PCR identification of Aspergillus niger and Aspergillus tubingensis based on calmodulin gene
Antonia Susca, Gaetano Stea, Giuseppina Mulé, Giancarlo Perrone

To cite this version:

HAL Id: hal-00577415
https://hal.archives-ouvertes.fr/hal-00577415
Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PCR identification of *Aspergillus niger* and *Aspergillus tubingensis* based on calmodulin gene

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Food Additives and Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TFAC-2007-170.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Special Issue</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>21-Jun-2007</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Susca, Antonia
 | Stea, Gaetano; National Research Council (CNR), Institute of Sciences of Food Production (ISPA)
 | Mulé, Giuseppina; National Research Council (CNR), Institute of Sciences of Food Production (ISPA)
 | Perrone, Giancarlo; National Research Council (CNR), Institute of Sciences of Food Production (ISPA) |
| Methods/Techniques: | Molecular biology - PCR, Mycology, Risk assessment, Screening - microbial screening |
| Additives/Contaminants: | Mycotoxins - fungi, Ochratoxin A |
| Food Types: | Dried fruit, Wine, Grapes |
PCR identification of *Aspergillus niger* and *Aspergillus tubingensis* based on calmodulin gene.

Antonia Susca, Gaetano Stea, Giuseppina Mulè and Giancarlo Perrone

Institute of Sciences of Food Production, ISPA-CNR, Via Amendola 122/0, 70126, Bari, Italy
ABSTRACT

Aspergillus niger and *A. tubingensis*, species belonging to section *Nigri*, are commonly found in plant products and processed food, such as grapes, cereals, coffee and derived products. These two species are very difficult to differentiate by classical morphological criteria and some isolates are known to produce ochratoxin A. The exact identification of these two species is very important to avoid overestimation of toxicological contamination and related risks. A PCR-based identification and detection assay was developed as a tool to identify *A. niger* and *A. tubingensis*, using molecular differences obtained by sequencing the calmodulin gene. Two pairs of species-specific primers were designed and empirically evaluated for PCR identification of *A. niger* and *A. tubingensis*. Species-specific PCR products generated by each primer set were 505 bp (*A. tubingensis*) and 245 bp (*A. niger*) in length, which could be potentially useful for a multiplex PCR assay. The sensitivity of this assay was about 10 pg DNA in 25 µl PCR reaction volume, using pure total DNA of the two species. The method described in this study represents a rapid and reliable procedure to assess the presence in food products of two ochratoxigenic species of section *Nigri*.

KEYWORDS: *Aspergillus niger*, *Aspergillus tubingensis*, ochratoxin A, species-specific primers, PCR, calmodulin gene
Introduction

Aspergillus species belonging to section *Nigri* are distributed worldwide. Many species of them cause food spoilage, and several are used in the fermentation industry (Bennett and Klich, 1992), or candidate in the biotechnology industries, such as *A. niger* which has been granted the GRAS (Generally Regarded As Safe) status by the Food and Drug Administration of the US Government. Recently, the significance of these species, commonly known as “black aspergilli” has completely changed since they were identified as the main fungi responsible for the ochratoxin A (OTA) accumulation in grapes and wine (Cabanès et al. 2002; Da Rocha Rosa et al., 2002; Battilani and Pietri, 2002; Magnoli et al., 2003). OTA is a potent nephrotoxin diffusely distributed in food and feed products such as grains, legumes, coffee, dried fruits, beer, wine, and meats. Since *A. tubingensis* and *A. niger*, together with *A. carbonarius*, are known to produce OTA, their exact identification within the *A. niger* aggregate group of species is very important to avoid overestimation of contamination and toxicological risk (Medina *et al.*, 2005; Perrone *et al.*, 2006a). In spite of this, the identification of species within the *A. niger* “aggregate”, a group of species within section *Nigri*, is still controversial. Molecular studies reduced the number of synonym names of described species within the black aspergilli and supported the division of this “aggregate” in two to four morphologically indistinguishable species: *A. niger*, *A. tubingensis*, *A. foetidus* and *A. brasiliensis* (Kuster van Someren *et al.*, 1991; Accensi *et al.*, 1999; Parenicova *et al.*, 2000; Abarca *et al.*, 2004). These four species are very difficult to differentiate by classical morphological criteria, such as conidial shape, colour and size (Samson *et al.*, 2004). However, effectiveness in the estimation of OTA contamination is dependent on
the association between species and OTA production, hence the use of primers identified on genes involved in the metabolic pathway would be more helpful. Although two primers were recently developed to detect OTA producers by Polymerase Chain Reaction (PCR) (Dao et al., 2005), genes involved in steps of OTA biosynthesis have not yet been identified. A PCR-based identification and detection of species could be an useful tool for identifying potential ochratoxigenic Aspergillus spp. The calmodulin gene has proved to be highly useful in discrimination of species belonging to section Nigri, since it contains some species specific diagnostic traits, suitable for diagnostic purposes. Molecular differences were exploited to set up a qualitative PCR assay for A. carbonarius and A. japonicus/A. aculeatus detection (Perrone et al., 2004). Moreover a quantitative real-time PCR assay using TaqMan chemistry was recently set up for A. carbonarius DNA quantification on grapes (Mulè et al., 2006).

The objective of this work was to set up a species-specific PCR assay based on differences in sequences found in the calmodulin gene for an accurate identification of A. niger and A. tubingensis in pure cultures.

Material and methods

Fungal strains

One hundred and fifty strains were analyzed in this study: 10 type-strains belonging to Aspergillus sect. Nigri, A. aculeatus ITEM 7046 (GenBank accession no. for calmodulin gene sequences, AJ964877), A. brasiliensis ITEM 7048 (AM295175), A. carbonarius ITEM 4503 (AJ964873), A. ellipticus ITEM 4505 (AM117809), A. foetidus ITEM 4507 (AM419749), A. heteromorphus ITEM 7045 (AM421461), A.
ibericus ITEM 6600 (AJ971806), A. japonicus ITEM 4497 (AJ582717), A. niger ITEM 4502 (AJ964872), A. tubingensis ITEM 7040 (AJ964876); 136 strains of “black aspergilli” isolated from grapes grown in different geographical areas: 1 A. aculeatus, 4 A. ibericus, 4 A. brasiliensis, 31 A. carbonarius, 23 A. japonicus, 44 A. niger, 29 A. tubingensis (Perrone et al., 2006b); and 4 strains as outgroup: 2 A. ochraceus, 1 Botrytis cinerea (ITEM 3715) and 1 Saccharomyces cerevisae (ITEM 6904). All strains were obtained from the culture collection of the Institute of Sciences of Food Production, with accession number ITEM. Further information about the strains (year of isolation, depositor, toxin production, etc.) are available in the ITEM web site: http://www.ispa.cnr.it/Collection.

DNA extraction

Fungal strains were grown in shaken cultures (150 rpm) in Wikerham’s medium (40 g of glucose, 5 g of peptone, 3 g of yeast extract, 3 g of malt extract and water up to 1 L).

About 40 mg of filtered, frozen and lyophilized mycelium from each strain were used for total DNA extraction using the EZNA Fungal DNA Miniprep Kit (Omega Bio-tek, Doraville, USA). DNA was recovered and dissolved in sterile water. Concentrations of DNA were determined by gel electrophoresis, and by measuring the ultraviolet-induced fluorescence emitted by ethidium bromide molecules intercalated into DNA, and comparing the fluorescent yield of the samples with a standard (100 bp DNA ladder, New England Biolabs, Beverly, MA, USA).

Fungal DNA amplification and sequencing
Total DNA extracted from all strains (excluding *B. cinerea* and *S. cerevisae*) was used for PCR amplification of approximately 700 bp fragments of the calmodulin gene with CL1 and CL2A primers (O’Donnell et al., 2000). Amplifications of the partial calmodulin gene were set up in 100 µl reaction mixtures containing 2.5 U of Taq Gold DNA polymerase (Applied Biosystems, Foster City, CA, USA), 30 pmol of each primer, 20 nmol of each deoxynucleoside triphosphate (Applied Biosystems), and approximately 10 ng of fungal template DNA. PCR reactions were performed using the following conditions: denaturation at 94 °C for 10 min; 35 cycles of denaturation at 94 °C for 50 s, annealing at 55 °C for 50 s, extension at 72 °C for 1 min; final extension at 72 °C for 7 min, followed by cooling at 4 °C until recovery of the samples. After amplification, PCR products were purified by Microcon-PCR Filter Units (Millipore, Bedford, MA, USA).

Sequence analysis was performed with the “Big-Dye Terminator Cycle Sequencing Ready Reaction Kit” for both strands, and the sequences were aligned with the “MT Navigator” software (Applied Biosystems). All the sequencing reactions were purified by gel filtration through columns containing Sephadex G-50 (Pharmacia, Uppsala, Sweden) equilibrated in double-distilled water and were analyzed on the automatic sequencer “310-Genetic Analyzer” (Applied Biosystems). The calmodulin sequence data of all 150 isolates were aligned by the Clustal-W method.

Primer design and testing

Conservative and polymorphic calmodulin gene sequences were sought in a multialignment of 11 *Aspergillus* species belonging to Section *Nigri* using Clustal-W
method. Based on these data, two species-specific primer pairs were designed from the highly conserved region in *A. tubingensis* and *A. niger* species, exploiting polymorphic regions of the calmodulin gene in *Aspergillus* spp. using Primer Express software (Applied Biosystems, Foster City, CA, USA). The sequence identity between the designed primers and the calmodulin regions was analyzed with a BLAST search (http://www.ncbi.nlm.nih.gov).

PCR products were separated in 1.5% Tris–acetate–EDTA–agarose gels and were visualized with ethidium bromide and ultraviolet illumination (Sambrook et al., 1989). As negative controls, strains belonging to 8 different species of Section *Nigri* (*A. aculeatus, A. ibericus, A. brasiliensis, A. carbonarius, A. ellipticus, A. etheromorphus, A. japonicus, A. foetidus*) were used. Strains of *A. ochraceus, Botrytis cinerea*, and *Saccharomyces cerevisiae*, obtained from ITEM Culture Collection were used as outgroup. Positive controls of PCR reaction were prepared replacing the species-specific primer designed with rDNA primers ITS1 and ITS4 (White et al., 1990). Images were captured and stored using a Kodak Easy-Share DX3215 Zoom Digital Camera. The PCRs containing species-specific primers were set up in 25 µl reaction mixtures containing 1.25 U of Taq Gold DNA polymerase (Applied Biosystems), 7.5 pmol of each primer, 5 nmol of each deoxynucleoside triphosphate (Applied Biosystems, Foster City, CA, USA), and approximately 3 ng of fungal template DNA. Reactions were performed using the following PCR conditions: denaturation at 95 °C for 5 min; 25 cycles of denaturation at 94 °C for 50 s; annealing at 60 °C for 50 s; extension at 72 °C for 1 min; final extension at 72 °C for 7 min, followed by cooling at
4 °C until recovery of the samples. Amplification products were checked on 1.5% agarose gel stained with ethidium bromide.

Results

We evaluated the usefulness of two PCR assays, that target a region of calmodulin gene, for identifying Aspergillus niger and Aspergillus tubingensis within Aspergillus niger “aggregate” of species.

The partial calmodulin gene sequence has both conserved and polymorphic regions corresponding respectively mainly to exons and introns of the gene in the examined species, useful for designing species-specific primers for A. niger and A. tubingensis. Calmodulin sequences showed 92 % identity (figure 1) between A. niger and A. tubingensis. In this analysis were included the type strains of A. tubingensis ITEM 7040 (AJ964876) and A. niger ITEM 4501 (AJ964872) respectively; their sequences were previously deposited in the EMBL nucleotide sequence database (Perrone et al., 2006a).

The visual inspection of the aligned calmodulin partial gene sequences readily identified unique regions within the fragment. Primers were chosen to target a region displaying high nucleotide divergence at the 3’-end among the species considered in this study.

Two pairs of species-specific primers for Aspergillus species belonging to Section Nigri were designed after consideration of product size and melting temperature (table 1). All primers were designed in order to: a) operate at same high annealing temperatures (60°C), b) work simultaneously under the same PCR conditions and c) prevent the co-amplification of non-specific target of DNA. Specific primer pair NIG1/ NIG2 amplified a 245 bp fragment in A. niger, whereas TUB1/ TUB2 amplified a 505 bp fragment in A. tubingensis and in the type strain of A. phoenicis (CBS 136.52), recently
included in *A. tubingensis* species according to the revision made by Samson et al. (2004) using extrolites and β-tubulin sequencing (figure 2).

PCR conditions using the two primer pairs were optimized and then tested on 44 *Aspergillus* strains (table 2). The sensitivity of this assay was about 10 pg DNA in 25 µl PCR reaction volume, using pure total DNA of the two species (data not shown).

Primers NIG1/NIG2 amplify only DNA belonging to *A. niger* strains and primers TUB1/TUB2 amplify only DNA belonging to *A. tubingensis*, confirming their specificity (figure 3). PCR amplicons were confirmed as originating from *Aspergillus tubingensis* and *Aspergillus niger* by sequencing in both directions.

Moreover no amplification was obtained with other fungal/yeast species occurring frequently on grapes.

Discussion

PCR assays have been introduced successfully for the identification and detection of fungal species based on sequence analysis. PCR technology to detect fungi uses primers which can target two kinds of sequences:

(i) fungus-specific regions of conserved proteins such as calmodulin, beta-tubulin, elongation factor 1 alfa, and

(ii) repeated sequences such as those of rDNA and mitochondrial DNA. Setting up PCR assay requires definition of oligonucleotide primers to amplify a
DNA region. Oligonucleotides binding species-specific region could assume diagnostic meaning.

Specific PCR assays have been developed in this study for detection of *A. niger* and *A. tubingensis*, two OTA producer species within the *A. niger* aggregate group.

Specific PCR assays are available (Perrone et al., 2004) for the other two species of section *Nigri* widely occurring in plant products: *A. carbonarius* and *A. japonicus/acyleatus*, OTA producer and OTA non-producer, respectively. Further specific primers for PCR detection have been also described for *A. carbonarius* and *A. ochraceus* (Mulè et al., 2006; Patino et al., 2005; Pelegrinelli-Fungaro et al., 2004; Schmidt et al., 2004) and *A. niger/A. tubingensis* (Gonzalez-Salgado et al., 2005; Kanbe et al., 2002; Sugita et al., 2004). This study offers one step assay which is a faster alternative to molecular assay previously set up by Accensi et al. (1999), consisting of a PCR amplification of ITS rDNA and 5.8S rDNA followed by *RsaI* digestion.

Specific primers described in this work have been designed on the basis of calmodulin gene sequence comparisons of several strains of *Aspergillus* species and taking into consideration the phylogenetic and taxonomic analysis made in previous publications (Abarca et al., 2004; Samson et al., 2004). In accordance with previous studies (Perrone et al., 2004; Mulè et al., 2006) we demonstrate that the calmodulin-based PCR method has high degree of specificity for the identification of *Aspergillus* at species level within the black aspergilli. In contrast, ITS regions showed low degree of specificity consisting in variation of only three different nucleotides between these species (Parenicova et al., 2000).
The PCR assay can be used to identify these species without the need for morphological analysis and consequent risks of misidentification. In addition, this method is suitable for investigations that involve a large number of fungal isolates due to rapid DNA extraction and simple PCR amplification.

The importance of a molecular tool for species identification is due to the difficulty of morphological recognition of species within this section, and specifically within the *A. niger* “aggregate” group. These primers could be a useful tool for investigations of a high number of unidentified strains isolated from grapes. The availability of reliable molecular markers for *Aspergillus* section Nigri occurring on grapes is of great interest also since an early diagnosis of *A. carbonarius*, *A. niger* and *A. tubingensis* occurrence in the field would provide important information on possible OTA contamination in grapes. Because of *A. tubingensis* is recently described as a new OTA producer species within the morphologically undistinguishable *A. niger* “aggregate” group (Perrone et al., 2006a; Medina et al., 2005), having a molecular tool for species identification is very important to predict OTA risk in foodstuffs.

Species-specific primers NIG1/2 and TUB1/2 allowed discrimination of this two ochratoxigenic species within the other atoxigenic species of the *A. niger* aggregate group. In this respect, these primers together with CARBO1/2 (Perrone et al., 2004) could be helpful in the prediction of the related risks of OTA contamination on grapes and by-products and in further development of PCR assays from vegetative material. Moreover, the sets of developed primers amplify PCR products with different molecular weight (245 and 505 bp), potentially useful for a multiplex PCR assay.
In conclusion, the novel primers designed could be used to detect and identify A. tubingensis and A. niger strains simultaneously under the same PCR conditions. Furthermore, this protocol could facilitate the early and accurate identification of Aspergillus contamination in natural grape samples to prevent OTA risk. However, further experiments will be necessary to determine the conditions needed to detect Aspergillus directly from environmental samples. The specific assays reported in this study together with other assays developed for the two main important OTA-producing fungi, A. carbonarius and A. ochraceus, represent a quick and reliable means for a rapid, sensitive and accurate detection of ochratoxigenic fungi present in food product.

ACKNOWLEDGMENT

This research was supported by the Italian Ministry of Education, University and Research (MIUR) Project 12818 - SIVINA- and by the European Union project FP6-IST1-508774-IP –GoodFood. We thank A. Logrieco for critical suggestions in study coordination.

References

tubingensis and other members of Aspergillus Section Nigri. Applied and Environmental Microbiology 71:4696-4702.

Fig. 1
Sequence alignment between calmodulin gene representative of *A. tubingensis* and *A. niger* spp. Dark regions correspond to high conserved regions and light regions correspond to species-specific regions, considered in primer’s designing.
Fig. 2
Species-specific PCR product obtained amplifying *A. tubingensis* DNA (505 bp) in lane 1 and *A. niger* DNA (245 bp) in lane 2.
Fig. 3 PCR products obtained amplifying *Aspergillus* spp. genomic DNA with NIG F/R (lanes 1-16) and TUB F/R (lanes 17-32): *A. niger* (lanes 1-3 and 17-19), *A. tubingensis* (lanes 4-6 and 20-22), *A. phoenicis/A. tubingensis* (lanes 7 and 23), *A. awamorii/niger* (lanes 8 and 24), *A. ellipticus* (lanes 9 and 25), *A. brasiliensis* (lanes 10 and 26), *A. heteromorphus* (lanes 11 and 27), *A. japonicus* (lanes 12 and 28), *A. ochraceus* (lanes 13 and 29), *A. foetidus* (lanes 14 and 30), *A. carbonarius* (lanes 15 and 31), *A. aculeatus* (lanes 16 and 32).
Table 1 Details of the two species-specific PCR primer pairs for *A. niger* and *A. tubingensis*

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Species-specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIG1</td>
<td>5’-GATTTCGACACGATTT(CT/TC)CAGAA-3’</td>
<td>A. niger</td>
</tr>
<tr>
<td>NIG2</td>
<td>5’-AAAGTCAATCACAATCCAGCCC-3’</td>
<td></td>
</tr>
<tr>
<td>TUB1</td>
<td>5’-TCGACAGCTATTTCCCCCTT-3’</td>
<td>A. tubingensis</td>
</tr>
<tr>
<td>TUB2</td>
<td>5’-TAGCATGTCATATCAGGAGCAT-3’</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Fungal strains tested by PCR reaction with the species-specific primers for *A. niger* (NIG1/NIG2) and *A. tubingensis* (TUB1/TUB2).

<table>
<thead>
<tr>
<th>Species</th>
<th>ITEM Strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aculeatus</td>
<td>7046*, 7047</td>
</tr>
<tr>
<td>A. brasiliensis</td>
<td>7048*</td>
</tr>
<tr>
<td>A. carbonarius</td>
<td>4503*, 4504, 4544</td>
</tr>
<tr>
<td>A. ellipticus</td>
<td>4505*</td>
</tr>
<tr>
<td>A. foetidus</td>
<td>4506*</td>
</tr>
<tr>
<td>A. heteromorphus</td>
<td>7045*</td>
</tr>
<tr>
<td>A. ibericus</td>
<td>6600</td>
</tr>
<tr>
<td>A. japonicus</td>
<td>7044*, 7047</td>
</tr>
<tr>
<td>A. niger</td>
<td>4501*, 4502*, 4774, 4775*, 4717, 4730*, 4541, 4547, 4551*, 4552*, 5219, 5276, 4509, 7042</td>
</tr>
<tr>
<td>A. ochraceus</td>
<td>7043*</td>
</tr>
<tr>
<td>A. phoenicis</td>
<td>4498*</td>
</tr>
<tr>
<td>A. tubingensis</td>
<td>4208*, 4500*, 4542, 4543, 4546*, 4720, 4721*, 4725, 4728, 4815*, 4816, 4817, 4818, 7040*, 7041, 4540</td>
</tr>
</tbody>
</table>

*= representative strains utilized for PCR reactions showed in figure 3