Nitrates and nitrites in vegetables and vegetable-based products and their intakes by Estonian population
Terje Tamme, Mari Reinik, Mati Roasto, Kadrin Juhkam, Toomas Tenno, Alida Kiis

To cite this version:
Terje Tamme, Mari Reinik, Mati Roasto, Kadrin Juhkam, Toomas Tenno, et al.. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by Estonian population. Food Additives and Contaminants, 2006, 23 (04), pp.355-361. 10.1080/02652030500482363 . hal-00577575

HAL Id: hal-00577575
https://hal.archives-ouvertes.fr/hal-00577575
Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Nitrates and nitrites in vegetables and vegetable-based products and their intakes by Estonian population

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Food Additives and Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TFAC-2005-267.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Research Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>14-Nov-2005</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Tamme, Terje; Institute of Veterinary Medicine and Animal Sciences of Estonian Agricultural University, Department of Food Hygiene and Control
Reinik, Mari; Health Protection Inspectorate, Tartu Laboratory
Roasto, Mati; Institute of Veterinary Medicine and Animal Sciences of Estonian Agricultural University, Department of Food Hygiene and Control
Juukam, Kadrin; Institute of Veterinary Medicine and Animal Sciences of Estonian Agricultural University, Department of Food Hygiene and Control
Tenno, Toomas; Tartu University, Institute of Physical Chemistry
Kis, Alida; Institute of Veterinary Medicine and Animal Sciences of Estonian Agricultural University, Department of Food Hygiene and Control |
| Methods/Techniques: | HPLC, Exposure assessment |
| Additives/Contaminants: | Nitrite, Nitrate |
| Food Types: | Vegetables, Baby food |
Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population

Abstract

The content of nitrates were determined in 1349 samples of vegetables and ready-made food in 2003 - 2004 as a part of the Estonian food safety monitoring programme and the Estonian Science Foundation grant research activities. The results of manufacturers’ analyses carried out for internal monitoring were included in the study. The highest mean values of nitrates were detected in dill, spinach, lettuce and beetroot. The mean concentrations were 2936, 2508, 2167 and 1446 mg kg⁻¹, respectively. The content of nitrites in samples was lower than 5 mg kg⁻¹. In total, the mean intake of nitrates by the Estonian population was 58 mg day⁻¹. The mean content of nitrates in vegetable-based infant foods of Estonian origin was 88 mg kg⁻¹. The average daily intake of nitrates by children in the age group of 4 to 6 years was 30 mg. The infants’ average daily intake of nitrates from consumption of vegetable-based foods was 7.8 mg.

Keywords: nitrate, nitrite, vegetables, intake

Introduction

Nitrate and nitrite can be found in food as naturally occurring compounds, drinking water and vegetables being substantial sources of nitrate intake. Interest in the dietary intakes of nitrates and nitrites has arisen from the concern about their possible adverse effect on health (Knekt et al.1999; Pegg and Shahidi 2000). An acceptable daily intake...
(ADI) of 0 to 3.7 mg kg-1 body weight for nitrate and of 0 to 0.06 mg kg-1 body weight for nitrite has been established by EU Scientific Committee for Food (EU Scientific Committee 1995). It has been estimated that vegetables constitute a major source of human exposure to nitrates contributing approximately 80 to 92\% of the average daily intake (Dich et al. 1996).

Levels of nitrates in vegetables differ to a large extent. According to nitrates content the vegetables can be divided into 3 groups:

1. Plants with high nitrate content (> 1000 mg kg-1) – beetroot, lettuce, spinach, other green leaf vegetables and herbs;
2. Plants with average nitrate content (50 to 1000 mg kg-1) – potatoes and other vegetables;
3. Plants with low nitrate content (0.5 to 50 mg kg-1) – berries, fruits, cereals, pod vegetables.

Nitrate concentration in vegetables depends on the biological properties of the plant culture, lightning conditions, type of soil, temperature, humidity, frequency of plants in the field, plant maturity, vegetation period, harvesting time, size of vegetable unit, storage time and source of nitrogen (Muramoto 1999; Fytianos and Zagoriannis 1999).

Even among different samples of the same vegetable varieties, the range of concentrations can be manifold. The limit concentrations for nitrates have been established in EU for spinach, lettuce and baby foods (European Commission 2002; European Commission 2004).
The nitrate ion has a low level of acute toxicity, but if transformed into nitrite, it may constitute a health problem. Reduction to nitrite may take place in the presence of bacteria or enzyme nitrate reductase, and in contact with metals. Nitrite is unstable at acidic pH values at which it can disproportionate to yield nitrate and nitrogen oxide and/or react with food components including amines, phenols and thiols (Hill 1996). It has been estimated that 5 to 8% of the nitrate from the diet may be reduced to nitrite by the microflora in the oral cavity (Mensinga et al. 2003). Although nitrates and nitrites have been used for centuries, it has only recently been discovered that nitrate is manufactured in mammals by the oxidation of nitric oxide and that the nitrate formed has the potential for disinfecting the food we eat (Benjamin 2000; Archer 2002).

Nitrite in food is primarily considered to be a health problem because its presence both in food and body may lead to the formation of carcinogenic nitrosoamines (JECFA 1996; Vermeer et al. 1998) and the clinical symptom of methemoglobinemia (WHO 1995). Although carcinogenicity of N-nitrosoamines in humans cannot be tested, epidemiological studies have suggested a possible link to the incidence of various cancers in humans (Pegg and Shahidi 2000). It is possible that other factors such as intake of vegetables, fruit and nitrosation inhibitors, or some component of cured meat and salted fish other than N-nitroso compounds could partly be responsible for the observed associations (Eichholzer and Gutzwiller 2003). Consumption of vegetables containing high level of nitrates and incorrect storage of home-made vegetable purees has been found to be potential causes of infant methemoglobinemia (Sanchez-Echaniz and Benito-Fernández 2001). Processed infant foods may also contain increased levels of nitrites (Hill 1996).
Estonian food safety monitoring programme was initiated in 1998 (Reini k et al. 2001). Concentrations of food additives and contaminants in main food groups are determined annually within the frames of the programme. Obtained data were used for assessment of dietary risks connected with consumption of food additives and contaminants.

Materials and methods

Samples

Altogether, 1349 samples of vegetables and ready-made food were analyzed in 2003 - 2004. Samples were collected mainly at the retail level by food inspection authorities within the frames of state official surveillance and monitoring programme, by researchers within activities of the Estonian Science Foundation grant no. 5416, or were brought to the laboratory by the farmers with the aim of self-control. Approximately 80% of the analyzed vegetables had been grown in Estonia. The minimal amount of vegetable sample was 1 kg. Sample collection covered all seasons. In addition to raw vegetables, vegetable-based baby foods and ready-made soups were analyzed.

Methods of analysis

Nitrate concentrations in vegetables were determined by potentiometric method based on Russian standard GOST 4228-86 (Gosudarstvennõi agropromõšlennõi komitet 1986). Prior to analysis non-edible parts of the sample were removed. In case of small vegetables the whole sample was chopped. Large sample units (e.g. head cabbage) were cut vertically into four pieces, one quarter from each unit was taken for the analysis.
Vegetable juice was prepared using a juice press. Leafy and low juice-containing vegetables were finely chopped. Nitrates were extracted by KAl(SO₄)₂ solution and determined potentiometrically by ion-selective electrode. The method has been accredited by Estonian Accreditation Body. Limit of determination was 30 mg kg⁻¹ and measurement uncertainty up to 15 % (k=2, norm.) depending on the sample matrix.

The concentration of nitrates and nitrites in infant purees and ready-made food were determined by an HPLC method, based on NMKL (Nordic Committee on Food Analysis) method no. 165, 2000. Nitrates and nitrites were extracted from the samples by hot water. Acetonitrile was added for removal of interfering substances. The filtered solution was injected into a Shimadzu LC10 chromatograph, nitrate and nitrite were separated by Alltech C₁₈ column and detected by UV-detector at the wavelength of 205 nm. The limit of quantification for both ions was 5 mg kg⁻¹, measurement uncertainty (U) at the concentration of 100 mg kg⁻¹ was 12 mg kg⁻¹ (k=2, norm.). The method has been accredited by Estonian Accreditation Body. The Tartu Laboratory of Estonian Health Protection Inspectorate has successfully participated in collaborative study of the method (Merino et al. 2000) and in intercomparison tests.

Method of intake calculation

Different methods can be used for the estimation of additive and contaminant intake from food: food supply data, published tables of the mean consumption of dietary items, duplicate portion analysis, dietary survey among the individuals, probabilistic and worse case screening models. Depending on the method used, intake estimates can differ to a large extent (Kroes et al. 2002).
In this work food consumption data from the Board of Statistics were used in the
calculation of average intake for the whole population. Intake of nitrates by children
was estimated using the consumption data from kindergarten menus and nutrition
recommendations for infants. Consumed amounts of vegetables were reduced, taking
into account the effect of peeling, cleaning and removing of non-edible parts. Nitrate
concentrations of the commodities were corrected for cooking loss.

Results and discussion

Concentration of nitrates in vegetables

Limit values for nitrate concentration in several vegetables including potato, cabbage,
carrot, beetroot, onion, cucumber etc. had been valid in Estonia before joining the EU in
2004. Due to the existing legal limits, a lot of samples were analyzed annually within
the framework of official control. Maximum permitted concentrations were exceeded in
17% of the samples, most frequently for cucumber in winter period, spring onion,
cabbage, turnip and beetroot. Exceedance of the EU permitted concentrations were not
detected, although the nitrate concentration was close to the MRL in one spinach
sample.

The results for nitrate analyses in all vegetables are shown in Table I. As seen from the
table, the highest mean values of nitrates were detected in dill, spinach, lettuce and
beetroot. The mean concentrations were 2936, 2508, 2167 and 1446 mg kg$^{-1}$,
respectively. The lowest mean values of nitrates were detected in tomato, onion and
potato, the contents being 41, 55 and 94 mg kg$^{-1}$, respectively. In vegetables of Estonian
origin, the content of nitrites was lower than 5 mg kg\(^{-1}\) - the detection limit of the method. As in Estonia potatoes are consumed in large amounts, the number of the studied samples is the largest. Statistical difference between nitrate content of early, late and stored potatoes was not observed. Average nitrate concentration in imported potatoes was 200 mg kg\(^{-1}\), significantly higher than that of domestic tubers. Similar nitrate concentrations have also been detected in other countries (Table II), with the exception of nitrates content in spinach and potato, according to the data of Chung et al. (2003). The contents of nitrate in spinach grown in Korea and Japan were 1.5 to 2.0 fold higher. The nitrate content in potatoes of Estonian and Finnish origin was 94 and 82 mg kg\(^{-1}\), in those of Korean and Japanese origin it was 452 mg kg\(^{-1}\) and 713 mg kg\(^{-1}\), respectively (Penttilä 1995; Chung et al. 2003).

Leafy vegetables accumulate high amounts of nitrates, concentrations reaching up to 6000 mg kg\(^{-1}\). Nitrate concentration in some salad crops of different varieties during summer and winter seasons were screened by Escobar-Gutierrez (2002): nitrate concentration showed great variability between cultivars and also varieties within one cultivar, exceeding of limit concentrations was more frequent in summer season than in winter. In the present study the nitrate content of lettuce was lower in summer (average 1952 mg kg\(^{-1}\)) than in winter (average 3024 mg kg\(^{-1}\)), exceeding of limit concentrations was not detected.
Significantly higher nitrate content was found in Italian organically grown green salad and rocket than in those conventionally produced (De Martin and Restani 2003). On the contrary, US investigation (Worthington 2001) states that organic crops contained significantly less nitrates than conventional crops. The review of literature conducted by Heaton (2001) found 14 studies showing lower nitrate content (50%) in organically grown crops and two studies showing insignificant differences.

Concentration of nitrates and nitrites in vegetable-based products for infants

Thirty-one samples of canned infant food and 10 carrot juice samples were analyzed for obtaining data for intake calculations. Nitrate contents close to EU limit concentration of 200 mg kg\(^{-1}\) were detected in two samples. Nitrate concentration was the highest in the purees containing carrot and pumpkin: 62 to 148 mg kg\(^{-1}\) and 124 to 162 mg kg\(^{-1}\), respectively. The highest nitrate content, 251 mg kg\(^{-1}\), was detected in fresh carrot juice, which is frequently fed to babies (Table III). Similar results have been reported in a Spanish study (Hardisson et al. 1996), where nitrate concentrations exceeding the level of 250 mg kg\(^{-1}\) were found in baby foods in which the main ingredient was carrot (Table III). The mean contents of nitrates in vegetable-based infant foods of Estonian and Spanish origin were 88 and 92 mg kg\(^{-1}\), respectively. Nitrites were not detected in samples of infant and ready-made food of Estonian origin.

[Insert Table III about here]

Intake calculation

Intake of nitrates has been evaluated, using the data from three different consumption surveys in Estonia (see Tables IV, V and VI). Data were collected from the household
consumption survey made by the National Board of Statistics in Estonia. Data include the number of population and monthly average amounts of consumed vegetables by Estonian population in 2000-2002. Calculations of the mean daily intake of vegetables were made according to the data of the whole population.

In Table IV the amounts of vegetables consumed daily are presented. Consumed amounts of vegetables were reduced, taking into account the effect of peeling, cleaning and removing of non-edible parts. Nitrate concentrations of the commodities were corrected for cooking loss.

The consumption data in the tables were obtained in 2005 from the menu of two kindergartens. During the year, the consumption data according to the menu and amount of supplied vegetables were taken into account. The mean consumed amounts of vegetable-based foods by children in the age group of 1 to 6 years were calculated taking into consideration the average number of children (n=335).

The data for consumption levels in Table V were corrected for cooking and peeling loss for mean nitrate content in mg kg$^{-1}$. The consumption data in Table VI were calculated on the basis of the infant menu recommended by Estonian paediatricians. The recommended infant menu of the age group of 6 to 12 months should contain 50% of vegetable based foods and 50% of fruit based foods in addition to breast-feeding.

[Insert Tables IV-VI about here]
The average content of nitrates in each vegetable commodity or vegetable based food has been used in all calculations of the intake. The average body weight used for comparison of the results with ADI (Acceptable Daily Intake) was 60 kg. Estonian and foreign products were not differentiated in the survey from the National Board of Statistics of Estonia, both white and red cabbages were included in the consumed amounts of cabbage (Table IV).

The highest intakes of nitrates by Estonian population were obtained from consuming of cabbage and potato: 14 and 12 mg day\(^{-1}\), respectively (Table IV). The following highest intakes were obtained by consuming of cucumber and beetroot: 8.2 and 7.3 mg day\(^{-1}\), respectively. The mean total intake of nitrate per person in Europe ranges between 50 and 140 mg per day and in the USA about 40 to 100 mg per day (Mensinga et al. 2003; Ysart et al. 1999). Mean daily intake of nitrates by Estonian 1- to 6-year-old children was calculated on the basis of the consumption survey from the menus and amounts of supplied vegetables of two kindergartens. Table V indicates the daily intakes of nitrates and the intake percentage from ADI value by children in the age group of 4 to 6 years, consuming vegetable-based foods. The intake of nitrates by 4- to 6- years-old children was 30 mg (40% of ADI), the average body weight of 20 kg was used in the calculations. The obtained results indicated that although the mean nitrate intakes did not exceed ADI, the maximum intakes were several times higher than mean values. The menu of the age group of 1- to 3-years-old was similar to 4- to 6-years-old children group with the difference of 15% less consumed food amount. According to the calculations, the intake of nitrates by this age group was 26 mg day\(^{-1}\) (52% of ADI). For calculation of intakes, the average body weight of 15 kg was used. The daily nitrate
intake by Finnish adolescents and children was 47.9 mg day\(^{-1}\) (Penttilä 1995). In a Polish study (Wawrzyniak et al. 2003), nitrates intake for 1- to 6-years-old children exceeded ADI twice and the main food source of nitrates were vegetables (90%).

The mean daily intake of nitrate among Estonian infants aged 6 to 12 months was calculated on the basis of the recommended infant menu. Table VI indicates the recommended daily consumption amounts of vegetable-based purees and juices for infants. The mean contents of nitrates in infant foods are presented in Table III with the average content of 88 mg kg\(^{-1}\). Table VI confirms that older infants get higher amounts of nitrates compared to younger ones. For instance, a 6 months old infant gets 4.4 mg and a 12 months old infant 11 mg nitrates per day. An infant’s average daily intake of nitrates from consumption of vegetable-based infant foods was 7.8 mg (22% of ADI).

Conclusions

In the present investigation, the mean values and contents of nitrates and nitrites in vegetables and vegetable products were determined. In Estonia for the first time the daily intake of nitrates, obtained from vegetables by children and the whole population, was estimated. According to the EU legislation on food contaminants, exceedance of the permitted limits for nitrates in vegetables and infant food were not detected. The possible reason for low levels of nitrates in vegetables and infant foods was probably related with relatively low use of fertilizers in Estonia. The results showed that cabbage and potato were the main sources of nitrate intake. The mean intake of nitrates from vegetables by Estonian population was 58 mg per day, calculated on the basis of body weight of 60 kg, which made up 26% of ADI value. Nitrate intake by 1- to 6-years-old
children was found to be 28 mg per day (46% of ADI). The mean nitrates intake from infant food by children aged 6 to 12 months was 7.8 mg per day, calculated on the basis of body weight of 15 kg (22% of ADI). Considering the toxicity of nitrates and the possibility of their transformation to nitrite and carcinogenic N-nitrosoamines, the importance of information on daily intake by children is obvious.

Acknowledgements

The study was supported by the Estonian Science Foundation, Grant no. 5416.

References

Systems, University of California. Available from:

Table I Nitrate contents of Estonian vegetables in 2003-2005

<table>
<thead>
<tr>
<th>Commodity</th>
<th>No. of samples</th>
<th>Minimum nitrate content, mg kg(^{-1})</th>
<th>Maximum nitrate content, mg kg(^{-1})</th>
<th>Average nitrate content, mg kg(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato</td>
<td>449</td>
<td><30</td>
<td>360</td>
<td>94</td>
</tr>
<tr>
<td>Carrot</td>
<td>202</td>
<td><30</td>
<td>525</td>
<td>148</td>
</tr>
<tr>
<td>Cabbage</td>
<td>168</td>
<td>74</td>
<td>1138</td>
<td>437</td>
</tr>
<tr>
<td>Beetroot</td>
<td>130</td>
<td>214</td>
<td>3556</td>
<td>1446</td>
</tr>
<tr>
<td>Cucumber</td>
<td>130</td>
<td><30</td>
<td>1236</td>
<td>160</td>
</tr>
<tr>
<td>Turnip</td>
<td>58</td>
<td>64</td>
<td>1062</td>
<td>307</td>
</tr>
<tr>
<td>Chinese cabbage</td>
<td>36</td>
<td>232</td>
<td>2236</td>
<td>1243</td>
</tr>
<tr>
<td>Tomato</td>
<td>25</td>
<td><30</td>
<td>100</td>
<td>41</td>
</tr>
<tr>
<td>Onion</td>
<td>21</td>
<td>30</td>
<td>92</td>
<td>55</td>
</tr>
<tr>
<td>Spring onion</td>
<td>15</td>
<td>160</td>
<td>920</td>
<td>477</td>
</tr>
<tr>
<td>Lettuce</td>
<td>14</td>
<td>397</td>
<td>3230</td>
<td>2167</td>
</tr>
<tr>
<td>Pumpkin</td>
<td>8</td>
<td><30</td>
<td>445</td>
<td>174</td>
</tr>
<tr>
<td>Radish</td>
<td>6</td>
<td>670</td>
<td>1500</td>
<td>1309</td>
</tr>
<tr>
<td>Dill</td>
<td>5</td>
<td>2236</td>
<td>3267</td>
<td>2936</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>4</td>
<td>55</td>
<td>376</td>
<td>201</td>
</tr>
<tr>
<td>Celery</td>
<td>4</td>
<td>256</td>
<td>830</td>
<td>565</td>
</tr>
<tr>
<td>Parsley</td>
<td>4</td>
<td>674</td>
<td>1588</td>
<td>966</td>
</tr>
<tr>
<td>Strawberry</td>
<td>3</td>
<td><30</td>
<td>111</td>
<td>55</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>3</td>
<td>104</td>
<td>404</td>
<td>287</td>
</tr>
<tr>
<td>Zucchini</td>
<td>2</td>
<td>330</td>
<td>511</td>
<td>421</td>
</tr>
<tr>
<td>Watermelon</td>
<td>1</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Spinach</td>
<td>1</td>
<td>2508</td>
<td>2508</td>
<td>2508</td>
</tr>
<tr>
<td>Carrot juice</td>
<td>10</td>
<td>76</td>
<td>251</td>
<td>136</td>
</tr>
<tr>
<td>Infant purees</td>
<td>31</td>
<td>26</td>
<td>208</td>
<td>83</td>
</tr>
<tr>
<td>Ready-made salads</td>
<td>14</td>
<td>80</td>
<td>474</td>
<td>259</td>
</tr>
<tr>
<td>Ready-made vegetable soups</td>
<td>5</td>
<td>588</td>
<td>740</td>
<td>639</td>
</tr>
</tbody>
</table>
Table II Comparison of mean nitrate contents of vegetables (mg kg\(^{-1}\)) in different countries (Penttilä 1995; Dejonckheere et al., 1994; Petersen & Stoltze, 1999; Belitz & Grosch, 1999; Chung et al., 2003).

<table>
<thead>
<tr>
<th>Vegetable commodity</th>
<th>Finland</th>
<th>Great Britain</th>
<th>Belgium</th>
<th>Denmark</th>
<th>United States</th>
<th>Korea</th>
<th>Japan</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato</td>
<td>82</td>
<td>150</td>
<td>154</td>
<td>182</td>
<td>452</td>
<td>713</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Carrots</td>
<td>264</td>
<td>274</td>
<td>278</td>
<td></td>
<td>316</td>
<td>193</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td>1835</td>
<td>2330</td>
<td>2782</td>
<td>1489</td>
<td>2430</td>
<td>1489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese cabbage</td>
<td>1057</td>
<td></td>
<td>1859</td>
<td></td>
<td>1740</td>
<td>1040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabbage</td>
<td>607</td>
<td>712</td>
<td></td>
<td>333</td>
<td>451</td>
<td>725</td>
<td>451</td>
<td></td>
</tr>
<tr>
<td>Turnip</td>
<td>908</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomato</td>
<td>170</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Sweet pepper</td>
<td>140</td>
<td></td>
<td></td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumber</td>
<td>240</td>
<td>151</td>
<td>344</td>
<td></td>
<td>212</td>
<td>384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onion</td>
<td>140</td>
<td>235</td>
<td>59</td>
<td></td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beetroot</td>
<td>1800</td>
<td></td>
<td></td>
<td>1505</td>
<td></td>
<td>1630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green beans</td>
<td>455</td>
<td></td>
<td>585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radish</td>
<td>2600</td>
<td>2136</td>
<td></td>
<td></td>
<td>1878</td>
<td>1060</td>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td>2470</td>
<td>2297</td>
<td>1783</td>
<td>965</td>
<td>4259</td>
<td>3560</td>
<td>965</td>
<td></td>
</tr>
<tr>
<td>Leek</td>
<td>841</td>
<td></td>
<td>284</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring onion</td>
<td>436</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garlic</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green pepper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>
Table III Comparison of the concentrations of nitrates in vegetable-based infant food

<table>
<thead>
<tr>
<th>Description of food</th>
<th>Estonia (this study)</th>
<th>Nitrate, mg kg$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spain (Hardisson et al.1996)</td>
</tr>
<tr>
<td>Vegetable purees</td>
<td>19-208</td>
<td></td>
</tr>
<tr>
<td>Vegetable and meat purees</td>
<td>32-148</td>
<td>20-204</td>
</tr>
<tr>
<td>Vegetable and cereal purees</td>
<td>24-162</td>
<td></td>
</tr>
<tr>
<td>Carrots, carrot juice</td>
<td>76-251</td>
<td>104</td>
</tr>
<tr>
<td>average</td>
<td>88 (n = 41)</td>
<td>92</td>
</tr>
</tbody>
</table>
Table IV Mean daily nitrate intake in Estonia, calculated on the basis of the consumption survey from the National Board of Statistics

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Consumption, g per day</th>
<th>Mean nitrate content, mg kg⁻¹ (cooking and peeling losses taken into account)</th>
<th>Mean nitrate intake, mg per day</th>
<th>% of ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato</td>
<td>206</td>
<td>57</td>
<td>12</td>
<td>5.3</td>
</tr>
<tr>
<td>Cabbage</td>
<td>36</td>
<td>382</td>
<td>14</td>
<td>6.2</td>
</tr>
<tr>
<td>Carrot</td>
<td>24</td>
<td>129</td>
<td>3.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Beetroot</td>
<td>6.7</td>
<td>1085</td>
<td>7.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Turnip</td>
<td>4</td>
<td>269</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Tomato</td>
<td>21</td>
<td>41</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>Cucumber</td>
<td>51</td>
<td>160</td>
<td>8.2</td>
<td>3.7</td>
</tr>
<tr>
<td>Onion</td>
<td>14</td>
<td>55</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Lettuce</td>
<td>2.8</td>
<td>2167</td>
<td>6.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Pumpkin and Zucchini</td>
<td>2.6</td>
<td>260</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Radish</td>
<td>0.4</td>
<td>1300</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Ready-made salads</td>
<td>2.9</td>
<td>259</td>
<td>0.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Ready-made soups</td>
<td>1.8</td>
<td>639</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Frozen vegetables</td>
<td>1.6</td>
<td>148</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Herbs (celery, parsley, dill)</td>
<td>0.9</td>
<td>1489</td>
<td>1.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Total</td>
<td>376</td>
<td>58</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

ADI – Acceptable Daily Intake
Table V Mean daily nitrate intake of Estonian children, calculated on the basis of the consumption survey from the menu of kindergartens

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Consumption, g per day</th>
<th>Mean nitrate content, mg kg⁻¹ (cooking and peeling losses taken into account)</th>
<th>Mean nitrate intake, mg per day</th>
<th>% of ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potato</td>
<td>150</td>
<td>57</td>
<td>8.6</td>
<td>11</td>
</tr>
<tr>
<td>Cabbage</td>
<td>17</td>
<td>382</td>
<td>6.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Carrot</td>
<td>21</td>
<td>129</td>
<td>2.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Beetroot</td>
<td>7</td>
<td>1085</td>
<td>7.6</td>
<td>10</td>
</tr>
<tr>
<td>Turnip</td>
<td>5.7</td>
<td>269</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Tomato</td>
<td>4.3</td>
<td>41</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cucumber</td>
<td>8.5</td>
<td>160</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>Onion</td>
<td>10</td>
<td>55</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Spring onion</td>
<td>0.5</td>
<td>477</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Frozen vegetables</td>
<td>1.6</td>
<td>148</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Herbs</td>
<td>0.7</td>
<td>1489</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Total, 4- to 6-years-old children</td>
<td>226</td>
<td></td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Total, 1- to 3-years-old children</td>
<td>198</td>
<td></td>
<td>26</td>
<td>52</td>
</tr>
</tbody>
</table>

ADI – Acceptable Daily Intake
Table VI Mean daily nitrate intake of infants, calculated on the basis of the recommended infant menu

<table>
<thead>
<tr>
<th>Age</th>
<th>Body weight, kg</th>
<th>Recommended consumption of vegetable purees, g</th>
<th>Mean nitrate intake, mg per day</th>
<th>% of ADI</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months</td>
<td>7.8</td>
<td>50</td>
<td>4.4</td>
<td>15</td>
</tr>
<tr>
<td>7 months</td>
<td>8.5</td>
<td>70</td>
<td>6.2</td>
<td>20</td>
</tr>
<tr>
<td>8 months</td>
<td>9</td>
<td>80</td>
<td>7.0</td>
<td>21</td>
</tr>
<tr>
<td>9 months</td>
<td>9.4</td>
<td>90</td>
<td>7.9</td>
<td>23</td>
</tr>
<tr>
<td>10 months</td>
<td>9.8</td>
<td>100</td>
<td>8.8</td>
<td>24</td>
</tr>
<tr>
<td>11 months</td>
<td>10.3</td>
<td>110</td>
<td>9.7</td>
<td>25</td>
</tr>
<tr>
<td>12 months</td>
<td>10.6</td>
<td>120</td>
<td>11</td>
<td>27</td>
</tr>
<tr>
<td>Average</td>
<td>9.3</td>
<td>89</td>
<td>7.8</td>
<td>22</td>
</tr>
</tbody>
</table>

ADI – Acceptable Daily Intake