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 2 

Abstract 14 

Deoxynivalenol (DON) and ochratoxin A (OTA) in agricultural commodities present hazards 15 

to human and animal health. Bulk lots are routinely sampled for their presence, but it is 16 

widely acknowledged that designing sampling plans is particularly problematical because of 17 

the heterogeneous distribution of the mycotoxins. Previous studies have not explicitly looked 18 

at the interactions between the spatial distribution of the mycotoxin and the strategy used to 19 

take samples from bulk. Sampling plans are therefore designed on the assumption of random 20 

distributions. The objective of this study was to analyse the spatial distribution of DON and 21 

OTA in bulk commodities with geostatistics. This study was the first application of 22 

geostatistical analysis to data on mycotoxins contamination of bulk commodities. Data sets 23 

for DON and OTA in bulk storage were collected from the literature and personal 24 

communications, of which only one contained data suitable for geostatistical analysis. This 25 

data set represented a 26 t truck of wheat with total of 100 sampled points. The mean 26 

concentrations of DON and OTA were 1342 µg kg
-1

 and 0.59 µg kg
-1

, respectively. The 27 

results showed that DON presented spatial structure whilst OTA was randomly distributed in 28 

space. This difference between DON and OTA probably reflected the fact that DON is 29 

produced in the field, whereas OTA is produced in storage. The presence of spatial structure 30 

for DON implies that sampling plans need to consider the location of sample points in 31 

addition to the number of points sampled in order to obtain reliable estimates of quantities 32 

such as the mean contamination.  33 

 34 

Keywords:- Geostatistical analysis; deoxynivalenol; ochratoxin A; bulk; cereals. 35 

Page 3 of 17

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 3 

 36 

Introduction 37 

Designing sampling plans for mycotoxins is particularly problematic because of the 38 

heterogeneous distribution of these contaminants in bulk lots of different commodities 39 

(Stroka et al., 2004, Schatzki 1995a and 1995b and Jewers et al., 1988). For example, 40 

contamination within a lot may result from a very small proportion of grains or kernels 41 

containing high concentrations of the mycotoxin. Because of the heterogeneous nature of 42 

mycotoxins, the problems lead to uncertainty over both how many samples to take and how 43 

to decide on the sampling positions. Normal practice is to aggregate incremental samples 44 

taken from a bulk commodity and test a sub-sample to estimate the mean concentration of the 45 

mycotoxin. As a result, information on the spatial variability and distribution of the 46 

mycotoxin is lost.  47 

 Extensive work on mycotoxin sampling has been carried out by the group of Whitaker 48 

(Whitaker and Wiser, 1969; Whitaker et al., 1994; Whitaker et al., 1998; Whitaker et al., 49 

2000; Whitaker, 2003; Whitaker, 2004; Whitaker, 2006). These studies concentrate on the 50 

relative magnitude of errors relating to sampling and the processing of samples but they 51 

provide little or no information on the interaction between the spatial distribution of the 52 

mycotoxin and the strategy used to take samples from bulk. It is usually assumed that the 53 

samples are independent, but this may not be the case if spatial structure is present. 54 

If spatial autocorrelation is present, it is necessary to design sampling programmes 55 

that take the spatial distribution into account, to reduce the probability of falsely classifying a 56 

batch below or above the acceptance level (Macarthur et al., 2006). For example, hot spots of 57 

deoxynivalenol (DON) found in wheat may differ from other mycotoxins in wheat or other 58 

commodities because it is mainly generated in the field rather than in storage, which may 59 

have an effect on its distribution in subsequent storage and transport the mycotoxin is 60 

distributed on a loaded truck. Sampling methods must be both representative and practicable 61 

(Stroka et al., 2004) so the error associated with the sampling protocol selected is reduced 62 

(Whitaker, 2006).  63 

A few studies have looked at the effect that sample size has on determining the mean 64 

concentration of DON and ochratoxin A (OTA) in a bulk commodity based on individual 65 

incremental samples (e.g. Biselli et al., 2005). Other studies have looked at how aggregation 66 

can be characterised using a variety of statistics. For example, Oerke et al. (2006) computed 67 

Lloyd’s index of patchiness for the incidence of several Fusarium species in a wheat field. 68 

Lloyd’s index tests distributions of counts for their similarity to a Poisson distribution, and 69 
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does not consider the distance between samples. Similarly, Wilhelm and Jones (2005) 70 

compared frequency distributions of Fusarium head blight incidence in fields with binomial 71 

and β-binomial distributions at scales from 1 m to mesoscale (several counties). Agreement 72 

with the β-binomial would indicate greater aggregation. The also performed lag correlation 73 

tests using Moran’s I, which was one of the first measures of spatial autocorrelation to be 74 

developed. Slight non-randomness and autocorrelation were seen at some scales in some 75 

cases. Schmale et al. (2005), studying spore deposition, had insufficient data points to use lag 76 

correlation measures, so applied nonparameteric methods (SADIE statistics and Mantel tests), 77 

while noting that the data sets were small even for these methods, and found that spore counts 78 

above the canopy were usually random, but deposition counts were often aggregated. 79 

However, these approaches give only limited consideration, if any, to the relationship 80 

between distance and autocorrelation, and have all considered field data, rather than bulk 81 

commodities. 82 

Geostatistics is a branch of statistical science that deals with the spatial structure of 83 

the variables under study and has the advantage over other methodologies of accounting for 84 

the spatial autocorrelation of the sampled variable, in this case mycotoxin concentration. In 85 

geostatistics the spatial variation is considered random and is modelled through a stochastic 86 

process. Geostatistics is based on the variogram calculation, a plot that relates the distance 87 

between any two sampled points with their semivariance. Effective and efficient sampling 88 

strategies can be designed through the characterisation of the variogram parameters: the 89 

range, the sill and the nugget. Examples of studies where the variogram was used to analyse 90 

the spatial pattern of diseases are provided by Orum et al. (1999) and Rekah et al. (1999). 91 

The former used the variogram to determine the trends and distribution of the aflatoxigenic 92 

species Aspergillus flavus in soil. The latter used it to study the spatial pattern of fusarium 93 

crown and root rot in tomatoes.  94 

Geostatistics has also been used as a tool to investigate the spatial dynamics of plant 95 

disease propagation. Chellemi et al. (1988) used geostatistics to examine the spatial pattern of 96 

a population of plant pathogens and diseased plants. Stein et al. (1994) applied geostatistics 97 

for the analysis of the spatio-temporal pattern of downy mildew pathogen (Peronospora 98 

parasitica) in cabbage to predict the disease at any point in time, to develop optimal sampling 99 

patterns for future assessments, to calculate the expansion rate of the disease and to determine 100 

the source of the initial inoculum in space and time. Gottwald et al. (1996) analysed the 101 

spatial, temporal and spatio-temporal dynamics of citrus tristeza virus (CTV) in Valencia 102 

(Spain) to determine the likely rates of disease increase and spread.  103 
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 5 

As part of a project for the UK Food Standards Agency, six different sources of data 104 

were obtained through the literature review and personal contact (Parsons et al, 2007). Table 105 

1 shows a description of each of the data sets considered for analysis. Each set of data was 106 

first assessed for its suitability for geostatistical analysis based on the number of points 107 

available for the analysis. Webster and Oliver (1992) suggest that variograms computed with 108 

fewer than 50 data points are of little value and that at least 100 points are needed for a soil 109 

variable to be analysed. The only reference on the number of points required for the 110 

variogram calculation of mycotoxins is provided by Stein et al. (1994) who determined that 111 

49 observations were necessary to estimate the spatial variogram of downy mildew pathogen 112 

in cabbage. Similar requirements would be expected for DON. Those data sets with fewer 113 

than 50 points were not considered for analysis. Of the six data sources, only the one 114 

collected by Biselli et al. (2005) was for mycotoxins in grain and contained sufficient data 115 

points with their coordinates. 116 

This study focuses on using a geostatistical approach to characterise the spatial 117 

distribution of DON and OTA in the data collected by Biselli et al. (2005).  118 

 119 

Materials and Methods 120 

Data set 121 

The data set contained DON and OTA results obtained from a 26 t lot of wheat on a truck in 122 

Germany. The truck was 2.5 m wide and 10 m long. The data were recorded from 100 points 123 

at 20 x 5 grid positions at 0.5 m spacing in the horizontal plane through the truck, using a 5 124 

aperture probe sampler. The probe was vertically inserted into the load in the centre of each 125 

grid cell to take a single incremental sample containing grain from 5 depths. Each 126 

incremental sample was mixed and sub-sampled before the DON and OTA concentrations 127 

were measured (Biselli et al., 2005). Thus the final sets of values described the DON and 128 

OTA concentrations in a two dimensional horizontal plane aggregated over the depth of the 129 

lorry. 130 

 131 

Geostatistical approach 132 

Geostatistics describes the spatial autocorrelation among sampled points based on the semi-133 

variogram, a plot that relates the distance between any two points in the space with their 134 

semivariance (Figure 1). The semi-variogram shows how similar any two points separated by 135 

a distance h are: if the semi-variance is small, the points are closely correlated. The distance h 136 

is known as the lag distance or lag. Each variogram is characterised by three parameters 137 
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 6 

known as the range, the sill and the nugget (Figure 1). The range is the distance at which the 138 

spatial autocorrelation between any two points is lost. The sill is the semi-variance value that 139 

corresponds to the range. The nugget is the intrinsic variance of the data (e.g. measurement 140 

and sampling error). 141 

The geostatistical analysis included three phases: (i) data preparation, (ii) variogram 142 

calculation and (iii) analysis of the spatial structure. Appendix 1 provides a more detailed 143 

explanation of the methodology. 144 

The selected data set was prepared for geostatistical analysis. The methods require 145 

that the data are normally distributed and stationary, that is they do not exhibit spatial trends. 146 

For this purpose, the data were analysed for linear and quadratic trends in the coordinate 147 

variables. The data set was considered to present a trend if the model explained more than 148 

20% of the variance. Normality was tested visually by plotting the histogram, box plot 149 

(showing median, quartiles, extremes and outliers), and Q-Q plot (quantile-quantile plot, 150 

which should be a straight line for a normal distribution). The skewness and kurtosis (Kenney 151 

and Keeping, 1961) were calculated. The normal distribution has a skewness of 0 and a 152 

kurtosis of 3. If the data do not have an approximately normal distribution, they may be 153 

transformed using one of a range of standard transformations to give a close approximation to 154 

normality (Webster and Oliver, 2000; Sokal and Rohlf, 1995). 155 

The empirical variogram was calculated in 4 directions defined by azimuth 0°, 90°, 156 

45° and 315° to detect anisotropy (differences in the variogram depending on direction). 157 

Azimuth 0° was along the axis of the truck facing forward and angles were measured 158 

clockwise in the horizontal plane. The lag distance, azimuth tolerance and maximum distance 159 

of analysis were selected according to the results obtained from a sensitivity analysis on these 160 

variables. The exponential and spherical models (Webster and Oliver, 2000) were used for 161 

the fitting of the variogram. The spatial structure of the mycotoxin was assessed according to 162 

the sill, range and nugget values obtained for each variogram.  163 

 164 

Results 165 

 166 

The OTA data were strongly skewed with mode 0 and therefore could not be transformed to a 167 

normal distribution. They were fitted by an exponential distribution with mean 0.57 µg kg
-1

 168 

and standard deviation of 1.13 (Figure 2). Table 2 summarises the descriptive statistics 169 

obtained for OTA. The variogram was calculated by treating OTA as an indicator 170 

Page 7 of 17

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 7 

(present/absent) variable. The results showed a pure nugget variogram: that is, there was no 171 

evidence of spatial structure. Figure 3a shows the distribution of OTA in space: OTA 172 

presented a random spatial distribution of foci of contamination which is consistent with the 173 

variogram results obtained. 174 

The DON data were log transformed (natural log) to meet the normality requirement; 175 

Table 2 summarises the descriptive statistics of the original and transformed data. The 176 

skewness and kurtosis for the transformed data were close to 0 and 3 respectively, which 177 

indicated that the assumption of normality could be accepted. Figure 3c shows the spatial 178 

distribution of the log transformed values of DON concentration. In the trend analysis, the 179 

linear model accounted for 2.2% of the variance and the quadratic model accounted for 180 

18.9%, which were both below the level at which the data would be considered to present a 181 

trend. 182 

The minimum distance between points in the data set was 0.5 m, due to the sampling 183 

scheme. The sensitivity analysis on the lag distance showed that a lag distance of 0.7 m 184 

provided a good compromise between the number of pairs of points for each lag distance and 185 

the number of points in the variogram. 186 

 The anisotropy analysis showed that the variogram calculated with azimuth tolerance 187 

60° was significantly different along (azimuth 0°) and across the truck (azimuth 90°). A 188 

second analysis was carried out to determine if the anisotropy was due to differences in the 189 

spatial pattern of DON or lack of points to compute the variogram across the sampled area. 190 

The results showed that the number of pairs of data points per lag distance was significantly 191 

smaller when calculating the variogram for azimuth 90°: the apparent anisotropy was an 192 

artefact of the smaller number of points across the truck. Therefore, the omnidirectional 193 

variogram was used. 194 

The maximum number of pairs of data points for each lag distance was reached at 195 

about 4 m for the majority of the azimuths when analysing the longitudinal direction. This 196 

indicated that the maximum distance of analysis for the variogram should be around 4 m. The 197 

final omnidirectional variogram was calculated with lag distance step 0.7 m and maximum 198 

distance 4 m. The spherical model was found to fit better than the exponential. 199 

The results obtained (Figure 4) showed that there was spatial correlation for DON 200 

concentration in the selected batch. The variogram was defined by a 4.35 m range, a 0.07 sill 201 

and a 0.013 nugget. The non-zero nugget indicates that there was a small amount of variation 202 

that either was not captured by the sampling strategy applied or was intrinsic to the 203 
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measurements of DON concentration. The variogram sill is generally assumed to be equal to 204 

the variance of the population (Barnes, 1991). The sill was consistent with the variance 205 

(0.055) obtained from the standard deviation in Table 2. 206 

 207 

Discussion 208 

 209 

This study was the first application of geostatistical analysis to data on mycotoxin 210 

contamination of bulk agricultural/food commodities. Previous studies have used statistics 211 

such as the Moran’s I, SADIE and Mantel’s tests and the dispersion index (Wilhelm and 212 

Jones, 2005 and Schmale, 2005) to try to detect non-random distributions of fungi or 213 

mycotoxins. Most of these ignore the spatial component. Geostatistics provides an explicit 214 

characterisation of spatial autocorrelation, so is capable of quantifying effects that would not 215 

be detected by other methods. Geostatistics also allows prediction of the value of the variable 216 

under study at non measured locations using interpolation techniques such as kriging. 217 

The data set came from a truck load of wheat that was selected for sampling because a 218 

high level of contamination was found. The results for this need, therefore, to be treated with 219 

caution when attempting to generalise to other situations. 220 

The data set showed clear evidence of spatial structure for DON, but none for OTA. 221 

This difference may reflect the fact that DON is mainly produced in the field by a widespread 222 

organism, whereas OTA is typically produced in localised ‘hot spots’ in storage, but this 223 

needs to be tested in other data sets, including other commodities. Biselli et al. (2005), using 224 

classical statistics, also found that the OTA was present in hot spots and had higher 225 

variability than DON. 226 

The analysis of the DON data set showed that there was a significant spatial 227 

correlation to the distribution of DON mycotoxins in stored grain. The presence of spatial 228 

structure implies that samples cannot always be assumed to be independent and that sampling 229 

plans need to consider the location of sample points in addition to the number of points 230 

sampled in order to obtain reliable estimates of quantities such as the mean contamination 231 

and the variance.  232 

The spatial pattern was lost for lag distances greater than 4 m. If this is typical, it has 233 

two different implications for sampling, depending on its purpose. If the intention were to 234 

characterise the spatial variation, sampling strategies with larger spacing would not detect it. 235 

Conversely, points closer than 4 m apart would be autocorrelated, introducing errors or biases 236 

into the calculation of sample statistics. Further research should quantify the benefit of 237 

Page 9 of 17

http://mc.manuscriptcentral.com/tfac  Email: fac@tandf.co.uk

Food Additives and Contaminants

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 9 

sampling protocols that account for the spatial structure of the mycotoxin when determining 238 

levels of contamination to minimise these errors. 239 

Surveillance sampling always aggregates the incremental samples before analysis, so 240 

all information about the distribution of contaminants is lost. In order to provide better data 241 

for the design of sampling protocols and risk management, there is a need for more good 242 

quality data sets in which the incremental samples are analysed and recorded separately. 243 

Furthermore, in order to determine the importance of spatial structure in mycotoxins and its 244 

potential effect on sampling, experimental sampling should be based on regular grids and 245 

record the sample coordinates. On the basis of experience in soil sampling, data sets should 246 

contain of the order of 100 points or more (Webster and Oliver, 2000; Webster and Oliver, 247 

1992). 248 

 249 
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 255 

Appendix  256 

 257 

Geostatistics is based on the variogram model which relates the distance between any two 258 

points in the space with their semivariance. Consider a transect along which observations of a 259 

variable Z are taken at regular intervals. The positions are denoted as xi and the value of the 260 

observation is z(xi), i= 1,2…n. The variance of the differences between all the pairs of points 261 

at a lag distance h apart can be calculated as follows: 262 

 263 

∑
=

+−=
)(

1

2))()((
)(

1
)(

hm

i

ii hxzxz
hm

hγ  (1) 264 

 265 

where m(h) is the number of pairs of data points separated by lag distance h and γ(h) is the 266 

average variance of all pairs of data points separated by lag distance h. The per-observation 267 

variance or semi-variance )(ˆ hγ  is half the variance )(hγ . 268 
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The semi-variance is a measure of the similarity between points at a given lag 269 

distance. The smaller the semi-variance, the more alike the points are. The graph of semi-270 

variance against lag distance is the experimental semi-variogram (Figure 1). The semi-271 

variogram shows how similar any two points separated by a lag distance h are. In general, the 272 

closer any two points are, the more similar their value is. In the empirical semi-variogram the 273 

semi-variance increases with lag distance up to a distance a, called the range, at which the 274 

semi-variance remains constant. The range is the point at which the autocorrelation between 275 

points becomes 0 and marks the limit of spatial dependence: points further apart are spatially 276 

independent. The semi-variance value at the range is called the sill (c). The sill is the 277 

maximum of the empirical semi-variogram and is the a priori variance, σ2
, of the process. 278 

The semi-variance at lag distance 0 is called the nugget (c0) and identifies the measurement 279 

error and the variations that occur over lag distances less than the shortest sampling interval 280 

(Webster and Oliver, 2000). The sill, the range and the nugget are the three parameters that 281 

characterise the semi-variogram. 282 

The model fitted to the experimental semi-variogram is called the empirical semi-283 

variogram (Figure 1) and is a simplification of the experimental variogram. The model is 284 

fitted using one of the ‘authorised’ functions (Webster and Oliver, 2000). The spherical 285 

(equation 2) or exponential (equation 3) functions are two of the most frequently used models 286 

in geostatistics so these models were selected for the variogram fitting in this study. The 287 

fitting of the model was done using ordinary least squares. 288 

 289 
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 293 

where co is the nugget, c is the sill, a is the range, h is the lag distance and r is a distance 294 

parameter that defines the spatial extent of the model. The exponential model approaches its 295 

sill asymptotically and therefore, does not have a finite range. Generally, r or effective range 296 

is assumed to be the lag distance at which the semi-variance equals 95% of the sill variance, 297 

which is approximately 3r.  298 
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These definitions extend to the case of two-dimensional data by measuring the lag 299 

distance h in all directions instead of along the transect. However, even if the data are 300 

sampled using a regular grid, the distances between points are not all multiples of the grid 301 

size, because all possible pairs of points are considered, not just those lying on the same row 302 

or column. In this case, the semi-variance for a given lag distance is estimated by using all 303 

the points separated by distances within a certain tolerance of the required lag distance. In 304 

effect, the lag distance axis of the variogram is divided into a series of discrete intervals 305 

whose width is the lag tolerance. 306 

For the empirical semi-variogram model to be fitted accurately it is necessary to have 307 

sufficient points in the experimental semi-variogram, but for the semi-variance value to be 308 

accurate requires sufficient pairs of observations contributing to each point. Increasing the lag 309 

tolerance will reduce the first of these, but increase the second. Therefore, the choice of 310 

tolerance is a compromise between the accuracy of model fitting and the accuracy of the 311 

estimation of the semi-variance. 312 

It is also possible to consider the effect of direction within a two-dimensional data set, 313 

by considering pairs of points separated from one another at a specific angle (for example at 314 

45° to the grid rows). The angle relative to some reference direction is called the azimuth. If 315 

the variograms differ with azimuth, the data are said to be anisotropic or to present 316 

anisotropy. For example, the spatial structure of contamination in a wheat field might differ 317 

parallel and perpendicular to the prevailing wind direction or the tramline direction. In a 318 

similar way to lag tolerance, the points included for each azimuth are defined by the azimuth 319 

tolerance. If the azimuth tolerance is 180°, all directions are included and the variogram is 320 

said to be omnidirectional. 321 

The number of points used to estimate each point in the variogram depends on the lag 322 

tolerance, as described above, and similarly on the azimuth tolerance. It may also depend on 323 

the azimuth itself, either because the sample space has different extents in each direction, or 324 

because of the geometry of the sampling grid. Finally, there is a maximum distance beyond 325 

which the number of pairs decreases significantly. A sensitivity analysis may be carried out 326 

to quantify the effects of these four parameters. 327 

For the geostatistical analysis to be effective the variable under study must be 328 

normally distributed, second-order stationary and must present no trend. Data that are not 329 

normally distributed may be transformed to achieve normality. A second-order stationary 330 

process is characterised by a mean, variance and covariance that depend only on the 331 
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separation between points and not on their absolute positions. A systematic component in the 332 

spatial variation is an indication of a trend. The trend must be removed from the data when 333 

identified so the geostatistical analysis is only carried out for the residuals after subtracting 334 

the trend. 335 

 336 
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Tables 414 

Table 1. Description of data sources collected for analysis and criteria for rejection  415 

(
a
 insufficient measurements available; 

b
 lack of coordinates identifying the location of 416 

each measurement, 
c
 the original data were not available) 417 

Source Characteristics 

Xu et al. (2008). 
ab

 Measurements of Fusarium head blight were taken at five study sites. 

At each site 16 quadrants of 0.5 m x 0.5 m were randomly selected along 

a W-shape walk. 

Biselli et al. 

(2005). 

The data were recorded from 20 x 5 grid positions at 0.5 m spacing in the 

horizontal plane through a truck containing wheat, using a 5 chamber 

probe sampler. After aggregation and subsampling, DON and OTA 

concentrations were measured. 

Oerke et al. 

(2006). 

a
 Measurements of 8 Fusarium species in wheat were recorded at 5 x 6 

grid points on a skewed grid with spacings of 12 x 18 m. 

Schaafsma et al. 

(2005). 

a
 A total of 68 wheat fields were sampled for Fusarium. In each field a 

transect was selected. DON content was measured from samples of wheat 

heads randomly hand-harvested from nine traps equidistantly distributed 

along the transect.  

Wilhelm and Jones 

(2005). 

c
 Fusarium head blight data in wheat field were collected at four different 

sampling resolutions: mesoscale, full-field, microscale and adjacent-scale. 

For mesoscale study 100 points were collected at sixty fields. For the full-

field scale nine fields were analyzed with a total of 45 points per field. For 

the microscale analysis three different grid resolutions were analysed. For 

the adjacent-head scale a total of 60 consecutive wheat heads were 

sampled in each of the each of the eight plots.  

Prof. P. Battilani, 

Catholic Univ. of 

Italy, Piacenza, 

Personal 

Communication 

b
 A total of 10 measurements of F. verticillioides and fumonisins 

were taken in a 10 m x 10 m area along the diagonals of each of three 

maize storehouses. Two different sub-samples were measured at each 

point at two different depths. The samples were aggregated and only the 

average for the three storehouses were reported.  

 418 

Table 2. Descriptive statistics for the data analysed. 419 

Statistic OTA µg kg
-1

 DON µg kg
-1

 DON transformed 

Number of points 100.0 100.0 100.0 

Minimum, 0.05 830.0 6.72 

Maximum 8.6 2655.0 7.88 

1
st
 Quartile 0.05 1121 7.02 

3
rd

 Quartile 0.52 1508 7.31 

Median 0.2 1272 7.14 

Mean 0.59 1342 7.17 

Standard deviation 1.13 339 0.23 

Skewness 4.36 1.19 0.48 

Kurtosis 30.58 7.77 3.2 
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Figures 420 

 421 

Figure 1. Diagram showing the variogram parameters (i.e. range, sill and nugget). The 422 

diagram shows both the experimental (dots) and the empirical (line) variograms.  423 

 424 

Figure 2. Ochratoxin A concentration: histogram of observations and fitted exponential 425 

distribution. 426 

 427 

Figure 3. Spatial distribution of (a) OTA, (b) DON and (c) loge transformed DON. All 428 

distances are in metres. Data collected are represented by a cross and each cell has been 429 

coloured according to the measured value. 430 

 431 

Figure 4. Spherical variogram for the loge transformed DON data (omnidirectional 432 

variogram) calculated with lag distance 0.7 m and maximum distance 4 m. 433 
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