Highly sensitive PCR-based detection method specific to Aspergillus flavus in wheat flour
Amaia González-Salgado, González-Jaén Mª Teresa, Vázquez Covadonga, Belén Patiño

To cite this version:
Amaia González-Salgado, González-Jaén Mª Teresa, Vázquez Covadonga, Belén Patiño. Highly sensitive PCR-based detection method specific to Aspergillus flavus in wheat flour. Food Additives and Contaminants, 2008, 25 (06), pp.758-764. 10.1080/02652030701765715. hal-00577311

HAL Id: hal-00577311
https://hal.archives-ouvertes.fr/hal-00577311
Submitted on 17 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Highly sensitive PCR-based detection method specific to Aspergillus flavus in wheat flour

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Food Additives and Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TFAC-2006-384.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Research Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>09-Oct-2007</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>González-Salgado, Amaia; UCM, genetics María Teresa, González-Jaén; University Complutense, Genetics Covadonga, Vázquez; University Complutense, Microbiology III Patiño, Belén; University Complutense, microbiology III</td>
</tr>
<tr>
<td>Methods/Techniques:</td>
<td>Microbiology, Molecular biology - PCR, Mycology</td>
</tr>
<tr>
<td>Additives/Contaminants:</td>
<td>Aflatoxins, Mycotoxins – aflatoxins</td>
</tr>
<tr>
<td>Food Types:</td>
<td>Cereals</td>
</tr>
</tbody>
</table>
Highly sensitive PCR-based detection method specific to *Aspergillus flavus* in wheat flour

Abstract

Aspergillus flavus is an important fungal species which frequently occurs in food commodities producing a wide array of toxins, aflatoxins being the most relevant in food safety. In this work, a PCR-based protocol is described specific to this species which allowed discrimination from other closely related species having different profiles of secondary metabolites from the *Aspergillus* Section *Flavi*, particularly *A. parasiticus*. The specific primers were designed on the multi-copy internal transcribed region of the rDNA unit (ITS1-5.8S-ITS2 rDNA) and were tested in a wide sample of related species and other fungal species commonly found in commodities. The PCR assay was coupled with a fungal enrichment and a DNA extraction method for wheat flour to enhance the sensitivity of the diagnostic protocol. The results indicated that the critical PCR amplification product was clearly observed for wheat flour contaminated by 10^2 spores after 16 h of incubation.

Keywords: *Aspergillus flavus*, aflatoxin, polymerase chain reaction (PCR), detection, wheat, flour, internal transcribed spacer (ITS)

Running head PCR detection method for *Aspergillus flavus* in wheat flour
Introduction

Aspergillus Section Flavi contains a number of species capable of producing a wide array of toxins among which aflatoxins are the most important in food safety. Aflatoxins are potent carcinogenic, mutagenic, and teratogenic secondary metabolites and are produced predominantly by Aspergillus flavus and Aspergillus parasiticus (Bennett and Papa, 1988). This Section consists of two groups of species; one includes Aspergillus flavus, A. parasiticus, A. nomius and the recently described species A. pseudotamarii and A. bombycis (Cary and Ehrich 2006; Ehrlich et al. 2006), all of which produce aflatoxin. The other group includes the aflatoxin non-producing species A. oryzae, A. sojae, and A. tamarii, which have been used for production of traditional fermented foods in Asia (Kumeda and Asao 2001).

Aflatoxinogenic fungi can contaminate several food commodities including cereals (Pittet 1988), peanuts (Jelinek et al. 1989), spices (Bartine and Tantaoui-Elaraki 1997) and figs (Doster et al. 1996; Färber et al. 1997). Foods and feeds are especially susceptible of colonization by aflatoxigenic Aspergillus species in warm climates where they may produce aflatoxins along several stages of the food chain: either at pre-harvest, processing, transportation or storage (Ellis et al. 1991). The level of mold infestation and the identification of governing species are important indicators of the quality of the raw material and predict the potential risk for the presence of mycotoxins (Shapira et al. 1996).

The traditional methods for identification and detection of these fungi in foods include culture in different media and morphological studies. This approach, however, is very
time-consuming, laborious, and requires facilities and mycological expertise (Edwards et al. 2002). Moreover, these methods have low degree of sensitivity and do not allow the specification of mycotoxigenic species (Zhao et al. 2001). PCR-based methods that target DNA are considered a good alternative for rapid diagnosis because of their high specificity and sensitivity, and have been used for the detection of aflatoxigenic strains of *A. flavus* and *A. parasiticus* (Shapira et al. 1996; Färber et al. 1997; Sweeney et al. 2000; Criseo et al. 2001; Chen et al. 2002; Mayer et al. 2003; Zachová et al. 2003; Somashekar et al. 2004). However, none of these methods has yet been able to reliably differentiate *A. flavus* from other species of the *A. flavus* group. In particular, *A. flavus* and *A. parasiticus* have two different toxicogenic profiles. *A. flavus* produces aflatoxin B1 (M1) B2, cyclopiazonic acid, aflatrem, 3-nitropropionic acid, sterigmatocystin, versicolorin A and aspertoxin, whereas *A. parasiticus* produced aflatoxin B1 (M1), B2, G1, G2 and versicolorin A (Wilson et al. 2002). Another important fact is that *Aspergillus flavus* and *A. fumigatus* are responsible for 90% of the aspergillosis in human beings (Paya 1993).

Most of the PCR protocols are based on aflatoxin biosynthetic genes which are single copy and, therefore, less sensitive than multi-copy genes (Bluhm et al. 2002, Jurado et al. 2006). The intergenic spacer (IGS) and the internal transcribed region (ITS) from the rDNA units are multicopy (up to 100 or 300 copies per haploid fungal genome) and highly variable sequences which are widely used for phylogenetic studies and diagnostics of closely related fungal species such as *Aspergillus* (Henry et al. 2000; Parenicová et al. 2001; Zhao et al. 2001; Varga et al. 2004; González-Salgado et al. 2005; Patiño et al. 2005) or *Fusarium* (González-Jaén et al. 2004; Mirete et al. 2004; Patiño et al. 2004).
In this study, we have developed a PCR protocol based on multi-copy sequences (ITS) specific to *A. flavus* which allows distinction from other aflatoxinogenic molds, in particular from *A. parasiticus*, and organisms commonly found on grains. The method proved to be very efficient even at short incubation times and at low spores concentration of *A. flavus* in wheat flour samples.

Materials and methods

Fungal isolates and culture conditions

A detailed description of the fungal strains used in this study is given in Table I. All fungal cultures were maintained on potato dextrose-agar (PDA, Scharlau Chemie, Barcelona, Spain) at 4°C and stored as spore suspension in 15% glycerol at –80°C. The isolates were cultured in 100 mL Erlenmeyer flasks containing 20 mL liquid medium Sabouraud (Scharlau Chemie, Barcelona, Spain). Cultures were inoculated with mycelial disks cut from the plates and incubated at 25°C, 150 rpm. Mycelia from 2-day-old cultures were harvested by filtration through Whatman paper nº 1 and kept at –80°C for DNA isolation.

[Insert Table I]

DNA extraction and PCR amplification

Genomic DNA of the strains was obtained using either the genomic DNA Extraction Kit (Genomix, Talent, Trieste, Italy), according to the manufacturer’s instructions. All genomic DNAs used in this work were tested for suitability for PCR amplification using primers ITS1 and ITS4 (Henry et al. 2000), which amplify the ITS region in *Aspergillus*. The PCR reaction was performed in an Eppendorf Mastercycler Gradient
(Eppendorf, Hamburg, Germany) using 10 pg-10 ng of genomic DNA. The ITS1-5.8S-ITS2 sequences were obtained following the same protocol by Henry et al (2000) above mentioned and the PCR amplification products obtained and purify using the High Pure PCR Product purification Kit (Roche, Germany) according to the manufacturer’s instructions. The PCR products were subsequently sequenced by both strands using the ABI PRISM DNA Sequencer (Applied Biosystems, Foster City, USA) according to the manufacturer’s instructions in the Genomic Unit of the Complutense University of Madrid. These sequences and those retrieved from GenBank and other data bases were analysed and aligned by Clustal method using the program DNASTAR (Lasergene, Wisconsin, USA).

Specific PCR assays were carried out using primers FLA1 (5’ GTAGGGTTCTAGCGAGCC 3’) and FLA2 (5’ GGAAAAAGATTGATTGTTCG TTC 3’) for A. flavus. PCR reactions were performed in an Eppendorf Mastercycler Gradient (Eppendorf, Hamburg, Germany). The PCR amplification protocol used for A. flavus was as follows: 1 cycle of 5 min at 95°C, 26 cycles of 30s at 95°C (denaturalization), 30s at 58°C (annealing), 45 s at 72°C (extension) and finally 1 cycle of 5 min at 72°C.

Amplification reactions were carried out in volumes of 25 µL containing 3 µL (10 pg-10 ng) of template DNA, 1.25 µL of each primer (20 µM), 2.5 µL of 10x PCR buffer, 1 µL of MgCl₂ (50 mM), 0.25 µL of dNTPs (100 mM) and 0.2 µL of Taq DNA polymerase (5 U/µL) supplied by the manufacturer (Biotools Madrid, Spain). PCR products were detected in 2% agarose ethidium bromide gels in TAE 1X buffer (Tris-
acetate 40 mM and EDTA 1.0 mM). The 100 bp DNA ladder (MBI Fermentas, Vilnius, Lithuania) was used as molecular size marker.

Detection of fungal spores in wheat flour

Molds are found in dry stored food and grains mostly as dormant structures, e.g., spores. To test the ability of the PCR to detect *A. flavus* in food, different lots of commercially available ground wheat flour (1g each) were inoculated separately with 10^2 or 10^6 spores per g of *A. flavus* ITEM 4591. The flour was then resuspended in 5 ml of Sabouraud (Scharlau Chemie, Barcelona, Spain) with 1ml/l chloramphenicol and incubated in 10 ml sterile Falcon tubes on an orbital shaker at 28°C and 150 rpm. The samples were incubated for 8, 16, 24 and 48 h respectively. Non-inoculated flour samples were used as negative control. After incubation, the tubes were subsequently centrifuged (5 min at 5000 rpm), the supernatant discarded and the pellets were frozen in liquid nitrogen. Total DNA was extracted and PCR reactions were carried out using the same protocols described above for pure cultures. All the experiments were made in triplicate.

Results

PCR specificity with FLA1/FLA2

Partial sequences of the ITS1-5.8S-ITS2 regions of *A. flavus* and other related *Aspergillus* species obtained in this and previous works and those retrieved from Data Bases (more than 25) were aligned. The design of a PCR assay is limited by the conserved regions available in the alignments and the suitable size of the amplicon to be easily detected in conventional agarose gels using ladder markers. A pair of primers, FLA1 and FLA2, specific to *A. flavus* was designed on the basis of the sequence
alignment. All the *Aspergillus* strains listed in Table I were tested for amplification using the primer pair FLA1 and FLA2. A single fragment of about 500 bp was only amplified when genomic DNA from *A. flavus* strains was used (Figure 1), but not from other *Aspergillus*, including *Aspergillus* section *Flavi* species (*A. tamarii*, *A. nomius*, *A. bombycis* and *A. parasiticus*) or other *Aspergillus* (such as *A. ochraceus* or *Aspergillus* section *Nigri*). No product was observed with genomic DNA from other genera. Non-specific products were not observed in any case. Control amplifications of the genomic DNA with primers ITS1 and ITS4 were positive for all the strains analysed.

PCR studies with inoculated wheat flour

In order to test the functionality of the method under practical conditions, an enrichment procedure was developed. In this procedure, Sabouraud-Chloramphenicol broth was added to inoculate wheat flour which was then incubated. The primer pair generated for the amplification of *A. flavus* was tested on samples after 8, 16, 24 and 48 h of incubation. Two levels of inoculated spores, 10^2 and 10^6 spores per g, were tested. Specific amplification was observed only for DNA extracted from wheat inoculated with *A. flavus* ITEM 4591 (Figure 2). A clear amplification product was observed when wheat flour was inoculated with 10^2 or 10^6 spores per g after 16, 24 and 48 h of incubation. No amplification products were obtained when DNA was extracted from non-incubated samples or incubated for 8h. The triplicates of the experiments showed no significative variation in the results.

Discussion

In this work, we have developed a PCR protocol specific for the detection of *A. flavus* to be used in a food matrix frequently contaminated with aflatoxins and other related
Aspergillus species. This is the first protocol to our knowledge to specifically detect A. *flavus* by PCR amplification using a multycopy region (ITS). Discrimination of A. *flavus* from *A. parasiticus* is important because they produce different secondary metabolite profiles. The aflatoxins, cyclopiazonic acid, versicolorin and sterigmatocystin can all be produced by *A. flavus* while *A. parasiticus* is not known to produce cyclopiazonic acid and sterigmatocystin (Wilson et al. 2002). Moreover, *A. flavus* was the prevalent species among *Aspergillus* section *Flavi* in most of the studies performed in several commodities (Horn and Dorner 1999; Trucksessy et al. 2002; Vaamonde et al. 2003; Bankole et al. 2004; Melki Ben Fredj et al. 2006).

Although several PCR-based methods have been developed to detect aflatoxigenic fungi using aflatoxin biosynthetic genes they do not discriminate between *A. parasiticus* and *A. flavus*, and the amplification signal obtained is strong for *A. parasiticus* but it is weak for *A. flavus* (Geisen 1996; Shapira et al. 1996; Zachová et al. 2003). This could be due to the similarity of the aflatoxin biosynthesis genes used as targets for specific primers in these two species (Yu et al. 1995; Scherm et al. 2005). The existing variability in ITS region we have used seemed to be sufficient to discriminate among these closely related species and, on the other hand, provided higher sensitivity than single copy genes. Indeed, the PCR assay developed for *A. flavus* did not cross react with *A. parasiticus*.

Moreover, robustness of the specific PCR assay for *A. flavus* was high according to the positive PCR amplification obtained with a wide range of template concentration (10pg-10ng) using either DNA from pure cultures or from contaminated sample. It has been estimated a sensitivity for multicopy sequences above 5.5 pg and for single copy sequences above 87.5 pg on agarose gel (Jurado et al. 2006). A similar approach was
followed by Sugita et al. 2004 to identify *A. flavus* and another pathogenic species of the genus *Aspergillus*. They used ribosomal DNA and its flanking regions (including ITS1 region), but the efficiency of amplification in the case of *A. flavus* was still low. The FLA1/FLA2 primers seemed to be more efficient to specifically amplify the *A. flavus* target sequence. These primers are located in a more variable region of the ITS. Other approaches, such as PCR-RFLPs of ITS region, have been followed to discriminate both species, but are more laborious (Somashekar et al. 2004).

However, this protocol does not allow the discrimination between *A. flavus* and *A. oryzae*. Molecular methods, including isoenzyme analyses and DNA/DNA hybridization studies, and DNA sequencing and comparison of the whole genome have confirmed that both species are almost genetically identical (Kurtzman et al. 1986, Egel et al. 1994, Geiser et al. 2000, Payne et al. 2006, Hedayati et al. 2007), with the exception of few differences in genes involved aflatoxin biosynthetic pathway (Geiser et al. 2000). On the other hand, while *A. flavus* is a common environmental organism, *A. oryzae* is a ‘domesticated’ fungus and it would not be present in the niches where *A. flavus* occurs.

Specific diagnosis in pure cultures is generally easier than directly on commodities where a complex mycobiota is present, often containing closely related species and several compounds which may affect the efficiency and sensitivity of the detection (Rossen et al. 1992; Färber et al. 1997) and in some cases additional incubation of the food samples for several days is required (Chen et al. 2002). Since molds are found mostly as asexual spores or dried mycelia on dry food, which contain only small amounts of DNA and are resistant to cellular disruption for DNA extraction (Shapira et
al. 1996), we have improved the sensitivity and applicability of our PCR protocol with an enrichment method to be used in wheat flour contaminated by spores. This integrated protocol allowed us to detect 10^2 spores per g after 16 h of incubation. This incubation time was shorter than the reported by other authors (Shapira et al. 1996), and the detection limit high in our study. Although genomic DNA of wheat and contaminating fungi may become severely damaged during the manufacturing process, PCR assays could be particularly suitable to detect fungal contamination in flour because of the small size of the target genomic DNA. Previous reports describing PCR assays with amplicons of similar length indicate successful amplification using DNA isolated from flour (maize) (Jurado et al., 2006; Somashekar et al., 2004). These evidences, and the high copy number of the target sequence, increase the probability of available template even after processing of wheat grains. On the other hand, very often contamination by post-harvest fungi occurs after processing of the seeds in the warehouse.

In conclusion, the PCR based protocol reported in this work is a rapid and powerful tool to detect *A. flavus* in certain food systems. The PCR assay and the sample preparation protocol were optimised to avoid the occurrence of false negative reactions.

Acknowledgments

This work was supported by the Spanish MCyT (AGL 2004-07549-C05-05/ALI) and by the project UCM-CM 910644. A. González-Salgado was supported by a Gobierno Vasco fellowship.
References

Fusarium verticillioides from banana fruits by IGS and EF-1α sequence analyses.

Parenicová L, Skouboe P, Frisvad J, Samson R, Rossen L, Hoor-Suykerbyuk MT,
japonicus and Aspergillus aculeatus as two species. Applied and Environmental
Microbiology 67:521-527.

detection assay of fumonisin-producing Fusarium verticillioides strains. Journal of
Food Protection 67(6):1278-1283.

Patiño B, González-Salgado A, González-Jaén MT, Vázquez C. 2005. PCR detection
assays for the ochratoxin-producing Aspergillus carbonarius and Aspergillus ochraceus

Paya C.V. 1993. Fungal infection in solid organ transplantation. Clinical Infectious
Diseases 16:677-688.

Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar
D, Cleveland TE, Machida M, Yu J. 2006. Whole genome comparison of Aspergillus

Revista de Medicina Veterinaria 149:479-492.

components of food samples, microbial diagnostic assays and DNA-extraction

of the aflatoxin genes aflD, aflO and aflP by reverse transcription-polymerase chain
reaction allows differentiation of aflatoxin-producing and non-producing isolates of
Aspergillus flavus and *Aspergillus parasiticus*. International Journal of Food

aflatoxinogenic molds in grains by PCR. Applied and Environmental Microbiology 62:
3270-3273.

Somasekhar D, Rati ER. Chandrashekar A. 2004. PCR-restriction fragment length
analysis of *aflR* gene for differentiation and detection of *Aspergillus flavus* and
Aspergillus parasiticus in maize. International Journal of Food Microbiology 93:101-
107.

system for the genus *Aspergillus* and three major pathogenic species: *Aspergillus
fumigatus, Aspergillus flavus* and *Aspergillus niger*. Medical Mycology 42:433-437.

polymerase chain reaction (RT-PCR) for monitoring aflatoxin production in *Aspergillus

Occurrence of aflatoxins and fumonisins in Incaparina from Guatemala. Food Additives
and Contaminants 7:671-675.

Variability of aflatoxin and cyclopiazonic acid production by *Aspergillus* section *flavi*

Figure caption

Figure 2. PCR-based detection of A. flavus using FLA1/FLA2 primers in wheat flour samples after enrichment. Lanes 1-5: Amplification product obtained using DNA after 0, 8, 16, 24 and 48 h of incubation, respectively, and inoculated with 10^3 spores of A. flavus per g. Lanes 6-10: Amplification product obtained using DNA extracted after 0, 8, 16, 24 and 48 h of incubation, respectively, and inoculated with 10^6 spores of A. flavus per g. Lane 11: Non-template control. Lane 12: Amplification product obtained using as template A. flavus ITEM 4591 DNA. M: DNA molecular size marker.
Table I. Fungal strains analysed indicating, origin, species, host and the occurrence of PCR amplification product with primers FLA1 and FLA2.

Strains supplied by Dr. Sanchis (University of Lleida, Spain)(*). Strains supplied by Dr. Moretti (CNR, Bari, Italy)(**)