greatest risk of dying during the first month of life is observed in Veneto (**table 1**). Following this period, however, infant mortality in Veneto steadily began to decline. By the early 1900s infant mortality had dropped to 150‰ (**figure 1**).

First, a brief description of our main data source. At the turn of the 17th century, spurred by decrees from the council of Trent and Paolo V's 1614 edict, priests in the Catholic areas began to regularly record baptisms and deaths in the ecclesiastic parish registers. Over the years and through the work of many scholars, data for numerous parishes in Veneto have been gathered in a non-nominative manner (for a review see Rosina and Zannini, 2004). The quality of this data is generally good, better that that observed in other areas of Italy where often neither births nor the deaths of children who died immediately after birth were registered (D'Angelo et al., 2003; Rossi, 1970, 1977). For each burial, the parish priest usually indicated the age at death (in days, weeks or months for early deaths). It is thus easy to calculate the probabilities of dying during the first week (early neonatal mortality), the first month (neonatal mortality), and the first year of life (infant mortality). In this paper – to the best of our knowledge – we report data for the parishes in Veneto where infant mortality was calculated using these criteria of classification.

In a number of places in Veneto, infant mortality increased during the 18th century (Del Panta, 1997; Rosina, 2000; Rosina and Zannini, 2004). Most of this increase was due to negative variation in winter neonatal survival, whereas the level of neonatal mortality during the summer months remained the same as that observed for the other Italian regions (**figure 2**; see also Breschi and Livi Bacci 1986, 1997). We show the secular trends in the probability of dying during the first month of life by season of birth for four villages spread across the region. For each parish presented in **figure 3**, changes in neonatal mortality for children born during the cold season played a determinant role in the overall secular trend of infant mortality.

		Stillbirths		
Regions (in German)	N. of Births	and month 0	Months 1-11	Year 0
Österreich unter der Enns	63,387	178	228	365
Österreich ob der Enns	21,411	154	218	339
Salzburg	4,264	175	218	355
Steiermark	31,088	140	152	270
Karnthen	9,648	144	116	243
Krain	13,724	94	141	221
Görz, Gradisca, Istrien etc.	18,631	154	169	297
Tirol und Vorarlberg	25,702	134	108	228
Böhmen	184,905	127	155	262
Mahren	74,837	109	151	244
Schlesien	17,213	129	165	272
Krakau	5,266	105	156	244
Galizien	165,846	116	210	302
Bukowina	18,096	93	140	220
Lombardien	103,920	165	136	279
Venedig	79,965	215	112	304
Ungern	323,137	140	176	292
Serbische Wojwodschaft und				
Temeser Banat	77,044	128	130	241
Kroatien-Slawonien	28,372	126	221	319
Siebenburgen	71,686	99	111	200
Militargranze	42,151	136	192	302
KRONLÄNDERN	1.380.293	138	165	280

Table 1. Probability of infant death (x 1,000) circa 1854 in the provinces of the Austrian Empire

Source: our calculation on original data from the Tafeln zur Statistik der Osterreichischen Monarchie (1854). See also Dalla-Zuanna and Rossi, 2010.

Sources: For Veneto 1675-1775: Rosina and Zannini, 2004, page 36 (mean level of: 5 parishes, 1651-1700; 9 parishes, 1701-1750; 16 parishes, 1751-1800). For Veneto 1800-1900: Del Panta, 1997, page 15. For England: Woods, 1997, page 76. For Tuscany and North Italy: Del Panta, 1997, pages 15-18. In order to emphasize the secular trends, data are interpolated with polynomials.

Figure 2. Neonatal mortality during the first month of life in Veneto (Index number: Italy=100). 1872-1879

Source: Rosina and Zannini, 2004

Take, for example, the case of Adria, a town of 9,000 inhabitants located on the left bank of the Po River, near the Adriatic Sea. The data available from 1676-1899 for this town are of quite good quality (Rossi 1970, 1977; Rossi and Tesolat, 2006). The secular trend of infant mortality in Adria is as follows: 1651-1700: 207‰; 1701-1750: 254‰; 1751-1800: 279‰; 1801-1850: 329‰; 1851-1899: 220‰ (Rossi, 1970, p. 133). During the 18th century, neonatal mortality doubled for children born during the winter, reaching as high as 400‰ in the early 1800s. This very high level persisted throughout the first half of the 19th century. In the following period (1850-1900), winter infant mortality dramatically declined. In contrast, throughout the period 1676-1850, neonatal mortality and mortality in the first 2-11 months of life for children born in the summer did not change. In the parish of Battaglia (located 15 km from Padua), the increase in winter neonatal mortality during the period of 1750-1850 was not due to any exceptional events, although this trend is somewhat complicated by large annual oscillations typical of small communities during the *ancien régime* (Furegato, 2007). Moreover, data from Battaglia show that the growth in winter mortality was mainly due to events occurring during the first week of life (return to **figure 3**).

In order to focus on events occurring during the first month of an infant's life, we considered two parishes where neonatal mortality did not start to decline until 1850 (Agna) and 1860 (Casalserugo). In **table 2**, infant mortality in these two parishes during the first half of the 19th century is compared with two different contexts in the 18th century: Alì (a hill parish in northern Sicily, where temperatures were about the same as those in the Veneto plains in July, and about 10°C higher in January) and England (where temperatures were about the same as in the Veneto plains in January, and around 6°C lower in July). There are certainly differences between the Veneto parishes and the other two contexts presented in **table 2**; see for example the probability of death in months 1-11 and years 1-4. On the other hand, these dissimilarities seem minimal when one looks at the differences in the probability of dying during the first month, and above all, during the first week (with the exception of the first day). The probability of dying in days 1-6 was six/seven times higher in Agna and in Casalserugo than in Alì and in England. The relevance of winter neonatal mortality is also clearly depicted by the results presented in **table 3**, which show significant seasonal differences in neonatal mortality in Agna and Casalserugo.

Figure 3. Probability of death by season of birth in selected parishes of Veneto (1650-1900). Specific ages during the first year of life

Source: Rossi and Tesolat, 2006.

(B) Salzano (province of Venice) 1721-1800 (mean number of births a year: 78) FIRST MONTH

Source: Unpublished data personally communicated by Andrea Zannini in 2008.

Source: Rossi, 1996.

(D) Battaglia (province of Padua) 1766-1900

Source: Furegato, 2007.

(E) Battaglia (province of Padua) 1766-1900 (mean number of births a year: 72)

Source: Furegato, 2007.

Source: Furegato, 2007.

(G) First month for children born during winter in the four parishes 1675-1900

Sources: see parts A, B, C, E of the same figure.

		CASALSERUGO	Agna	ALÌ (SICILY)	ENGLAND
Age		Born in 1818-67	Born in 1816-47	Born during the 18 th century	Born during the 18 th century
Day	0	23	26	30 (*)	29
	1-6	154	189	25	28
	7-29	164	179	43	35
Month	1-5	75	68	52	56
	6-11	39	31	33	41
Year	1	78	66	41	51
	2-4	58	73	67	64
First	. day	23	26	30 (*)	29
	week	173	210	54	56
	month	309	351	95	89
	year	386	414	170	175
Years	1-4	131	144	104	111
Years	0-4	467	512	258	268

Table 2. Probability of dying (‰) by age in Casalserugo (Padua, Veneto), Agna (Padua, Veneto), Alì (Messina, Sicily) and England. Children aged 0-4 born during the 18th and 19th centuries

(*)Estimated (as the number of children who died during the first day was underreported).

Sources: The probabilities for Casalserugo, Agna, and Alì are calculated using nominative linkages. For Alì, see D'Angelo, Dalla-Zuanna, and Rosina (2003). For England, see Wrigley and Schofield (1981, page 226)

Table 3. Probability of dying (‰) in the first month of life by season in Casalserugo and Agna during the first half of the 19th century. Stillbirths are not included

	Winter	Spring	Summer	Fall
Casalserugo (1818-67)	584	294	107	265
Agna (1816-47)	618	353	154	332

Sources: Data from nominative linkages

4. Data

By means of the previously described macro (aggregated) data, it was possible to study the secular trend in infant mortality by season and age at death for several Veneto parishes. In order to enhance our analysis of the association between temperature and the risk of dying during first month of life, we used available micro (individual) data, focusing on the first half of the 19th century (i.e. when infant mortality in Veneto was extremely high (see again **figure 1**)).

The micro-data used for this study come from a village in Veneto (Casalserugo, situated 10 km from Padua and quite close to the village of Battaglia, which similarly had very high levels of winter neonatal mortality during the first half of the 19th century, cf. table 3 and figure 3). The results presented here are part of an extensive research project on infant mortality in the Veneto at the dawn of demographic transition. Thus far, data for the period of 1815-70 have been collected for twenty parishes – both urban and rural – in the provinces of Padua, Vicenza, Treviso, Venice and Verona. Although a comprehensive analysis has not yet been published, we can already observe that infant mortality in the southern part of the province of Padua – where Casalserugo is situated –was higher than the regional average and began to decline later and more slowly. Indeed, the region in which this parish is located had one of the highest neonatal mortality rates in all of Western Europe during this time period. Focusing the analysis within this context thus enables us to highlight the micro-connection between temperature and neonatal risk of dying in an "extreme" situation.

We used two kinds of micro-data. The first consists of *civil registers of births and deaths* which each parish priest (or rabbi, in the Jewish communities) was required to compile during the period of Austrian rule (1815-1866 in Veneto), in addition to their ecclesiastic registers of baptisms and burials. The civil registers were often checked by state authorities, as testified by their frequent stamps and notes on the register pages. They are generally easier to read than the ecclesiastic registers as they were pre-printed and their overall quality is quite good. As reported above, in this study we use the civil registers from the parish of Casalserugo. In order to analytically study infant mortality, we have linked the events of birth and death recorded in the civil registers to the same individual by using data reported at each event as "linkage-keys": family name, given name, the name of the father, and the family name and given name of the mother. Since the (often approximate) age at death was reported in the death registers, it was also possible to calculate the linkage performance: 99% of the deaths of children who died within the first five years of life can be linked to their births. In Casalserugo, the number of births reported in the civil register overlaps with the number of baptisms in the ecclesiastic registers.

In another parish where the same nominative linkage procedure was applied and performed about as well (Agna, 40 km far from Padua), the number of births in the civil registers is higher than the number of baptisms, as children who died before being baptized were still reported in the civil register. Since almost all of the non-baptized newborns of Agna died on the day of birth, we consider them to be stillbirths. The tables reported in the Tafeln zur Statistik der Osterreichischen Monarchie from 1827-1965 provide additional data on infant mortality (Rossi and Fanolla, 2007; Dalla-Zuanna and Rossi, 2010; see also table 1). For several years, data on stillbirths were given separately. For example, in 1854 this source reports a proportion of 1.3% stillbirths in Veneto and 1.5% in the Empire as a whole. It is possible that the criterion adopted in Agna (inclusion in the Civil Register of children who died before baptism) was the general rule, whereas the standard employed in Casalserugo (inclusion in the Civil Register only of children who had been baptized) was an exception. As far as we know, however, a complete analysis of this data has yet to be carried out. Casalserugo did not have a hospice for foundlings. However, some children may have been taken to the foundling hospice in Padua shortly after birth and baptism, and then handed over for nursing in other parishes. Evidence of this practice exists in the form of descriptions such as "a nurse" and "the foundling hospital" which replace the place of birth on the acts of child death in some Veneto parishes.. Although a few of these cases are also found in Casalserugo, we did not include them in our calculations of death probabilities, as only linked children, for whom both birth and death acts are known, are considered. This approach could result in some underestimation of infant mortality because not only could a certain number of children born and baptized in Casalserugo have died elsewhere, but also the (relatively few) foundlings who did die in Casalserugo were not taken into account. Given the nature of the data at our disposal, it is impossible to say anything more on this topic. It is likely, however, that very few children were abandoned in Casalserugo as the number of illegitimate infants born in Casalserugo throughout the period under observation is negligible (less than 1%). In addition, neonatal and infant mortality was so high as to suggest that – especially during the winter – poor people did not abandon babies in order to avoid having to care for them.

These data can thus be considered as reliable. In addition to the high proportion of infant deaths linked to births, it is important to highlight the accuracy of the birth acts, where basic data were always provided with great precision. Moreover, a comparative study shows that the general quality of the data on infant mortality for the Italian regions of the Austrian Empire (Lombardy and Veneto) around 1850 was quite good, comparable with that of the German-speaking *Länder*, and certainly greater than that observed in the eastern and southern areas of the Empire (Dalla-Zuanna and Rossi, 2010).

The second micro-dataset used concerns *daily temperature (minimum, maximum, and mean) and atmospheric pressure*, recently published for several European towns during the period of 1700-2000: Milan (Italy): 1763-1998; Cádiz (Spain): 1786-1996; Stockholm (Sweden): 1722-1998; Belgium (multi-site): 1767-1998; Uppsala (Sweden): 1756-1998; St. Petersburg (Russia): 1743-1996. Data for Padua have been reliably comparable since 1774 (Camuffo and Jones, 2002).

	Exposures		Occurre	nces
	Ν	%	Ν	%
Year of birth				
1818-19	2,014	3.6	24	3.3
1820-29	11,430	20.5	142	19.4
1830-39	11,028	19.8	138	18.9
1840-49	10,770	19.3	158	21.6
1850-59	11,030	19.8	158	21.6
1860-67	9,474	17.0	111	15.2
Total	55,746	100.0	731	100.0
Month of birth	1			
1	2,885	5.2	105	14.4
2	3,111	5.6	106	14.5
3	5,434	9.8	133	18.2
4	6,077	10.9	72	9.8
5	7,676	13.8	33	4.5
6	3,996	7.2	19	2.6
7	4,905	8.8	26	3.6
8	6,173	11.1	13	1.8
9	5,437	9.8	18	2.5
10	4,305	7.7	56	7.7
11	3,415	6.1	67	9.2
12	2,332	4.2	83	11.4
Total	55,746	100.0	731	100.0
Age at baptis	n (days)			
0	11,753	21.1	257	35.2
1	24,648	44.2	330	45.1
2	9,350	16.8	91	12.4

3	4,039	7.2	22	3.0			
4+	5,956	10.7	31	4.2			
Total	55,746	100.0	731	100.0			
Duration of	marriage (ye	ars)					
0	2,650	4.8	54	7.4			
1-4	17,868	32.1	247	33.8			
5-9	15,436	27.7	188	25.7			
10-14	10,065	18.1	122	16.7			
15-19	6,886	12.4	83	11.4			
20+	2,841	5.1	37	5.1			
Total	55,746	100.0	731	100.0			
Occupation of the mother							
Aariculture	44 100	79 1	577	78 9			
Other	11.646	20.9	154	21.1			
Total	55,746	100.0	731	100.0			
Occupation	of the father	,					
Agriculture	45,,818	82.2	584	79.9			
Other	9,928	17.8	147	20.1			
Total	55,746	100.0	731	100.0			

The two datasets just presented were merged and organized into a person-period dataset. The period (unit of observation) is every specific day from birth to the end of the first month of life. Casalserugo is located only 10 kilometers from Padua and thus temperatures in the two places should be very similar. Consequently, for each day, the minimum temperature has been added into the dataset as the main explanatory variable. For a child who was still alive at the end of the first month, the observation is right-censored. For a list of the available daily variables, see **table 4**. The discrete-time approach is particularly suitable in the presence of ties. As shown in **table 4**, which contains all the variables available in our dataset, the number of events in each time-unit (especially in the first days of life) is very high. Merging the two datasets was possible only for Casalserugo, as Agna is located far from Padua and daily data on temperature were not available¹.

5. Results

A detailed analysis of the association between temperature and the risk of neonatal death was carried out using our micro-dataset. First, we looked for further confirmation of newborn excess mortality during the winter. Second, we produced detailed estimates of the probability of death within the first thirty days of life for those births which occurred in the months of December, January, and February. Lastly, we examined the analytical relationship between temperature and mortality during the winter.

In our first model, we estimated the effects of the season without considering specific climatic data. We used a logistic regression where the response variable was death (or not) in the first month of life in Casalserugo (**table 5**). The risk of dying during the first month of life is very high (310‰). This is especially true in the winter (584‰) compared to the summer (107‰) and confirms the descriptive patterns displayed in **table 3** – the starting point of our analysis.

¹ Data (available upon request) were processed using SAS.

Table 5. Neonatal mortality by season in Casalserugo (1818-1887)									
Season of birth	Probability of dying (x 1,000)	Odds ratio	95% confidence limits						
Summer (J-J-A)	107	1	Refe	rence					
Autumn (S-O-N)	265	3.2	2.2	4.4					
Winter (D-J-F)	584	11.6	8.3	16.3					
Spring (M-A-M)	294	3.5	2.6	4.8					

Note. The odds ratios are the result of a logistic model, where the response variable is death (or not) in the first month of life. Other covariates in the model include: sex, year of birth, social class of the parents, distance marriage-birth, distance birth-baptism (see table 4). The total number of births is 2,392.

In a second model, we applied a discrete-time hazard regression to the detailed data of Casalserugo, concentrating on December, January and February. These are the months with the highest neonatal mortality of the year². In total, 503 children born in the winter (8,328 person-days) and 294 events (deaths before the end of the first month of life) are included in the dataset. We allowed for a correlation among children within the same family by using the GEE (Generalized Estimating Equations) approach (Diggle et al. 1994). This tool aids in controlling for unobserved characteristics shared by children of the same mother. The main explanatory variable is the minimum temperature of the day, included in the models as a time-dependent covariate. The other explanatory variables were mainly included as control factors. In order to account for the bellshaped baseline risk of death in the first month, we considered either age as a continuous variable by including a quadratic term on the logit scale (Model A), or age as a categorical variable in suitable classes (Model B). In order to better explain the effect of temperature on neonatal mortality, we fitted several lagged models to the same dataset. However, the minimum temperatures during the preceding days were not statistically significant if the temperature of the current day was included in the model as a covariate (table 6).

The pattern of the risk of death by age (in days) is shown in figure 4. The probability of dying in the wintertime dramatically increases, reaching a peak in the second and third day of life and then subsequently decreasing. In other words, the most critical period is during the first week, omitting the first day. The same model, when applied to children born in the less cold months, shows that the probability of dying monotonically decreases.

		Mod	el A			Mod	el B	
	Age as	s a contir	nuous varia	able	Age a	s a categ	orical varia	able
	Param.	s.e.	p-value	Odds	Param.	s.e.	p-value	Odds
				Ratio				Ratio
Intercept	-3.75	0.278	<0.001	0.02	-3.16	0.071	<0.001	0.04
Ln age	2.09	0.305	<0.001	8.08				
(In age) ²	-0.74	0.082	<0.001	0.48				
Age 0-1					-0.15	0.160	0.340	0.86
2-3					1.01	0.115	<0.001	2.75
4-6					0.64	0.111	<0.001	1.90
7-13					0.02	0.152	0.923	1.02
14 + (ref.)					0			1
December (ref.)	0			1	0			1
January	0.03	0.141	0.842	1.03	-0.03	0.086	0.690	0.97
February	0.05	0.146	0.741	1.05	0.04	0.088	0.636	1.04
MIN temperature C°	-0.05	0.015	0.001	0.95	-0.05	0.019	0.016	0.95
MIN * Age 0-1					0.01	0.044	0.964	1.01
2-3					-0.04	0.031	0.265	0.96

Table 6. Discrete-time hazard regression of daily mortality in the first month. Children born in December, January, and February in Casalserugo (1818-1867)

² In order to test the consistency of our results, we employed another model in which we included the month of March and obtained very similar results (unpublished and available on request).

14 + (ref.)	0			1
7-13	0.06	0.038	0.112	1.06
4-6	-0.03	0.030	0.369	0.97
	0.00			

Note. 503 children born in the winter (8,328 person-days) and 294 events (deaths before the end of the first month of life) are included in the dataset. Other covariates in the model include: sex, year of birth, social class of the parents, distance marriage-birth, distance birth-baptism (see table 4). Intra-family correlation: 0.0132

The effect of temperature on the survival of winter newborns is substantial and strongly significant. A decrease of 1°C corresponds to a 5% increase in the daily risk of death during the first month of life (table 6). According to both models A and B, the daily risk of death during the third and fourth days of life varies from 80% to 130% to 220% if the minimum temperature varies respectively from $+5^{\circ}$ C to 0° C to -5° C. It is interesting to note that with the inclusion of the minimum temperature in the model, the effect of the month of birth (December, January, or February) is no longer statistically significant (the regression models including month and excluding temperatures are available on request). This is a notable result, as some authors have suggested that the survival chances of children are related to the health conditions of their mothers during several susceptible periods of their pregnancies (particularly the second trimester), and that these conditions may vary seasonally (i.e. due to energy stress induced by the harvest cycle; see Scott and Duncan, 2002, chapter 13). This may also hold true in Casalserugo, but for those unlucky children born during the wintertime, the cause of death seems to be overwhelmingly a matter of external temperature. While the interaction between temperature and age is not significant, the effect of temperature is nevertheless stronger during days 2-6. Furthermore, the probability of death is significantly higher during days 2-6 than during the second week of life (analytical results not shown). If this result is considered together with the shape of the daily-risk function (see figure 4), we again have confirmation that the most critical period during the winter was the first week of life, omitting the first day.

In conclusion, our analysis provides empirical evidence that for the unlucky children born during winter, the risk of dying during the first month of life was extremely responsive to external temperature, particularly during the first week, and above all during the days 2-6. These results further confirm the findings of Ekamper et al. (2009) about the extreme vulnerability of children when temperatures reached low values.

6. Discussion

This paper has had two aims: to describe the remarkable intensity of winter infant mortality in Veneto during the century of 1750-1850, and, more specifically, to analyse the effect of external temperature on the risk of dying during the first 30 days of life and to examine whether this effect varies by age. We showed that the significant increase in infant mortality in Veneto during the 18th century, and its subsequent rapid decline in the second half of the 19th century was caused mainly by considerable variation in neonatal mortality in the wintertime. The worst time period in this regard was from 1750-1850, when the probability of dying in the first month of life during the colder months (December, January and February, the so called "meteorological winter") reached levels as high as four hundred per thousand births. These levels are significantly higher than those observed in other areas of Italy and Europe (i.e. Tuscany and England) where winter temperatures were similar to those in Veneto, but winter neonatal mortality was much lower. With specific regard to the first month of life, the risk of dying in the winter months was not homogenous: the period of highest risk was clearly during the first week.

Although we carefully analysed the statistical association between temperature and the risk of dying during the first thirty days of life in Veneto during the first half of the 19th century, the available data do not allow us to reliably delve further into the causal mechanisms. Nevertheless, our results, combined with other findings in the literature, provide support for several possible explanations, show others to be less plausible, and suggest directions for future research.

Causes of death. Information regarding the cause of death, reported in the burial records of Veneto parishes from the 18th and 19th centuries, is vague and does not fit contemporary disease classification schemes. Our results do, however, allow us to reflect on several plausible illnesses that may have been responsible for low survival rates during the 18th century. In particular, the observed seasonality of neonatal deaths was probably not due to endogenous causes linked to pregnancy, birth, or congenital anomalies, as these tend to appear in relatively the same measure throughout the year. We may also exclude some other illnesses and contagious diseases that do not specifically affect newborns and are not immediately fatal. Diseases such as diarrhea do, however, have a seasonal pattern, but peak in the summertime for weaned children (Kale et al. 2004). Respiratory illnesses (pneumonia, bronchitis, pleurisy, and bronchopneumonia), on the other hand, are more common in the winter. An empirical means of examining whether disease is a causal factor of very high winter neonatal mortality is to analyze the evolution of the daily risk of death following birth. Indeed, the newborn is at a higher risk of dying of respiratory diseases precisely during the second and third weeks of life, as shown by the earliest available infant mortality data of good quality, detailed by cause and age at death (Istat, 1934, pages. 128-131).

Temperature shock for low-weight newborns. The winter increases in infant deaths in Veneto during the 18th century were mainly due to events which occurred during the first week of life. This suggests that high winter neonatal mortality in Veneto during 1750-1850 was caused by factors which amplified the effects of cold temperatures: (1) the increasing inability of newborns to survive low temperatures at birth, and/or (2) the growing incapability of parents to protect their children from the cold. In 18th and 19th century Veneto, several issues may have augmented these risks (see below). More specifically, it should be underlined that low-weight newborns are less able to react and adapt to the temperatures shock which typically characterizes the hours following delivery, especially when external temperatures are low (see WHO, 1997; Costello, 2000; Kambarami and Chidede, 2003; Darmstadt et al. 2006; Knobel and Holditch-Davis, 2007). Evidence of general malnourishment suggests that underfed mothers may have given birth to low-weight infants. According to contemporary data collected in developing countries, the risk of a mother delivering a underweight newborn (< 2,500 g) increases for each centimetre below average height, for each

kilogram underweight, and for each centimentre below satisfactory mid-upper arm circumference (Lechtig et al., 1978; WHO, 1995; Ramakrishnan, 2004; Ashdown-Lambert, 2005).

Economic decline and worsening nutrition in Northern Italy and Veneto during the 18th *century.* Thus far we have no direct proof of a growing proportion of malnourished mothers in Veneto. However, there are a number of indications which suggest that during this period the living conditions of the working classes deteriorated throughout the Padana lowland, particularly in the eastern area (see section 2). Consequently, the notion that increasingly high winter neonatal mortality in Veneto over the course of the 18th century and into the 19th century can be explained by the deteriorating physical condition of mothers and by the inability of parents to protect their children from the cold is consistent with knowledge of the region's economic and social history.

The lack of preventive Malthusian checks. Population growth which followed the end of the plague epidemics was not accompanied by significant changes in productive capacity or by any preventive checks on uncontrolled population growth. The average age at first marriage of women in the mid-18th century was young from a Western perspective (20-21 years old), practically identical to the marrying age a century earlier (Rosina and Zannini, 2004). In other areas of Italy, however (such as in Tuscany), population growth after the epidemics was slower due to a rise in the average age at marriage (Breschi and Rettaroli, 1995). In other words, the preventive Malthusian brakes did not work in Veneto during the 17th and 18th centuries.

Post-neonatal control? The proposed explanatory chain (general worsening of living conditions \rightarrow malnourished mothers \rightarrow low-weight newborns more susceptible to neonatal hypothermia \rightarrow lower likelihood of survival in the first days of life during the winter) seems to be the most plausible in the light of available data. An alternative explanation might be an increasing prevalence during the 17th and 18th century winters of, "infanticide by neglect" (Knodel and van de Valle, 1979, p. 230). It is not easy to imagine extensive rational strategies of "post-neonatal control" such as abandonment or infanticide (Mason, 1997) which, for some unknown reason, became much more common during the winter. However, it is possible that child neglect – not unlike that seen during other seasons or previous centuries – had much worse consequences during colder periods, especially in a setting characterized by a lack of material resources. Early baptism – even if no more frequent than in the previous centuries – may also have been especially dangerous for frail and low-weight children of weak mothers. On the other hand, such parental behavior would probably fall into a category of "too much (spiritual) attention" rather than "infanticide by neglect".

We conclude with some reflections concerning possible lines of future research. First, more extensive studies using the extremely clear, simple, and complete pre-printed registers of birth, deaths, and marriages for the provinces once part of the Austrian Empire would allow for rich comparative analysis. By means of these historical records, further work might address not only the topic of infant mortality, but also other important population trends of the 19th century, such as the demographic transition, its timing, geography, and causes.

Second, the association between daily temperature and mortality could be more fully explored in other territorial contexts, thanks to the availability of lengthy series of tested and verified published data on temperatures in other cities (see the bottom of **table 4**; see also Camuffo and Jones, 2002, with CD attached).

Third, in order to gain a more in-depth understanding of the hypothesized causal factors of high winter neonatal mortality during the period 1750-1850, more data are necessary. Analysis of the links between neonatal mortality and external temperatures could be extended by considering other indicators that also oscillate across months or years. For example, the prices of essential materials such as firewood and grain typically tended to fluctuate in urban contexts, where these goods were not self-produced and had to be bought. Other direct measures of seasonal variation in

working-class nutritional status could be obtained by collecting data on the weight and/or the bodymass-index of draftees. Data on mothers from some developing countries suggests that these aspects are quite closely related to the harvest cycle. As weak mothers produce fragile children – who in turn are more susceptible to death caused by the cold – the seasonal pattern of nutrition may interact with the seasonality of temperatures, influencing neonatal mortality. Some encouraging results of Derosas (2009) on Venice during the 19th century suggest that this path of research deserves to be pursued further.

Finally, additional data on the private and public care of infants would help clarify and shed new light on why northern Italy, notwithstanding persistent malnutrition, started so early on the road towards the health transition. There are many signs, however, beginning in the mid-19th century, of a growing awareness of the importance of caring for an infant in its earliest moments of life, both at the familial level and at the socio-political institutional level (Derosas, 2003). These data are mainly qualitative, however, and research would best be pursued by exploring the rich archives of the 19th century.

References

- A'Hearn, B. (2003). Anthropometric Evidence on Living Standards in Northern Italy, 1730-1860. *The Journal of Economic History*, 63(2), 351-381.
- Ashdown-Lambert, J.R. (2005). A review of low birth weight: predictors, precursors and morbidity outcomes, *The Journal of the Royal Society for the Promotion of Health*, 125 (2), 76-83.
- Breschi, M. (Ed.). (1999). Vivere in Friuli. Saggi di demografia storica (secc. XVI-XIX), Forum, Udine, Italy.
- Breschi, M., & Livi Bacci, M. (1986). Saison et climat comme contraintes de la survie des enfants, Population, 1, 9-36.
- Breschi, M., & Livi Bacci, M. (1997). Month of Birth as a Factor in Children's Survival. In A. Bideau, B. Desjardins & H. Pérez Brignoli (Eds.), *Infant and Child Mortality in the Past* (pp. 157-173). Oxford: Clarendon Press.
- Breschi, M., & Rettaroli, R. (1995). La nuzialità in Toscana, secoli XIV-XIX. In M. Breschi and L. Del Panta (eds.) Le Italie demografiche. Saggi di demografia storica (pp. 21-43), Udine.
- Camuffo, D., & Jones, Ph.D. (Eds.). (2002). Improved Understanding of Past Climatic Variability from Early Daily European Instrumental Sources (with CD-ROM). London: Springer.
- Costello, A. (2000). New methods for monitopring neonatal hypothermia and cold stress. In A. Costello and D. Manandhar (Eds.). *Improving Newborn Infant Health in Developing Countries*. London: Imperial College Press.
- D'Angelo, S., Dalla-Zuanna, G., & Rosina A. (2003). Massimo risultato con il minimo sforzo. Ricostruzione nominativa semiautomatica della sopravvivenza infantile, e analisi del regime demografico di Alì nel XVIII secolo. In M. Breschi, R. Derosas & P.P. Viazzo (Eds.), *Piccolo è bello. Approcci microanalitici alla ricerca storico-demografica* (pp. 67-92). Udine: Forum.
- Dalla-Zuanna, G., & Rossi, F. (2010). Comparisons of infant mortality in the Länder of the Austrian Empire using the *Tafeln* (1851-54). *Demographic Research*, 22 (26), 813-862.
- Dalla-Zuanna, G., Rosina A. & F. Rossi, F. (Eds.). (2004). Il Veneto. Storia della popolazione dalla caduta di Venezia a oggi. Venice: Marsilio.
- Dalla-Zuanna, G., Bergo, S., & Bonomo, S. (2005, February 16-18). La mortalità infantile nel Veneto nella prima metà del XIX secolo. Una ricostruzione nominativa per due parrocchie padovane. Paper presented at the Giornate di Ricerca sulla Popolazione, Italian Statistical Society, Padova, Italy.
- Darmstadt, G.L., et al. (2006). Introduction of community-based skin-to-skin care in rural Uttar Pradesh, India. *Journal of Perinatology*, 26, 597-604.
- Del Panta, L. (1997). Infant and Child Mortality in Italy, Eighteenth to Twentieth Century: Long-Term Trends and Territorial Differences. In A. Bideau, B. Desjardins, & H. Pérez Brignoli (Eds.), *Infant and Child Mortality in the Past* (pp. 7-20). Oxford: Clarendon Press.
- Derosas, R. (2003). Watch out for the Children! Differential Infant Mortality of Jews and Catholics in Nineteenth-Century Venice. *Historical Methods*, 36 (3), 109-130.
- Derosas, R. (2009). The joint effect of maternal malnutrition and cold weather on neonatal mortality in nineteenthcentury Northern Italy: an assessment of the hypothermia hypothesis. *Population Studies*, 63(3), 233-251.
- Diggle, P.J., Liang, K.Y., & Zeger, S.L. (1994). Analysis of Longitudinal Data. Oxford: Clarendon Press.
- Ekamper, P., van Poppel, F., van Duin, C., & Garssen, J. (2009). 150 years of temperature-related excess mortality in the Netherlands. *Demographic Research*, 21(14), 385-426.
- Flinn, M.W. (1981). The European Demographic System. Brighton: Harvester Press.
- Fornasin, A. (1999). Diffusione del mais e alimentazione nelle campagne friulane del Seicento. In M. Breschi (Ed.), *Vivere in Friuli. Saggi di demografia storica* (pp. 21-42). Udine: Forum.

Furegato, M. (2007). I registri parrocchiali di Battaglia Terme (1607-1871). Analisi aggregata e ricostruzione nominativa, Thesis of Master degree. Padua: Faculty of Statistics, University of Padua.

ISTAT (1934). Cause di morte. Rome.

- Kale, P.L., Andreozzi V.L., & Nobre F.F. (2004). Time series analysis of deaths due to diarrhoea in children in Rio de Jeneiro, Brazil, 1980-1998. *Journal of Health Population and Nutrition*, 22 (1), 27-33.
- Kambarami, R., & Chidede, O. (2003). Neonatal hypothermia levels and risk factors for mortality in a tropical country. *Central African Journal of Medicine*, 49, 103-6.
- Knobel, R. & Holditch-Davis, D. (2007). Thermoregulation and heat loss prevention after birth and during neonatal intensive-care unit stabilization of extremely low-birthweight infants. *Journal of Obstetric, Gynecologic, and Neonatal Nursing*, 36 (3), 280-7.
- Knodel, J., & van de Walle, E. (1979). Lessons from the past: policy implications of Historical fertility studies. *Population and Development Review*, 5 (2), 217-245.
- Lazzarini, A. (Ed.). (2002). Diboscamento montano e politiche territoriali. Alpi e Appennini dal Settecento al Duemila. Milano: Franco Angeli.
- Lechtig, A., Delgado, H., Martorell, R., Richardson, D., Yarbrough, C., & Klein., R.E., (1978). "Effect of maternal nutrition on infant mortality". In W.H. Mosley (Ed.), *Nutrition and Human Reproduction* (pp. 47-74). New York: Plenum Press.
- Lee, C.H. (1991). Regional inequalities in infant mortality in Britain, 1861-1971: Patterns and hypotheses. *Population Studies*, 45, 55-65.
- Livi Bacci, M. (1986). Fertility, Nutrition and Pellagra. Italy During the Vital Revolution. *Journal of Interdisciplinary History*, 16 (3), 431-454.
- Livi Bacci, M. (1990). Population and nutrition. Cambridge: Cambridge University Press.
- Livi Bacci, M. (1997). Introduction. In A. Bideau, B. Desjardins, & H. Pérez Brignoli (Eds.), *Infant and Child Mortality in the Past* (pp. 1-4). Oxford: Clarendon Press.
- Maddison, A. (2003). The World Economy: Historical Statistics. OECD, Paris.
- Malanima, P. (2003). Measuring the Italian Economy. 1300-1861. Rivista di Storia Economica, 19(3), 265-295.
- Malanima, P. (2006). An Age of Decline. Product and Income in Eighteenth-Nineteenth Century Italy. *Rivista di Storia Economica*, 22(1), 91-133.
- Malanima, P., & Daniele, V. (2007). Il prodotto delle regioni e il divario Nord-Sud in Italia (1861-2004). *Rivista di Politica Economica*, 2, 267-315.
- Mason, K. (1997). Explaining fertility transition. Demography, 34(4), 443-454.
- McKeown, T. (1976). The Modern Rise of Population. New York: Academic Press.
- Preston, S.H., & Haines, M.R. (1991). Fatal Years, Princeton: Princeton University Press.
- Ramakrishnan, U. (2004). Nutrition and low birth weight: from research to practice. American Journal of Clinical Nutrition, 79(1), 17-21.
- Rosina, A. (1995). "La popolazione del Veneto durante la dominazione austriaca. Un tentativo di ricostruzione (1815-1865)". *Bollettino di Demografia Storica*, 23, 97-118.
- Rosina, A. (2000). La popolazione di Venezia, 1633-1797: una ricostruzione delle dinamiche evolutive. In A. Rosina and F. Rossi (Eds.), *Il sistema demografico alla fine delle grandi epidemie. Venezia, il Dogado, Chioggia tra Seicento e Settecento*. Padua: CLEUP.
- Rosina, A. & Zannini, A. (2004). Mortalità infantile. In G. Dalla-Zuanna, A. Rosina & F. Rossi (Eds.), *Il Veneto. Storia della popolazione dalla caduta di Venezia a oggi* (pp. 177-194). Venice: Marsilio.
- Rossi, F. (1970). Storia della popolazione di Adria dal XVI al XIX secolo. Genus, 26(1), 73-167.
- Rossi, F. (1977). Crisi di mortalità ad Adria nel contesto ambientale dei secoli XVII-XIX. *Genus*, 33(3), 83-118.
- Rossi, F. (Ed.). (1996). La popolazione di una comunità rurale del Padovano. Altichiero, 1700-1900. Padua: CLEUP.
- Rossi, F. & Fanolla, A. (2007). Le statistiche della popolazione nella monarchia austriaca. Le Tafeln zur Statistik der Osterreichischen Monarchie. Padua: Dept. of Statistical Sciences, WP 13, University of Padua.
- Rossi, F., & Rosina, A. (1998). Il Veneto fra Sette e Ottocento, Bollettino di Demografia Storica, 28, 89-114.
- Rossi, F., & Tesolat, F. (2006). "Analisi della stagionalità in un contesto di alta mortalità infantile. Adria, 1675-1900". *Popolazione e Storia*, 1, 31-50.
- Scott, S., & Duncan, C.J. (2002). Demography and Nutrition. Oxford: Blackwell Publishing.
- Sormanni, G. (1881). Geografia nosologica. MAIC-Annali di Statistica, 6(2). Rome.
- Vallin, J. (1991). Mortality in Europe from 1720 to 1914: Long-term trends and patterns by age and sex. In R. Schofield, D. Reher, & A. Bideau (eds.), *The decline of mortality in Europe* (pp. 38-67). Oxford: Clarendon Press.
- Viazzo, P.P. (1997). Alpine Patterns of Infant Mortality in Perspective. In A. Bideau, B. Desjardins, & H. Pérez Brignoli (Eds.), *Infant and Child Mortality in the Past* (pp. 61-73). Oxford: Clarendon Press.
- WHO (1995). Maternal anthropometry and pregnancy outcomes: a WHO Collaborative Study. *Bull. World Health* Organ, 73(suppl.), 1-98.
- WHO (1997). *Thermal protection of the newborn: a practical guide*. Geneva: Department of Reproductive Health and Research, World Health Organization.

- Woods, R. (1997). Infant Mortality in Britain: A Survey of Current Knowledge on Historical Trends and variations. In A. Bideau, B. Desjardins, & H. Pérez Brignoli (Eds.), *Infant and Child Mortality in the Past* (pp. 74-88). Oxford: Clarendon Press.
- Wrigley E.A., & Schofield, R.S. (1981). The population history of England, 1541-1871. A reconstruction. London: Arnold.
- Zannini A. & Gazzi, D. (2003). Contadini, emigranti e "colonos". Tra le Prealpi venete e il Brasile meridionale: storia e demografia, 1780-1910. Treviso: Fondazione Benetton Studi Ricerche, Canova.