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INVARIANT ELEMENTS FOR p-MODULAR

REPRESENTATIONS OF GL2(Qp)

STEFANO MORRA

Abstract. Let p be an odd rational prime and F a p-adic field. We give a

realization of the universal p-modular representations of GL2(F ) in terms of
an explicit Iwasawa module. We specialize our constructions to the case F =

Qp, giving a detailed description of the invariants under principal congruence

subgroups of irreducible admissible p-modular representations of GL2(Qp),
generalizing previous work of Breuil and Paskunas [BP]. We apply these results

to the local-global compatibility of Emerton [Eme10], giving a generalization

of the classical multiplicity one results for the Jacobians of modular curves
with arbitrary level at p.
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1. Introduction

Let F be a p-adic field, with ring of integers OF and residue field kF . This article
is framed in the broad context of the p-modular Langlands correspondence, aimed
to match continuous Galois representations of Gal(F/F ) over finite dimensional
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Fp-vector spaces with certain Fp-valued, smooth representations of the F -points of
p-adic reductive groups.

This correspondence has first been defined in the particular case of F = Qp and
the group GL2, thanks to the parametrization of supersingular representations of
GL2(Qp) (cf. [Bre03a]). It is now completely established in the wide horizon of
the p-adic Langlands correspondence for GL2(Qp) (cf. [Col1], [Kis], [Pas1]) and
admits a cohomological realization according to the local-global compatibility of
Emerton [Eme10].

For other groups the situation turns out to be extremely more delicate. While p-
modular Galois representations are well understood, the theory of p-modular repre-
sentation of p-adic reductive groups is at its beginning, starting with the pionieristic
work of Barthel and Livné [BL94], [BL95] and recently achieved in greater gener-
ality by Herzig [Her2]. Even for GL2, recent constructions of Breuil and Paskunas
[BP] and Hu [Hu2] show a troubling proliferation of supersingular representations
as soon as F 6= Qp. This phenomenon remains, at present, unexplained.

Nevertheless, the work [BP], [Hu] highlight that the crucial point in order to
understand an irreducible admissible p-modular GL2(F ) representation π relies in
a complete control of its internal structure, i.e. of the extensions between irreducible
representations of certain congruence subgroups appearing as subquotients of π. A
exhaustive study in this direction has started in [Mo1], where the author realizes
the GL2(Zp)-socle filtration for irreducible admissible GL2(Qp)-representations.

In this article we pursue the investigation undertaken in [Mo1], clarifying the
internal behavior of universal p-modular representations of GL2(F ) by means of
structure theorems, showing the prominent role of an explicit Iwasawa module.
This enables us, in the particular case of F = Qp, to describe exhaustively the
space of fixed vectors of supersingular representations under principal congruence
subgroups, generalizing previous results of Breuil and Paskunas [BP]. Thanks to the
local-global compatibility theorems of Emerton [Eme10], we are able to generalize
the classical “multiplicity one” results ([Maz], [Rib], [Edi], [Kha]) in the case of
modular curves whose level is highly divisible by p.

We give a more precise account of the main results appearing in this paper.
Let k be a finite extension of kF (the “field of coefficients”): all representations

are on k linear spaces. From the classification of Barthel and Livné [BL94], a
supersingular representation π of GL2(F ) is, up to twist, an irreducible admissible
quotient of an explicit universal representation π(σ, 0). The latter is defined as the

cokernel of a canonical Hecke operator on the compact induction ind
GL2(F )
GL2(OF )F×σ,

where σ is an irreducible smooth representation of GL2(OF )F×.
According to the work of Breuil and Paskunas [BP] and Hu [Hu2], the representa-

tion π is completely determined by its structure as GL2(OF ) and N representation,
where N is the normalizer of the Iwahori subgroup I of GL2(OF ) (the crucial point
being that GL2(F ) is canonically identified with the amalgamation of GL2(OF )F×

and N along their intersection IF×).
Our first results give a realization of the GL2(OF ) and the N restriction of

π(σ, 0) in terms of certain k[I]-modules R−∞,0, R−∞,−1:

Theorem 1.1 (Corollary 3.5). There is a canonical GL2(OF )F×-isomorphism
π(σ, 0)|GL2(OF )F×

∼= R∞,0 ⊕ R∞,−1 where the representations R∞,0, R∞,−1 fit in
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the following exact sequences of k[GL2(OF )]-modules:

0→ V1 → ind
GL2(OF )
I

(
R−∞,0

)
→ R∞,0 → 0

0→ V2 → ind
GL2(OF )
I

(
R−∞,−1

)
→ R∞,−1 → 0

for suitable subquotients V1, V2 of an induction from a smooth character of the
Iwahori subgroup, depending on σ.

The second structure theorem clarifies a result already appearing in [Mo5] (Propo-
sition 3.5) and is concerned with the N -restriction of the universal representation
π(σ, 0). We remark that if F = Qp this is a result of Paskunas ([Pas2], Theorem
6.3 and Corollary 6.5).

Theorem 1.2 (Propositions 3.7 and 3.8). In the notations of Theorem 1.1, we
have the following I-equivariant exact sequences

0→W1 →
(
R−∞,−1

)s ⊕R−∞,0 → R∞,0|I → 0

0→W2 →
(
R−∞,0

)s ⊕R−∞,−1 → R∞,−1|I → 0

where W1, W2 are convenient 1-dimensional k[I]-modules. Moreover, the action

of the element

[
0 1
$ 0

]
on the universal representation π(σ, 0) induces the k[I]-

equivariant involution(
R−∞,−1

)s ⊕R−∞,0 ∼−→
((
R−∞,0

)s ⊕R−∞,−1

)s
(v1, v2) 7−→ (v2, v1)

which restricts to an isomorphism W1
∼→W s

2 .

Here, the notation (∗)s means that we are considering the action of I on ∗

obtained by conjugation by the element

[
0 1
$ 0

]
(which is a representative for

the only nontrivial coset of N/IF×).
An exhaustive control of the subquotients for the k[I]-modules R−∞,0, R

−
∞,−1 is

crucial in order to extract the most subtle properties of supersingular representa-
tions for GL2(F ). For instance, in [Hu2] Hu gives a method to detect a subquotient
of R−∞,0⊕R

−
∞,−1 which essentially characterizes a supersingular quotient of π(σ, 0)

and the studies of Schraen on the homological properties of R−∞,0, R
−
∞,−1 show

that supersingular representations are not of finite presentation when [F : Qp] = 2
([Sch]).

The k[I]-modules R−∞,0, R
−
∞,−1 admit an explicit construction, which is recalled

in §3.1. Their Pontryagin duals are obtained as limits (over N) of finitely presented
modules whose first syzygy requires a strictly increasing number of generators as
soon as F 6= Qp; in particular, R−∞,0, R

−
∞,−1 are not admissible unless F = Qp.

A first study of R−∞,0, R
−
∞,−1 has been pursued by the author in [Mo5] (by rep-

resentation theoretic methods) and in [Mo6], [Mo7] (using methods from Iwasawa
theory).

In the case F = Qp the behavior of R−∞,0, R
−
∞,−1 is particularly simple:

Theorem 1.3 ([Mo1], Proposition 5.10). Let F = Qp. For • ∈ {0,−1} the k[I]-
module R−∞,• is uniserial.
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This phenomenon, which can equally be deduced from the results of [Pas2]
(Propositions 4.7 and 5.9), is at the heart of the studies carried out in [Mo1],
[Mo4], [AM] and lets us detect in greatest detail the space of invariant vectors of
supersingular representations π(σ, 0) of GL2(Qp) under certain congruence sub-
groups.

The following theorem is a sharpening of the main result of [Mo1] and of [BP],
Proposition 20.1:

Theorem 1.4 (Corollary 4.14). Let t ≥ 1 and let Kt be the principal congruence
subgroup of GL2(OF ) of level pt. Assume σ = Symrk2 where r ∈ {0, . . . , p− 1}.

The space of Kt fixed vectors for the supersingular representation π(σ, 0) decom-
poses into the direct sum of two k[K]-modules (π(σ, 0))Kt = (R∞,0)Kt⊕(R∞,−1)Kt .
Each direct summand admits a K-equivariant filtration whose graded pieces are de-
scribed by:

(R∞,0)Kt : Symrk2—indKI χr+2det−1—indKI χr+4det−2— . . .—indKI χr—Symp−3−rk2 ⊗ detr+1

(R∞,−1)Kt : Symp−1−rk2 ⊗ detr—indKI χ−r+2detr−1—indKI χ−r+4detr−2— . . .—indKI χ−rdetr—Symr−2k2 ⊗ det

where we have pt−1−1 parabolic inductions in each line and the algebraic represen-
tation Symp−3−rk2 ⊗ detr+1 in the first line (resp. Symr−2k2 ⊗ det in the second
line) appears only if p− 3− r ≥ 0 (resp. r − 2 ≥ 0).

We recall that for any n ∈ N the natural GL2(Fp)-representation Symnk2 is
viewed as a GL2(Zp)-representation by inflation and that the smooth character χn

of the Iwahori I is defined by

[
a b
pc d

]
7→ an mod p. One can indeed prove that

the GL2(Zp) socle filtration for (R∞,0)Kt , (R∞,−1)Kt is obtained by the evident
refinement of the filtration described by Theorem 1.4 (cf. Corollary 4.14).

The statement of Theorem 1.4 is deduced from Theorem 1.1, through a careful
study of the Kt fixed vectors of the Iwasawa modules R−∞,0, R−∞,−1. As the latter
are unserial, their Kt fixed elements can be easily recovered with a direct argument
on Witt vectors (cf. Proposition 4.4).

In a similar fashion, we detect the fixed vectors for the congruence subgroup
It, which is defined as the subgroup of Kt−1 whose elements are upper unipotent
modulo pt:

Theorem 1.5 (Corollary 3.11, Propositions 4.6, 4.9). Let t ≥ 1 and assume σ =
Symrk2 for r ∈ {0, . . . , p− 1}.

The space of It fixed vectors for the supersingular representation π(σ, 0) decom-
poses as (π(σ, 0))It = (R∞,0)It⊕ (R∞,−1)It . Each direct summand is a k[I]-module
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admitting an equivariant filtration whose graded pieces are described by:

χr+2det−1 χr+4det−2 . . . χr

(R∞,0)It : χr

vvvvvvvvvv

HHHHHHHHHH ⊕ ⊕ ⊕

χr−2 det χr−4det2 . . . χr

χ−r+2detr−1 χ−r+4detr−2 . . . χ−rdetr

(R∞,−1)It : χ−rdetr

qqqqqqqqqqq

MMMMMMMMMMM
⊕ ⊕ ⊕

χ−r−2detr+1 χ−r−4detr+2 . . . χ−rdetr

and we have pt−1 − 1 characters on each horizontal line.

We point out that Theorem 1.4 and 1.5 had first been proved by the author
in [Mo2], essentially with the same technical tools, but the lack of the structure
Theorems 1.1 and 1.2 required a considerable amount of delicate estimates on Witt
vectors. Moreover, our techniques could be applied to detect the fixed vectors for
irreducible admissible GL2(Qp)-representations under other congruence subgroups
(see for instance [Mo3]).

As we remarked above, a precise control of Kt, It invariants has global applica-
tions, thanks to the geometric realization of the p-adic Langlands correspondence
by Emerton [Eme10]. Let ρ : Gal(Q/Q) → GL2(k) be a continuous, irreducible
odd Galois representation which we assume to be absolutely irreducible at p. Let N
be its Artin conductor and κ its minimal weight (cf. [Ser87]); up to twist, we may
assume 2 ≤ κ ≤ p. Let Y (Npt) be the modular curve (defined over Q) of level Npt

and mρ the maximal ideal in the spherical Hecke algebra of H1
ét(Y (Npt)×Q Q, k)

corresponding to ρ.
The result is the following:

Theorem 1.6 (Proposition 6.1). Let K(N) be the kernel of the map∏
`|N

GL2(Z`)→
∏
`|N

GL2(Z`/N)

and define

d
def
= dimk

(⊗
`|N

π(ρ|Gal(Q`/Q`)
)

)K(N)

where π(ρ|Gal(Q`/Q`)
) is the smooth GL2(Q`)-representation attached to ρ|Gal(Q`/Q`)

by the Emerton-Helm p-modular Langlands correspondence ([EH]).
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If t ≥ 1 and Npt > 4 we have

dimk

(
H1
ét(Y (Npt)×Q Q, k)[mρ]

)
= 2d

(
2pt−1(p+ 1)− 3

)
if κ− 2 = 0

dimk

(
H1
ét(Y (Npt)×Q Q, k)[mρ]

)
= 2d

(
2pt−1(p+ 1)− 4

)
if κ− 2 6= 0.

Thanks to the relation between the étale cohomology of the modular curve
Y (Npt) and the Tate module of its Jacobian, Theorem 1.6 generalizes the clas-
sical multiplicity one theorems ([Rib], [Maz]) to modular curves of arbitrary level
at p. It is consistent with the results of Khare [Kha], where it is shown that the di-
mension of the ρ-isotypical component of the Jacobian of X1(Npt) tends to infinity
as the level at p increases.

The organization of the paper is the following.
We start (§2) by recalling the construction of the universal representation π(σ, 0)

for a p-adic field F , as well as some properties of finite parabolic induction for
GL2(Fp) which will be used later on to describe the Kt-invariants for irreducible
admissible representations of GL2(Qp).

Section §3 is devoted to the realization of the structure theorems for universal
representations. We first refine the constructions of §2 in order to define the Iwasawa
modules R−∞,0, R−∞,−1 (§3.1); we subsequently specialize to the case F = Qp (§3.2).

The space of invariant vectors for irreducible admissible representations is worked
out in section 4. We first detect the invariants for the Iwasawa modulesR−∞,0, R−∞,−1

(§4.1), relying crucially on the fact that such objects are unimodular (Proposition
4.4). We then use the structure theorems of section 3 to deduce the space of Kt

and It fixed vectors for supersingular representations of GL2(Qp).
Section 5 is devoted to the case of principal and special series representations for

GL2(Qp). The results are somehow similar, but can be detected with much less
efforts.

Finally, we give in §6 a precise description of the global application of Theorems
1.4, 1.5 for the multiplicity spaces of mod p cohomology of modular curves.

1.1. Notation. Let p be an odd prime. We consider a p-adic field F , with ring

of integers OF , uniformizer $ and (finite) residue field kF . Let q
def
= Card(kF ) be

its cardinality and f
def
= [kF : Fp] the residual degree. We write x 7→ x for the

reduction morphism OF → kF and x 7→ [x] for the Teichmüller lift k×F → O×F (we

set [0]
def
= 0).

Consider the general linear group GL2, whose F -points will be denoted by G
def
=

GL2(F ). We fix the maximal torus T of diagonal matrices and the unipotent

radical U of upper unipotent matrices, so that B
def
= T n U is the Borel subgroup

of upper triangular matrices. We write B = T n U for the opposite Borel, and

Z
def
= Z(G) for the center of the F -points of GL2. Let T be the Bruhat-Tits tree

associated to GL2(F ) (cf. [Ser77]) and consider the hyperspecial maximal compact

subgroup K
def
= GL2(OF ).

The object of study of this article are the following congruence subgroups of K:

Kt
def
= ker

(
K

redt−→ GL2(OF /($
t))
)
, It

def
=

(
red−1

t

(
U(OF /($

t))
))
∩Kt−1
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where t ∈ N and redt denotes the mod $t reduction map. For notational conve-
nience, we introduce the following objects

s
def
=

[
0 1
1 0

]
∈ GL2(F ), α

def
=

[
0 1
$ 0

]
∈ GL2(F ), K0($)

def
= red−1

1

(
B(kF )

)
.

Let E be a p-adic field, with ring of integers O and finite residue field k (the
“coefficient field”). Up to enlarging E, we can assume that Card

(
HomFp(kF , k)

)
=

[kF : Fp].
A representation σ of a subgroup H of GL2(Qp) is always understood to be

smooth with coefficients in k. If h ∈ H we will sometimes write σ(h) to denote the
k-linear automorphism induced by the action of h on the underlying vector space
of σ. We denote by (σ)H the linear space of H fixed vectors of σ.

Let H2 ≤ H1 be compact open subgroups of K. For a smooth representation σ
of H2 we write indH1

H2
σ to denote the (compact) induction of σ from H2 to H1. If

v ∈ σ and h ∈ H1 we write [h, v] for the unique element of indH1

H2
σ supported in

H2h
−1 and sending h−1 to v. We deduce in particular the following equalities:

h′ · [h, v] = [h′h, v], [hk, v] = [h, σ(k)v](1)

for any h′ ∈ H1, k ∈ H2.
The previous construction will mainly be used when H1 = K, H2 = K0($). In

this situation we define, for any v ∈ σ and l ∈ N, the element

fl(v)
def
=
∑
λ∈kF

λl
[

[λ] 1
1 0

]
[1, v] ∈ indKK0($)σ.

If Z ∼= F× is the center of GL2(F ) and σ is a representation of KZ we will simi-

larly write ind
GL2(F )
KZ σ for the subspace of the full induction Ind

GL2(F )
KZ σ consisting

of functions which are compactly supported modulo the center Z (cf. [Bre03a],
§2.3). For g ∈ GL2(F ), v ∈ σ we use the same notation [g, v] for the element

of ind
GL2(F )
KZ σ having support in KZg−1 and sending g−1 to v; the element [g, v]

verifies similar compatibility relations as in (1).
A Serre weight is an absolutely irreducible representation of K. Up to isomor-

phism they are of the form⊗
τ∈Gal(kF /Fp)

(
dettτ ⊗kF Symrτ k2

F

)
⊗kF ,τ k(2)

where rτ , tτ ∈ {0, . . . , p− 1} for all τ ∈ Gal(kF /Fp) and tτ < p− 1 for at least one
τ . This gives a bijective parametrization of isomorphism classes of Serre weights
by 2f -tuples of integers rτ , tτ ∈ {0, . . . , p− 1} such that tτ < p− 1 for some τ . The
Serre weight characterized by tτ = 0, rτ = p − 1 for all τ ∈ Gal(kF /Fp) will be

referred as the Steinberg weight and denoted by St.
Recall that the K representations Symrτ k2

F can be identified with kF [X,Y ]hrτ ,
the linear subspace of kF [X,Y ] described by the homogeneous polynomials of degree
rτ .

In this case, the action of K is described by[
a b
c d

]
·Xrτ−iY i

def
= (aX + cY )rτ−i(bX + dY )i

for any 0 ≤ i ≤ rτ .
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We fix once and for all a field homomorphism kF ↪→ k. The results of this paper
do not depend on this choice.

Up to twist by a power of det, a Serre weight has now the more concrete expres-
sion

σr ∼=
f−1⊗
i=0

(
Symrik2

)Frobi

(3)

where r = (r0, . . . , rf−1) ∈ {0, . . . , p−1}f and
(
Symrik2

)Frobi

is the representation

of K obtained from Symrik2 via the homomorphism GL2(kF )→ GL2(kF ) induced

by the i-th Frobenius x 7→ xp
i

on kF .
We will usually extend the action of K on a Serre weight to the group KZ, by

imposing the scalar matrix $ ∈ Z to act trivially.

A k-valued character χ of the torus T(kF ) will be considered, by inflation, as
a smooth character of any subgroup of K0($). We will write χs to denote the
conjugate character of χ, defined by

χs(t)
def
= χ(sts)

for any t ∈ T(kF ).
Similarly, if τ is any representation of K0($), we will write τs to denote the

conjugate representation, defined by

τs(h) = τ(αhα)

for any h ∈ K0($).
Finally, if σ is a Serre weight, we write σ[s] for the unique Serre weight non

isomorphic to σ and whose highest weight space affords the character
(
(σ)K0($)

)s
.

Concretely, if σ appears in the K socle of an induction indKK0($)χ, then σ[s] appears

in the socle of indKK0($)χ
s.

If r = (r0, . . . , rf−1) ∈ {0, . . . , p − 1}f is an f -tuple we define the characters of
T(kF ):

χr

([
a 0
0 d

])
def
= a

∑f−1
i=0 p

iri , a

([
a 0
0 d

])
def
= ad−1.

IfH ≤ K is an open subgroup and τ is a representation ofH we write
{

soci(τ)
}
i∈N

to denote its socle filtration (we set soc0(τ)
def
= soc(τ)). We will use the notation

soc0(τ)—soc1(τ)/soc0(τ)— . . .—socn+1(τ)/socn(τ)— . . .

to denote the sequence of consecutive graded pieces of the socle filtration for τ (in
particular, each soci+1(τ)/soci(τ)—soci+2(τ)/soci+1(τ) is a non-split extension).

More generally, if τ is an H-representation endowed with an increasing filtration{
τi
}
i∈N we will write

socfil(τ0)—socfil(τ1/τ0)— . . .—socfil(τi+1/τi)— . . .

to mean that

i) the socle filtration for τ is obtained, by refinement, from the filtration
induced on τ by the socle filtration of each graded piece τi+1/τi;
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ii) the sequence of consecutive graded pieces of the socle filtration for τ is ob-
tained as the juxtaposition of the sequences of the graded pieces associated
to the socle filtration of each τi+1/τi.

If S is any set, and s1, s2 ∈ S we define the Kronecker delta

δs1,s2
def
=

{
0 if s1 6= s2

1 if s1 = s2.

Moreover, for x ∈ Z, we define bxc ∈ {0, . . . , p− 2} (resp. dxe ∈ {1, . . . , p− 1}) by
the condition bxc ≡ x ≡ dxemod p− 1.

2. Reminders on the universal representations for GL2

We recall here the precise definition of the universal representation of GL2. We
provide an explicit construction in terms of Hecke operators and Mackey decompo-
sition, which turns out to be useful to realize the structure theorems of §3. We end
the section collecting some results on finite inductions for smooth characters of the
Iwahori subgroup.

The main references are the work of Breuil [Bre03a], §2 and [Mo1], §2 and §3.

2.1. Construction of the universal representation. We fix an f -tuple r ∈
{0, . . . , p − 1}f and write σ = σr for the associated Serre weight described in (2).
In particular, the highest weight space of σ affords the character χr. We recall

([BL95], [Her1]) that the Hecke algebra HKZ(σ)
def
= EndG(indGKZσ) is commutative

and isomorphic to the algebra of polynomials in one variable over k:

HKZ(σ)
∼→ k[T ].

The Hecke operator T is supported on the double coset KαKZ and completely
determined as a suitable linear projection on σ (cf. [Her1], Theorem 1.2); it admits
an explicit description in terms of the Bruhat-Tits tree of GL2(F ) (cf. [Bre03a],
§2.5).

The universal representation π(σ, 0, 1) for GL2 is then defined by the exact
sequence

0→ indGKZσ
T→ indGKZσ → π(σ, 0, 1)→ 0.

In the rest of this section we study the KZ-restriction of π(σ, 0, 1) in terms of
its Mackey decomposition, giving a precise construction by means of a family of
suitable Hecke operators.

Let n ∈ N. We consider the anti-dominant co-weight λn ∈ X(T)∗ characterized
by

λn($) =

[
1 0
0 $n

]
and we introduce the subgroup

K0($n)
def
=
(
λn($)Kλn($−1)

)
∩K =

{[
a b

$nc d

]
∈ K, c ∈ OF

}
.

The element

[
0 1
$n 0

]
normalizes K0($n) and we define the K0($n)-representa-

tion σ(n) as the K0($n) restriction of σ endowed with the twisted action of K0($n)
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by the element

[
0 1
$n 0

]
. Explicitly,

σ(n)

([
a b

$nc d

])
·Xr−jY j

def
= σ

([
d c

$nb a

])
·Xr−jY j .

Finally, we write

Rn(σ)
def
= indKK0($n)

(
σ(n)

)
.

If the Serre weight σ is clear from the context, we set Rn = Rn(σ). For notational

convenience we define R−1
def
= 0.

We have a K-equivariant isomorphism (deduced from Frobenius reciprocity)

Rn
∼−→ k[Kλn($)KZ]⊗k[KZ] σ(4)

[1, v] 7−→ λn($)⊗ s · v

which realizes the Mackey decomposition for indGKZσ:(
indGKZσ

)
|KZ

∼−→
⊕
n∈N

Rn.

Here, k[Kλn($)KZ] is the k-linear space on the double coset Kλn($)KZ, endowed
with its natural structure of (k[K], k[KZ])-bimodule.

The interpretation in terms of the tree of GL2 is clear: the k[K]-module Rn
maps isomorphically onto the space of elements of indGKZσ having support on the
double coset Kλn($)KZ. In particular, if σ is the trivial weight, a linear basis for
Rn is parametrized by the vertices of T lying at distance n from the central vertex.

The Hecke endomorphism T induces, by transport of structure, a family of K-

equivariant morphisms Tn defined on the k[K]-modules Rn: Tn
def
= T |Rn . From the

explicit description of the Hecke operator T one sees (cf. [Mo5], §2.2.1) that Im(Tn)
is a sub-object of Rn+1 ⊕ Rn−1 so that we can further consider the composition
with the canonical the projections

T±n : Rn
Tn−→ Rn+1 ⊕Rn−1 −→ Rn±1.

It turns out that, for n ≥ 1, the operators T±n are obtained by compact induction
(from K0($n) to K) from the following morphisms t±n :

t+n : σ(n) ↪→ ind
K0($n)
K0($n+1)σ

(n+1)

Xr−jY j 7→
∑
λn∈kF

(−λn)j
[

1 0
$n[λn] 1

]
[1, Xr];

t−n+1 : ind
K0($n)
K0($n+1)σ

(n+1) � σ(n)

[1, Xr−jY j ] 7→ δj,rY
r.

For n = 0 we similarly have
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T+
0 : σ(0) ↪→ R1

Xr−jY j 7→
∑
λ0∈kF

(−λ0)r−j
[

[λ0] 1
1 0

]
[1, Xr] + δj,0[1, Xr]

T−1 : R1 � σ(0)

[1, Xr−jY j ] 7→ δj,rY
r.

In particular, T+
n (resp. T−n ) are monomorphisms (resp. epimorphisms).

We deduce the following exact sequence of K-representations

0→
⊕
n∈N

Rn

⊕
n Tn−→

⊕
n∈N

Rn → π(σ, 0, 1)|KZ → 0

so that, by the exactness of filtered co-limits and the definition of the Hecke oper-
ators Tn we obtain(

lim
−→
n odd

coker
( n−1

2⊕
j=0

T2j+1

))
⊕

(
lim
−→
n even

coker
( n

2⊕
j=0

T2j

)) ∼= π(σ, 0, 1)|KZ(5)

The representations coker
(⊕n−1

2
j=0 T2j+1

)
can be described in a more expressive

way as a suitable push-out of the partial Hecke operators T±n . Indeed one verifies
that coker(T1) = R0 ⊕R1

R2, where the push out is defined by the following co-
cartesian diagram

R1

−T−1 ����

� � T+
1 // R2

pr2
����

R0
� � // R0 ⊕R1

R2.

If we assume we have inductively constructed prn−1 : Rn−1 � R0 ⊕R1
· · · ⊕Rn−2

Rn−1 (where n ≥ 3 is odd), we define the amalgamated sum R0 ⊕R1
· · · ⊕Rn Rn+1

by the following co-cartesian diagram:

Rn

−prn−1◦T−n

����

� � T+
n // Rn+1

prn+1

����
R0 ⊕R1 R2 ⊕R3 · · · ⊕Rn−2 Rn−1

� � // R0 ⊕R1
R2 ⊕R3

· · · ⊕Rn Rn+1.

Using the universal properties of push-outs and cokernels, one obtains a canonical
isomorphism of k[K]-modules

coker
( n−1

2⊕
j=0

T2j+1

) ∼= R0 ⊕R1
R2 ⊕R3

· · · ⊕Rn Rn+1
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(cf. [Mo5], Proposition 2.8 or [Mo1], Proposition 3.9) together with a commutative
diagram with exact lines

0 // Rn

����

T+
n // Rn+1

����

// Rn+1/Rn // 0

0 // R0 ⊕R1 · · · ⊕Rn−2 Rn−1
ιn // R0 ⊕R1

· · · ⊕Rn Rn+1
// Rn+1/Rn // 0

(6)

We construct in a completely analogous fashion the amalgamated sums (R1/R0)⊕R2

· · · ⊕Rn Rn+1 for n ∈ 2N, obtaining an isomorphism

coker
( n

2⊕
j=0

T2j

) ∼= (R1/R0)⊕R2 · · · ⊕Rn Rn+1

and a similar commutative diagram as in (6).
In order to lighten notations, we put

R∞, 0
def
= lim
−→
n, odd

R0 ⊕R1
· · · ⊕Rn Rn+1

(where the inductive system is defined by the natural morphisms ιn appearing in
the diagram (6)) and, similarly,

R∞,−1
def
= lim

−→
n, even

(R1/R0)⊕R2
· · · ⊕Rn Rn+1.

If we need to emphasize their dependence on the Serre weight σ we will write
R∞,0(σ), R∞,−1(σ).

2.1.1. Induced representations for B(Fp). In this section we specialize to kF = Fp
the results of [BP], §2 (see also [BS00]), which describe the structure of a GL2(kF )-
representation parabolically induced from a character of a Borel subgroup. The
results here will be used to complete the computations for the Kt invariant vectors
of supersingular representations for GL2(Qp).

Let i, j ∈ {0, . . . , p − 1} and let us consider the B(Fp)-character χsia
j . If e is a

fixed linear basis for the underlying vector space associated to χsia
j and if l ∈ Z,

we recall the elements fl
def
= fl(e) ∈ ind

GL2(Fp)

B(Fp) χsia
j defined in §1.1.

The following result clarifies the relation between the elements fl and the socle
filtration for the finite parabolic induction:

Proposition 2.1. Let i, j ∈ {0, . . . , p− 1}. Then

i) for l ∈ {0, . . . , p − 1}, fl is an T(kF )-eigenvector, whose associated eigen-

character is χi−2jdetja−l, and the set

B
def
= {fl, [1, e] 0 ≤ l ≤ p− 1, }

is an linear basis for ind
GL2(Fp)

B(Fp) χsia
j.

ii) If i− 2j 6≡ 0 [p− 1] then we have a nontrivial extension

0→ Symbi−2jck2 ⊗ detj → ind
GL2(Fp)

B(Fp) χsia
j → Symp−1−bi−2jck2⊗deti−j → 0.

The families

{f0, . . . , fbi−2jc−1, fbi−2jc + (−1)i−j [1, e]}, {fi−2j , . . . , fp−1}
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induce a basis for the socle and the cosocle of ind
GL2(Fp)

B(Fp) χsia
j respectively.

iii) If i− 2j ≡ 0 [p− 1] then ind
GL2(Fp)

B(Fp) χsia
j is semi-simple and

ind
GL2(Fp)

B(Fp) χsia
j ∼−→

(
1⊕ Symp−1k2

)
⊗ detj .

The families

{f0 + (−1)j [1, e]}, {f0, f1, . . . , fp−2, fp−1 + (−1)j [1, e]}

induce an k-basis for detj and Symp−1k2 ⊗ detj respectively.

Proof. Omissis. Cf. [BP], Lemmas 2.5, 2.6, 2.7. �

We end this section with a technical remark on Witt polynomials, which, com-
bined with Lemma 2.1, enables us to conclude the delicate computations needed to
describe the Kt fixed vectors for supersingular representations of GL2(Qp) (§4.2).
We recall ([AC], Chapitre 9, §1, partie 4) that if F is a finite extension of Fp we
have the following equality in the associated ring of Witt vectors W(F):

[µ] + [λ] ≡ [λ+ µ] + p[S1(λ, µ)] mod p2

where µ, λ ∈ F, [·] : F → W(F) is the usual Teichmüller lift and S1 ∈ Z[X,Y ] is
an homogeneous polynomial of degree p:

S1(X,Y ) = −
p−1∑
s=1

(
p
s

)
p
Xp−sY s.(7)

An immediate manipulation gives

S1(X − Y, Y ) = −S1(X,−Y ).(8)

3. Structure theorems for universal representations

The aim of this section is to introduce some structure theorems for the universal
representation π(σ, 0, 1) of GL2. These results concern both the KZ-restriction
and the N -restriction of π(σ, 0, 1) and show that the behavior of universal repre-
sentations is controlled by a certain, explicit, k[I]-module R−∞,•. If F = Qp the
Pontryagin dual of such module turns out to be of finite type over a suitable dis-
crete valuation ring: this is the crucial phenomenology which gives us a complete
understanding of irreducible admissible representations of GL2(Qp). If F is a non-
trivial finite extension of Qp the situation is extremely delicate: the dual of R−∞,• is
defined over a complete Noetherian regular local ring of Krull dimension [F : Qp]
and is not any longer of finite type (if F is of characteristic p the module is defined
over a non-noetherian profinite ring, and still not of finite type, cf. [Mo7]).

We keep the notation of the previous section, in particular σ is a fixed Serre
weight. We invite the reader to refer to [Mo5], §3 for the omitted details. We
remark that the results of [Mo5], §3 are formal and hold true for any local field
with finite residual degree (cf. also [Mo5], p.1077).
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3.1. Refinement of the Iwahori structure. Let n ∈ N>. Restriction of func-
tions from K to K0($) gives a K0($)-equivariant exact sequence

0→ R+
n → Rn → ind

K0($)
K0($n)

(
σ(n)

)
→ 0

which is easily checked to be split, therefore realizing the Mackey decomposition
for Rn|K0($). We thus define for n ≥ 1

R−n
def
= ind

K0($)
K0($n)

(
σ(n)

)
and one verifies (cf. [Mo5], §3.1) that the partial Hecke morphisms T±n give rise to
a family of K0($)-equivariant morphisms

(T+
n )neg : R−n ↪→ R−n+1, (T+

n )pos : R+
n ↪→ R+

n+1

(T−n+1)neg : R−n+1 � R−n , (T−n+1)pos : R+
n+1 � R+

n .

For technical reasons we define

R+
0

def
= R0|K0($), R−0

def
= cosocK0($)(R

−
1 ), R+

−1
def
= cosocK0($)(R

+
0 ), R−−1

def
= 0

as well as the operators

(T+
0 )neg : R−0

0→ R−1 , (T+
0 )pos : R+

0 ↪→ R1 � R+
1

(T−1 )neg : R−1 � R−0 , (T−1 )pos = T−1 |R+
1

: R+
1 � R+

0

(T−0 )neg : R−0
0→ R−−1, (T−0 )pos : R+

0 � R+
−1.

We leave as an exercise to the reader to check that the morphism (T+
0 )pos

is injective and the amalgamated sum R+
−1 ⊕R+

0
R+

1 with respect to the couple

(−(T−0 )pos, (T+
0 )pos) is canonically isomorphic to the image of the K0($)-morphism

R+
1 → R1 → R1/R0.
Following the procedures of section 2.1 we can construct inductive systems of

amalgamated sums via the partial Hecke operators (T±n )pos, neg:{
R∗• ⊕R∗•+1

· · · ⊕R∗n R
∗
n+1

}
n∈2N+•+1

(9)

where • ∈ {0,−1}, ∗ ∈ {+,−}.
For • ∈ {0,−1}, ∗ ∈ {+,−} we write

R∗∞,•
def
= lim

−→
n∈2N+•+1

R∗• ⊕R∗•+1
· · · ⊕R∗n R

∗
n+1.

The relation between the amalgamated sums (9) and the ones defined in §2.1 is
given by the following

Proposition 3.1. Let • ∈ {0,−1}, ∗ ∈ {+,−} and n ∈ 2N + • + 1, n ≥ 2. We
have a commutative diagram of K0($)-representations, with exact rows
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0 // R∗n //

yysssssssssssssssssssss

����

R∗n+1
//

zzuuuuuuuuuuuuuuuuuuuu

����

R∗n+1/R
∗
n

//

����������������
0

0 // Rn

����

// Rn+1

����

// Rn+1/Rn // 0

0 // R∗•⊕R∗•+1
···⊕R∗

n−2
R∗n−1 //

lL

zztttttttttttttttttttt
R∗•⊕R∗•+1

···⊕R∗n
R∗n+1 //

lL

zzvvvvvvvvvvvvvvvvvvv
R∗n+1/R

∗
n

//
q Q

�����������������
0

0 // (R•⊕R•+1
···⊕Rn−2

Rn−1)|K0($) // (R•⊕R•+1
···⊕Rn2

Rn+1)|K0($) // (Rn+1/Rn)|K0($) // 0.

Proof. This is proved in [Mo5], in the proof of Proposition 3.5, by induction. �

Remark 3.2. We write explicitly the morphisms which initialize the inductive argu-
ment of Proposition 3.1. Concerning R+

0 , R−1 we have the evident monomorphisms

R+
0
∼→ R0; R−−1 ⊕R−0 R−1 = R−1 ↪→ R1;

concerning R−0 we have

R−0 ↪→ R0

e 7→ Y r.

Finally, it is easy to verify that the morphism R+
−1 ⊕R+

0
R+

1 ↪→ R1/R0 is induced

by the couple:

R+
1 → R1/R0; R+

−1 ↪→ R1/R0;

e 7→ [1, Xr].

It is therefore convenient to write Y r, Xr for a linear basis for R−0 and R+
−1 re-

spectively.

Before introducing the first structure theorem for universal representations of
GL2 we need the following

Definition 3.3. If σ = σr is a Serre weight as in (3) we write

S(σ)
def
=


Soc

(
indKK0($)χ

s
r

)
1
St

, R(σ)
def
=


Rad

(
indKK0($)χr

)
if dim(σ) /∈ {0, q}

St if dim(σ) = 1
1 if dim(σ) = q.

The result is then:

Proposition 3.4. For any n ∈ 2N + 1, m ∈ 2N + 2 we have the following exact
sequence of k[K]-modules:

0→ R(σ)→ indKK0($)

(
R−0 ⊕R−1 · · · ⊕R−n R

−
n+1

)
→ R0 ⊕R1 · · · ⊕Rn Rn+1 → 0

0→ S(σ)→ indKK0($)

(
R−1 ⊕R−2 · · · ⊕R−m R−m+1

)
→ (R1/R0)⊕R2

· · · ⊕Rm Rm+1 → 0
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Proof. We start proving the first exact sequence. Recall that R−0 is isomorphic to
the character χr so that

0→ R(σ)→ indKK0($)

(
R−0
)
→ R0 → 0

is true by definition. By induction we assume the statement holds true for all
−1 ≤ j ≤ n − 2, j odd (the case j = −1 being the initialization of the inductive
argument).

Recall that for all i ∈ N> the natural K0($)-monomorphism R−i ↪→ Ri gives

rise to a K-isomorphism indKK0($)R
−
i
∼→ Ri and, by exactness of induction, we get

an exact sequence

0→ indKK0($)

(
R−n
)
→ indKK0($)

(
R−n+1

)
→ Rn+1/Rn → 0.

We therefore deduce from Proposition 3.1, using Frobenius reciprocity and exact-
ness of induction, the following commutative diagram with exact lines

0 // indK
K0($)

(R−n ) //

∼=

}}{{{{{{{{{{{{{{{{{

����

indK
K0($)

(R
−
n+1

) //

∼=

������������������

����

Rn+1/Rn //






























0

0 // Rn

����

// Rn+1

����

// Rn+1/Rn // 0

0 // indK
K0($)

(
···⊕

R
−
n−2

R
−
n−1

)
//

~~}}}}}}}}}}}}}}}}
indK

K0($)

(
···⊕

R
−
n
R
−
n+1

)
//

������������������
Rn+1/Rn //

��������������

��������������
0

0 // ···⊕Rn−2
Rn−1 // ···⊕RnRn+1 // Rn+1/Rn // 0.

In particular we deduce

0 // indKK0($)

(
· · · ⊕R−n−2

R−n−1

)
����

// indKK0($)

(
· · · ⊕R−n R

−
n+1

)
//

��

Rn+1/Rn // 0

0 // · · · ⊕Rn−2
Rn−1 // · · · ⊕Rn Rn+1

// Rn+1/Rn // 0

and the conclusion follows from the Snake lemma and the inductive hypothesis on
the morphism indKK0($)

(
· · · ⊕R−n−2

R−n−1

)
� · · · ⊕Rn−2

Rn−1.

The second exact sequence is proved in the evident, similar fashion, noticing
that the K-sub-representation of R1/R0 generated by [1, Xr] is isomorphic to

coker
(
S(σ)→ indKK0($)χ

s
r

)
. �

As a corollary, we deduce the first structure theorem for the universal represen-
tations of GL2:
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Corollary 3.5. We have the following exact sequences of k[K]-modules:

0→ R(σ)→ indKK0($)

(
R−∞,0

)
→ R∞,0 → 0

0→ S(σ)→ indKK0($)

(
R−∞,−1

)
→ R∞,−1 → 0

Proof. The functor indKK0($)( ) commutes with co-limits, as it is exact and com-

mutes with (arbitrary) co-products. Since filtered co-limits are exact the result
follow from Proposition 3.4. �

Remark 3.6. We point out that the same argument has been used in [AM] to get
the structure theorem for the special case F = Qp ( loc. cit., Corollaire 3.1).

We can now introduce the second structure theorem for universal representations
of GL2, describing the action of N , the normalizer of the Iwahori subgroup K0($),
on π(σ, 0, 1).

We start recalling the structure theorem for the K0($)-restriction of π(σ, 0, 1)
(cf. [Mo5], Proposition 3.5).

Proposition 3.7. We have the following K0($)-equivariant exact sequences

0→W1 → R+
∞,0 ⊕R

−
∞,0 → R∞,0|K0($) → 0

0→W2 → R+
∞,−1 ⊕R

−
∞,−1 → R∞,−1|K0($) → 0

where W1, W2 are the 1-dimensional spaces defined by W1
def
= 〈(Y r,−Y r)〉 and

W2
def
= 〈(Xr,−Xr)〉.

Proof. This is [Mo5], Proposition 3.5 (notice that, in the notation of loc. cit., the

elements (−1)rF
(0)
r (0) and −[1, Xr] of R1 coincide in the quotient R1/R0, by the

definition of the operator T0). �

In order to control the action of the normalizer N we are therefore left to study

the action of the element α
def
=

[
0 1
$ 0

]
. The result is the following:

Proposition 3.8. There exists two K0($)-equivariant isomorphisms

ι−1 : R−∞,−1
∼→

(
R+
∞,0
)s

ι0 : R−∞,0
∼→

(
R+
∞,−1

)s
such that

i) ι−1(Xr) = Y r and ι0(Y r) = Xr;
ii) The isomorphisms ι−1, ι0 induce a commutative diagram of k-linear spaces

with exact lines

0 // W1 ⊕W2

o

��

// R−∞,0 ⊕R
+
∞,0 ⊕R

−
∞,−1 ⊕R

+
∞,−1

o
��

// π(σ, 0, 1)

o
��

// 0

0 // W2 ⊕W1
// R+
∞,−1 ⊕R

−
∞,−1 ⊕R

+
∞,0 ⊕R

−
∞,0

// π(σ, 0, 1) // 0

where the right vertical arrow is the automorphism induced by the action of
α on π(σ, 0, 1).
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Proof. We start showing that, for any n ≥ −1, we have a K0($)-equivariant iso-
morphism

rn : R−n+1
∼−→ (R+

n )s.

The case n = −1 is trivial, as the spaces R−0 , R+
−1 are 1-dimensional, affording the

characters χr and χsr respectively and we have R−0 = 〈Y r〉, R+
−1 = 〈Xr〉 via the

equivariant embeddings R−0 ↪→ R0, R+
−1 ↪→ (R1/R0)+ respectively (cf. Remark

3.2).
Assume now n ≥ 0. Recall that for any j ≥ 0 we have a K-equivariant isomor-

phism (cf. (4)):

indKK0($j)

(
σ(j)

) ∼→ k[Kλj($)KZ]⊗k[KZ] σ

[1, v] 7→
[

0 1
$j 0

]
⊗ v.

We deduce the following k-linear morphism:

R−n+1 ↪→ Rn+1
∼→ k[Kλn+1($)KZ]⊗k[KZ] σ

∼→ k[Kλn($)KZ]⊗k[KZ] σ
∼→ Rn � R+

n

where the central arrow is induced by the action of α on the compact induc-
tion (indGKZσ)|KZ . As α normalizes K0($) we deduce that the composite arrow
rn : R−n+1 → (R+

n )s is K0($)-equivariant and an easy check shows that rn is an
epimorphism, hence an isomorphism by dimension reasons. As the Hecke operator
T is equivariant, we deduce furthermore that the diagram

R−n+1

rn
∼

//

(T−n+1)neg

����

(R+
n )s

(T−n )pos

����
R−n

rn−1

∼
// (R+

n−1)s

(10)

commutes for all n ≥ 1.
The diagram commutes also for n = 0 and we have r0(Xr) = Y r (by K0($)-

equivariance r0 induces an isomorphism between the highest weight spaces of the
representations R−1 , R+

0 ).
The Proposition will be completely proved once we show that for any n ≥ −1

we have a K0($)-equivariant isomorphism fn : · · · ⊕R−n R
−
n+1 → (· · · ⊕R+

n−1
R+
n )s

which verifies the prescribed conditions on the images of Xr, Y r (for n even, odd
respectively).

We treat the case when n is even, the other being symmetric. It is an induction
on n where the case n = 0 is given by r0 : R−1

∼→ (R+
0 )s.

Assume n ≥ 2 and that we have an isomorphism fn−2 making the following
diagram commute:

R−n
// //

o
��

R−1 ⊕R−2 · · · ⊕R−n−2
R−n−1

fn−2 o
��

(R+
n−1)s // // (R+

0 ⊕R+
1
· · · ⊕R+

n−3
R+
n−2)s

(with the prescribed property on the image of the element Xr ∈ R−1 ).
Using (10) we deduce the commutative diagram with exact lines
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0 // R−n //

∼=

�����������������

����

R
−
n+1

//

∼=

�����������������

����

R
−
n+1

/R−n //

∼=

��













0

0 // (R+
n−1

)s

����

// (R+
n )s

����

// (R+
n /R

+
n−1

)s // 0

0 // ···⊕
R
−
n−2

R
−
n−1 //

∼=
fn−2

�����������������

···⊕
R
−
n
R
−
n+1

//

∃!
fn

��

R
−
n+1

/R−n //

∼=

����������������
0

0 //
(
···⊕

R
+
n−3

R
+
n−2

)s
//
(
···⊕

R
+
n−1

R+
n

)s
// (R+

n /R
+
n−1

)s // 0

where the morphism fn is obtained from the universal property of · · · ⊕R−n R
−
n+1

(notice also that
(
· · · ⊕R+

n−1
R+
n

)s
= · · · ⊕(R+

n−1)s (R+
n )s). The morphism fn is

moreover an isomorphism, verifying the prescribed property on the image of the
element Xr ∈ R−1 .

This completes the inductive step and, passing to co-limits, one gets the isomor-
phism ι−1 as in the statement. �

3.2. The case F = Qp. We specialize some of the previous constructions to the
case F = Qp. By Corollary 3.5, Proposition 3.7 and Proposition 3.8 we see that the
structure of the universal representation π(σ, 0, 1) depends crucially on the modules
R−∞,•, where • ∈ {−1, 0}.

The dual of R−∞,• is a module on the Iwasawa algebra k[[OF ]], and is not of finite
type as soon as F 6= Qp. Moreover k[[OF ]] is a complete regular noetherian local
ring of dimension [F : Qp] if F is a finite extension of Qp and is not even noetherian
if char(F ) = p (see also [Mo6], [Mo7]).

When F = Qp the situation is much simpler: R−∞,• is the dual of a monogenous
module over a discrete valuation ring (the Iwasawa algebra of Zp).

We start recalling the following result:

Proposition 3.9. Let n ≥ 0. The k[K0(p)]-module R−n+1 is uniserial, of dimension
(r + 1)pn, and its socle filtration is described by

χsr—χsra—χsra
2— . . .—χsra

(r+1)pn−1.

Proof. This is deduced from [Mo1], Proposition 5.10 and the fact that we have a

K0(pn+1)-equivariant embedding σ(n+1) ↪→ ind
K0(pn+1)
K0(pn+2)χ

s
r; moreover, for p ≥ 5 it

can equally be seen as a particular case of of [Mo5], Proposition 4.10.
Alternatively, the statement is a consequence of [Pas2], Propositions 4.7 and

5.9. �

The statement of Proposition 3.9 can be made more expressive.
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We recall from [Mo5] that for a finite unramified extension F/Qp the k[K0(p)]-
module R−n+1 admits a linear basis B−n+1 which is endowed with a partial order (cf.

op. cit., Lemma 2.6). The partial ordering on B−n+1 induces therefore a k-linear

filtration on the space R−n+1 and one of the main result of [Mo5] (cf. op. cit.,
Proposition 4.10) is to show that such filtration is K0(p)-stable.

When F = Qp such ordering is indeed total (this is linked with the aforemen-
tioned phenomenon that we are considering modules over a complete local noether-
ian regular ring of Krull dimension [F : Qp]).

Explicitly, we have a bijection{
0, . . . , p− 1

}n × {0, . . . , r
} ∼−→ B−n+1(11)

(l1, . . . , ln+1) 7−→ F
(1,n)
(l1,...,ln)(ln+1)

where we define the element

F
(1,n)
(l1,...,ln)(ln+1)

def
=

∑
λ1∈Fp

λl11

[
1 0

p[λ1] 1

]
. . .

∑
λn∈Fp

λlnn

[
1 0

pn[λn] 1

]
[1, Xr−ln+1Y ln+1 ] ∈ R−n+1.

The total ordering on B−n+1 is then induced from the order of N via the injective
map

B−n+1

P
↪→ N

F
(1,n)
(l1,...,ln)(ln+1) 7→ P

(
F

(1,n)
(l1,...,ln)(ln+1)

) def
=

n∑
j=0

pj lj+1

(and thus coincides with the anti-lexicographical order ≺ on the LHS of (11)). If
F1, F2 ∈ B−n+1, we write F1 ≺ F2 if P (F1) < P (F2).

Since R−n+1 is uniserial, it is easy to describe the amalgamated sum · · ·⊕R−n R
−
n+1:

Proposition 3.10. Let n ≥ 1. The kernel of the projection map R−n+1 � · · · ⊕R−n
R−n+1 is described by:

ker
(
R−n+1 � · · · ⊕R−n R

−
n+1

)
=


〈F ∈ B−n+1, F ≺ F

(1,n)
r,p−1−r,...,p−1−r,r(0)〉 if n ∈ 2N + 1

〈F ∈ B−n+1, F ≺ F
(1,n)
p−1−r,r,,...,p−1−r,r(0)〉 if n ∈ 2N + 2.

Proof. We consider the case where n is odd (the other is similar). Since R−n+1 is

uniserial and the linear filtration on R−n+1 induced by the linear order on B−n+1

coincides with the socle filtration, it will be enough to show that

dim
(〈
F ∈ B−n+1, F ≺ F

(1,n)
r,p−1−r,...,p−1−r,r(0)

〉)
= dim(R−n+1)−dim(· · · ⊕R−n R

−
n+1).

This is a straightforward check: indeed

dim
(〈
F ∈ B−n+1, F ≺ F

(1,n)
r,p−1−r,...,p−1−r,r(0)

〉)
= r(

n−1
2∑
j=0

p2j) + p(p− 1− r)(

n−3
2∑
j=0

p2j)

= (p− r)p
n−1 − 1

p+ 1
+ rpn−1
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and

dim(· · · ⊕R−n R
−
n+1) = 1 + (r + 1)(−1)

n∑
j=0

(−p)j = (r + 1)
pn+1 − 1

p+ 1
+ 1;

dim(R−n+1) = pn(r + 1).

�

As R−∞,• is a co-limit of the modules · · · ⊕R−n R
−
n+1, the transition maps being

monomorphisms, we deduce

Corollary 3.11. For • ∈ {0,−1} the k[K0(p)]-module R−∞,• is uniserial. Its socle
filtration is described by

(R−∞,0) : χsra
r—χsra

r+1—χsra
r+2— . . .

(R−∞,−1) : χsr—χsra—χsra
2— . . .

respectively.

We write
{
Fn

}
n∈N for the socle filtration for R−∞,0 (in particular, F0 is the

socle of R−∞,0 and Fn is the n+ 1-dimensional sub-module of R−∞,0).

Remark 3.12. It is easy to see that for any n ≥ 0 the modules R−n+1 (and hence

the modules R−∞,•) are uniserial even when restricted to the subgroup U(pZp). This
follows again from [Mo1], Proposition 5.10 and can equally be deduced from the
results of Paskunas, [Pas2], Proposition 4.7 and 5.9.

4. Study of Kt and It invariants

In this section we assume F = Qp. The aim is to describe in detail the Kt and
It invariants for supersingular representations π(σ, 0, 1) of GL2(Qp).

Thanks to the structure theorems of §3 we are essentially left to understand
the invariants for the Iwasawa modules R−∞,•. This is developed in section 4.1:

the argument follows easily from the uniserial property of R−∞,•, but one should
carefully carry out computations in order to handle some delicate K-extensions
which will appear later on in section 4.2.

The invariants for the supersingular representation π(σ, 0, 1) will be determined
in §4.2, combining the results on R−∞,• with the structure theorems.

4.1. Invariants for the Iwasawa modules R−∞,•. We are going to describe in
detail the spaces of Kt invariants (resp. It invariants) for the k[K0(p)]-modules
R−∞,• (resp. R∗∞,•).

4.1.1. Intertwinings between the modules R∞,•. Recall (§1.1) that for a Serre weight

σ we write σ[s] for its conjugate weight. We start from the following

Proposition 4.1. The intertwining operator π(σ, 0, 1)
∼→ π(σ[s], 0, 1) induces a

KZ-isomorphism

R∞,0(σ)
∼−→ R∞,−1(σ[s]).(12)
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Proof. We have a KZ-equivariant monomorphism

R∞,0(σ) ↪→ π(σ, 0, 1)|KZ
∼→ π(σ[s], 0, 1)|KZ

∼→ R∞,0(σ[s])⊕R∞,−1(σ[s]).

As R∞,0(σ) and R∞,0(σ[s]) have irreducible non isomorphic socles, we deduce that
the composite

φ1 : R∞,0(σ) ↪→ π(σ, 0, 1)|KZ
∼→ π(σ[s], 0, 1)|KZ � R∞,−1(σ[s])

is a KZ-equivariant monomorphism. Similarly, the composite

φ2 : R∞,−1(σ) ↪→ π(σ, 0, 1)|KZ
∼→ π(σ[s], 0, 1)|KZ � R∞,0(σ[s])

is aKZ-equivariant monomorphism. As φ1⊕φ2 coincides (by construction) with the

intertwining operator π(σ, 0, 1)
∼→ π(σ[s], 0, 1) via the isomorphism (5) we deduce

that φ1, φ2 are epimorphisms and the proof is complete. �

If p ≥ 5 the statement of Proposition 4.1 can be sharpened, giving an isomor-
phism between the positive and negative parts of R∞,0(σ), R∞,−1(σ[s]) :

Proposition 4.2. Assume p ≥ 5. Then the isomorphism (12) induces the K0(p)-
equivariant isomorphisms

R−∞,0(σ)
∼−→ R−∞,−1(σ[s]), R+

∞,0(σ)
∼−→ R+

∞,−1(σ[s]).

Proof. We let e0 (resp. e+
0 ) be a linear generator for the space soc

(
R−∞,0(σ)

)
(resp.

for the space soc
(
R+
∞,0(σ)

)
). Similarly we define the elements e[s], e

+
[s].

By Proposition 3.7 we can write the following equivariant exact sequences

0→ 〈(e+
0 , e0)〉 → R+

∞,0(σ)⊕R−∞,0(σ)→ R∞,0(σ)|K0(p) → 0

0→ 〈(e+
[s], e[s])〉 → R+

∞,−1(σ[s])⊕R−∞,−1(σ[s])→ R∞,−1(σ[s])|K0(p) → 0

(up to replace the elements e0, e[s] by suitable nonzero scalar multiples), hence
obtaining the induced isomorphisms

R−∞,0(σ)/〈e0〉 ⊕R+
∞,0(σ)/〈e+

0 〉
∼→ R∞,0(σ)/〈e〉

R−∞,−1(σ[s])/〈e[s]〉 ⊕R+
∞,−1(σ[s])/〈e+

[s]〉
∼→ R∞,−1(σ[s])/〈e[s]〉

where e is a linear basis for the image of the subspace 〈(0, e0), (e+
0 , 0)〉 ≤ R+

∞,0(σ)⊕
R−∞,0(σ) in R∞,0(σ) and e[s] is defined in the evident, analogous way.

By Corollary 3.11 we note that the K0(p)-socle of R∞,−1(σ[s])/〈e[s]〉 is described
by

soc
(
R∞,−1(σ[s])/〈e[s]〉

)
= χra⊕ χra−1

which is multiplicity free if p ≥ 5.
As e, e[s] are fixed under the action of the pro-p Sylow of K0(p), we deduce from

Lemma 4.3 that the isomorphism (12) induces a K0(p)-equivariant isomorphism

R∞,0(σ)/〈e〉 ∼−→ R∞,−1(σ[s])/〈e[s]〉.

Since the representationsR±∞,0(σ), R±∞,−1(σ[s]) are uniserial and soc
(
R∞,−1(σ[s])/〈e[s]〉

)
is multiplicity free, one deduces the isomorphisms

R−∞,0(σ)/〈e0〉
∼→ R−∞,−1(σ[s])/〈e[s]〉, R+

∞,0(σ)/〈e+
0 〉
∼→ R+

∞,−1(σ[s])/〈e+
[s]〉.

The statement follows. �
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The following result is well known (it is an immediate consequence of [Bre03a],
Théorème 3.2.4 and Corollaire 4.1.4), but we decided to give here a self contained
argument:

Lemma 4.3. In the hypotheses of Proposition 4.2 we have dim
(
R∞,0(σ)

)K1(p)
= 1,

where K1(p) is the pro-p Sylow of K0(p).

Proof. We use the notations appearing in the proof of Proposition 4.2.

Define Z1
def
= K1(p)∩Z. Then Z1 acts trivially on R∞,0(σ) and the exact sequence

0→ 〈e0〉 → R∞,0(σ)→ R−∞,0(σ)/〈e0〉 ⊕R+
∞,0(σ)/〈e+

0 〉 → 0

yields the exact sequence of cohomology

0→ 〈e0〉 →
(
R∞,0(σ)

)K1(p)/Z1 →
(
R−∞,0(σ)/〈e0〉

)K1(p)/Z1 ⊕
(
R+
∞,0(σ)/〈e+

0 〉
)K1(p)/Z1 →

→ H1(K1(p)/Z1, 〈e0〉).

Recall that, asK1(p)/Z1 acts trivially on 〈e0〉, the spaceH1(K1(p)/Z1, 〈e0〉) is natu-
rally identified with the space of continuous group homomorphisms Hom(K1(p)/Z1, k).

By Corollary 3.11 and since the space Ext1
K0(p)/Z1

(χsra
r+1, χsra

r) is one dimen-

sional ([Pas2], Proposition 5.4), one checks that the image of the composite map

(
R−∞,0(σ)/〈e0〉

)K1(p)/Z1
↪→
(
R−∞,0(σ)/〈e0〉

)K1(p)/Z1⊕
(
R+
∞,0(σ)/〈e+

0 〉
)K1(p)/Z1 → Hom(K1(p)/Z1, k)

coincides with the linear subspace generated by morphism

K0(p)/Z1 → k[
a b
pc d

]
7→ c.

Similarly, the image of the subspace
(
R+
∞,0(σ)/〈e+

0 〉
)K1(p)/Z1

coincides with the
linear subspace generated by morphism

K0(p)/Z1 → k[
a b
pc d

]
7→ b.

From [Pas2], Proposition 5.2 we deduce that the connection homomorphism is
surjective, hence an isomorphism as the K0(p)-representations R−∞,0(σ), R+

∞,0(σ)
are uniserial.

The conclusion follows. �

By virtue of Proposition 4.1 (resp. Proposition 3.8) it will be enough to study
the Kt invariants (resp. It invariants) for the Iwasawa module R−∞,0 (resp. R−∞,0
and R−∞,−1).

Recall that R−∞,0 is unserial, and we denoted by
{
Fn

}
n∈N its socle filtration (cf.

Corollary 3.11). The Kt invariants of R−∞,0 are then described by the following

Proposition 4.4. Let t ≥ 1. We have a K0(p)-equivariant exact sequence

0→
(
R−∞,0

)Kt → Fpt−1 → χsra
r+1 → 0.
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Moreover, for any lift e1 ∈ Fpt−1 of a linear basis of χsra
r+1 we have([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· e1 = cκe1e0(13)

where a, b, c, d ∈ Zp, κe1 ∈ k× is a suitable nonzero scalar depending only on e1

and e0 is a linear generator of soc
(
R−∞,0

)
.

Proof. As R−∞,0 is admissible uniserial and Kt is normal in K0(p) we deduce that(
R−∞,0

)Kt
= Fn(t) where n(t) ∈ N is defined by

n(t) = max

{
n ∈ N, s.t. Fn =

(
Fn

)Kt}
and hence we are left to prove that n(t) = pt−1 − 1 (an elementary computation
shows that the graded piece Fpt−1/Fpt−1−1 affords the character χsra

r+1).
This will be a careful computation, using the properties of Witt polynomials.

We remark that the cases where r ∈ {0, p− 1} are slightly more delicate to verify.
We start from the following

Lemma 4.5. Let K1(pt+2) be the maximal pro-p subgroup of K0(pt+2). Let z
def
=∑t

j=1 p
j [λj ] ∈ Zp and a, b, c, d ∈ Zp. Then we have[

1 + pta ptb
ptc 1 + ptd

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
κ′

for a suitable element κ′ ∈ K1(pt+2) and

z′ =

t−1∑
j=1

pj [λj ] + pt[λt + c] + pt+1[S1(λt, c) + r(λ1)]

where S1(λt, c) is the specialization of the Witt polynomial (7) and r ∈ Fp[λ1] is a
linear polynomial in λ1 depending on a, b, c, d.

Proof. We have[
1 0
−z′ 1

] [
1 + pta ptb
ptc 1 + ptd

] [
1 0
z 1

]
=

[
1 + pt(a+ bz) ptb

w 1 + pt(d− bz′)

]
where w

def
= −z′(1 + pt(a + bz)) + z + pt(c + dz). Thus z′ ≡ (z + ptc + ptdz)(1 +

pta)−1 mod pt+2 (notice that ptbzz′ ≡ 0 mod pt+2) and we deduce

z′ ≡ (z + ptc+ ptdz)(1− pta) mod pt+2

≡ z + ptc+ ptdz − ptaz − p2tac mod pt+2

(the first line is deduced noticing that (z + ptc + ptdz)p2t ≡ 0 mod pt+2 and the
second noticing that p2tz ≡ 0 mod pt+2).

The result follows from an immediate computation on Witt vectors. �

In order to complete the proof of the Proposition we now distinguish two cases.
Case A: t is odd.
It suffices to show that (R−0 ⊕R−1 · · ·⊕R−t R

−
t+1)Kt is a proper sub-k[K0(p)]-module

of dimension pt−1 sitting inside R−0 ⊕R−1 · · · ⊕R−t R
−
t+1 (notice that dim(R−0 ⊕R−1

· · ·⊕R−t R
−
t+1) ≥ pt−1 + 1 is verified for all values of t ≥ 1, p ≥ 3 and r ∈ {0, . . . , p−

1}).
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We recall that, for a t-tuple (l1, . . . , lt) ∈ {0, . . . , p− 1}t, we have

F
(1,t)
l1,...,lt

(0) ≡
{

0 if (l1, . . . , lt) ≺ (r, p− 1− r, . . . , p− 1− r, r)
F

(1,t)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt) = (r, p− 1− r, . . . , p− 1− r, r)(14)

in R−0 ⊕R−1 · · · ⊕R−t R
−
t+1, by Proposition 3.10.

We again have to distinguish two situations
Sub-case A1: r < p− 1.
By the unseriality of R−0 ⊕R−1 · · · ⊕R−t R

−
t+1 and the compatibility between the

K0(p)-action and the linear ordering on B−n+1 we deduce that the (pt−1 + 1)-

dimensional sub-module of R−0 ⊕R−1 · · · ⊕R−t R−t+1 is generated by the element

F
(1,t)
r,p−1−r,...,p−1−r,r+1(0) ∈ B−t+1.

If (l1, . . . , lt) � (r, p − 1 − r, r, . . . , p − 1 − r, r + 1) is a t-tuple we deduce, from
Lemma 4.5 and (14), the following equality in R−0 ⊕R−1 · · · ⊕R−t R

−
t+1:([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t)

l1,...,lt
(0) =

=

lt∑
j=1

(
lt
j

)
(−c)jF (1,t)

l1,...,lt−1,lt−j(0) ≡ −ltcjF (1,t)
l1,...,lt−1,lt−1(0) (as lt ≤ r + 1)

≡
{

0 if (l1, . . . , lt) ≺ (r, p− 1− r, r, . . . , p− 1− r, r + 1)

−(r + 1)cF
(1,t)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt) = (r, p− 1− r, r, . . . , p− 1− r, r + 1)

This proves the Proposition for t odd and r < p− 1.
Sub-case A2: r = p− 1.
This situation is slightly more delicate and we need to know the properties of

the homogeneous degree of the Witt polynomial S1(X,Y ) defined in (7).
As in case A1 we see that the (pt−1 + 1)-dimensional sub-module of R−0 ⊕R−1

· · · ⊕R−t R
−
t+1 is generated by the element F

(1,t)
r,p−1−r,...,p−1−r,0(1) ∈ B−t+1.

We now have, for a (t− 1)-tuple (l1, . . . , lt−1)([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t)

l1,...,lt−1,0
(1) =

∑
λ1∈Fp

λl11

[
1 0

p[λ1] 1

]
· · ·

· · ·
∑

λt−1∈Fp

λ
lt−1

t−1

[
1 0

pt−1[λt−1] 1

] ∑
λt∈Fp

[
1 0

pt[λt + c] 1

] (
S1(λt, c) + r(λ1)

)
[1, Xr]

where S1(λ1, c) + r(λ1) is defined as in Lemma 4.5. Thanks to (8) we can write∑
λt∈Fp

[
1 0

pt[λt + c] 1

] (
S1(λt, c)+r

)
[1, Xr] =

∑
λt∈Fp

[
1 0

pt[λt] 1

] (
−S1(λt,−c)+r′

)
[1, Xr]

where r′ ∈ Fp[λ1] is an appropriate polynomial of degree 1 in λ1 (depending on

a, b, c, d). In particular, −S1(λt,−c) + r′ = (−c)λp−1
t + P (λt) for an appropriate

polynomial of degree p− 2 in λt and hence, by (14),([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t)

l1,...,lt−1,0
(1) ≡ (−c)F (1,t)

l1,...,lt−1,p−1(0).
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Again, we have

F
(1,t)
l1,...,lt−1,p−1(0) ≡

{
0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r)

−(r + 1)cF
(1,t)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r).

This let us conclude the case r = p−1 (the Kt invariance of the elements F
(1,t)
l1,...,lt

(0)

is clear).
Case B: t is even.
The argument are completely analogous to those of Case A and the details are

left to the reader. We distinguish again two situations.
Sub-case B1: r > 0.
We now consider the element F

(1,t−1)
r,p−1−r,...,p−1−r,r(1) ∈ B−t as a linear generator

for the (pt−1 + 1)-dimensional sub-module of R−0 ⊕R−1 · · · ⊕R−t−1
R−t .

As we have seen for the Case A1 we have([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t−1)

l1,...,lt−1
(1) ≡

≡
{

0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r, r)
cF

(1,t−1)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r, r)

(the Kt invariance of the elements F
(1,t−1)
l1,...,lt−1

(0) is clear).

Sub-case B1: r = 0.
In this situation we have to consider the element F

(1,t+1)
r,p−1−r,...,r,0,1(0) ∈ B−t+2 as a

linear generator for the (pt−1+1)-dimensional sub-module of R−0 ⊕R−1 · · ·⊕R−t+1
R−t+2.

A direct computation together with an argument on Witt polynomials (as in
Case A2) shows that([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· F (1,t+1)

l1,...,lt−1,0,1
(0) ≡

≡
{

0 if (l1, . . . , lt−1) ≺ (r, p− 1− r, . . . , p− 1− r, r)
cF

(1,t+1)
r,p−1−r,...,p−1−r,r(0) if (l1, . . . , lt−1) = (r, p− 1− r, . . . , p− 1− r, r)

�

We turn now our attention to the analysis of It invariants for the modules R−∞,•.
The result is the following:

Proposition 4.6. If either t ≥ 1 and p ≥ 5 or t ≥ 2 and p = 3 the action of
U(pt−1Zp) is trivial on Fpt−1 .

In particular (
R−∞,0

)It
=
(
R−∞,0

)Kt
= Fpt−1−1

and for any x ∈ Fpt−1 we have([
1 + pta pt−1b
ptc 1 + ptd

]
− 1

)
· x = cκxe0

where a, b, c, d ∈ Zp, κx ∈ k is an appropriate scalar depending only on x and e0 is
a linear generator of soc

(
R−∞,0

)
.

Proof. Once we show that Fpt−1 is fixed under the action of U(pt−1Zp), the second
part of the statement follows easily by the Iwahori decomposition and Proposition
4.4.
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Again, we can check the U(pt−1Zp)-invariance of Fpt−1 by an explicit argument

on Witt vectors. We notice that, for z =
∑t+1
j=1 p

j [λj ] and b ∈ Zp we have[
1 pt−1b
0 1

] [
1 0
z 1

]
=

[
1 0
z′ 1

]
κ′

where κ′ ∈ K1(pt+2) (the maximal pro-p subgroup ofK0(pt+2)) and z′ =
∑t
j=1 p

j [λj ]+

pt+1[λt+1 − λ2
1b].

We distinguish several cases according to the values of t and r.
Case A: t is odd.
A direct computation gives the following equality inside Rt+1:([

1 pt−1b
0 1

]
− 1

)
F

(1,t)
l1,...,lt

(lt+1) =

{
0 if lt+1 = 0

−bF (1,t)
dl1+2e,l2,...,lt(0) if lt+1 = 1.

This proves the result for R−∞,0 when t ≥ 1 is odd and r < p − 1, since Fpt−1 is

linearly generated by the elements F ∈ B−t+1 verifying F � F (1,t)
r,p−1−r,...,p−1−r,r+1(0)

(cf. case A1 in the proof of Proposition 4.4).
As far as the case r = p − 1 is concerned, we recall (Proposition 3.10) that

F
(1,t)
dl1+2e,l2,...,lt−1,0

(0) ≡ 0 inside the amalgamated sum R−0 ⊕R−1 · · ·⊕R−t R
−
t+1 as soon

as t > 1. If t = 1 we have F
(1)
2 (0) ≡ 0 as soon as 2 < r. This let us deduce the

required result for R−∞,0 when r = p−1 and t ≥ 2 (or t = 1 and p > 3), since Fpt−1

is linearly generated by the elements F ∈ B−t+1 verifying F � F (1,t)
r,p−1−r,...,p−1−r,0(1)

(cf. case A2 in the proof of Proposition 4.4).
Case B: t is even.
Since ([

1 pt−1b
0 1

]
− 1

)
F

(1,t−1)
l1,...,lt−1

(lt) = 0

inside R−t , the result is clear for r > 0 via the description of Fpt−1 (again, cf. the
case B1 in the proof of Proposition 4.4).

Concerning the case r = 0 we have([
1 pt−1b
0 1

]
− 1

)
F

(1,t+1)
l1,...,lt−1,0,1

(0) = bF
(1,t+1)
dl1+2e,...,lt−1,0,0

(0)

which is zero in the amalgamated sum R−0 ⊕R−1 · · · ⊕R−t+1
R−t+2; the conclusion

follows again from the explicit description of Fpt−1 (cf. the case B2 in the proof of
Proposition 4.4). �

Remark 4.7. The statements of Propositions 4.4 and 4.6 hold if we replace R−∞,0
with R−∞,−1. If p ≥ 5 this follows immediately from the generality of the Serre
weight σ and Proposition 4.2.

Otherwise, one can pedantically repeat the direct arguments in the proofs of
Propositions 4.4 and 4.6, noticing that now the (pt−1 + 1) dimensional submod-

ule of R−∞,−1 is generated by the element F
(1,t)
p−1−r,r,...,p−1−r,r+1(0) if t is even and

r < p− 1, by the element F
(1,t)
p−1−r,r,...,p−1−r,0(1) if t is even and r = p− 1, etc...

The tedious details are left to the interested reader.
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Remark 4.8. From the equality (13) we deduce that the exact sequence of Propo-
sition 4.4

0→ Fpt−1−1 → Fpt−1 → χsra
r+1 → 0

is non-split even when restricted to U(ptZp). Hence, by Remark 3.12, the space of

U(ptZp)-fixed vectors in R−∞,0 is precisely Fpt−1−1

4.2. Invariants for supersingular representations. We are now in the position
to determine precisely the space of Kt, It fixed vectors for supersingular represen-
tations of GL2(Qp).

The case of It fixed vectors is an immediate consequence of Proposition 3.8 and
Proposition 4.6:

Proposition 4.9. Let t ≥ 1 and p ≥ 5 (or t ≥ 2 and p = 3). We have a short
exact sequence of k[K0(p)]-modules

0→W1 → (R−∞,0)It ⊕ (R+
∞,0)It → (R∞,0)It → 0(15)

(where W1 is the 1-dimensional space defined in Proposition 3.7).
In particular, for any t ≥ 1 and p ≥ 3 we have

dim(π(σ, 0, 1))It = 2(2pt−1 − 1).

Proof. Write e0 (resp. e+
0 ) for a linear generator of socK0(p)(R

−
∞,0) (resp. socK0(p)(R

+
∞,0)).

Up to replace e0, e+
0 by appropriate scalar multiples, we have an equivariant exact

sequence (cf. Proposition 3.7)

0→ 〈(e0, e
+
0 )〉 → R−∞,0 ⊕R

+
∞,0 → R∞,0|K0(p) → 0.

From the associated long exact sequence in cohomology, we see that the exactness
of (15) is established once we prove that the natural morphism

H1(It, 〈(e0, e
+
0 )〉)→ H1(It, R

−
∞,0)⊕H1(It, R

+
∞,0)

is injective. Recall that, as It acts trivially on 〈(e0, e
+
0 )〉, we have a canonical

isomorphism

H1(It, 〈(e0, e
+
0 )〉) ∼= Hom(It, k)

(where the Hom denotes the space of continuous group homomorphisms).
Assume that γ ∈ Hom(It, k) has trivial image in H1(It, R

−
∞,0) ⊕ H1(It, R

+
∞,0).

This means that there exists an element (x−, x+) ∈ R−∞,0 ⊕R
+
∞,0 such that

γ(g)(e0, e
+
0 ) = (g − 1)(x−, x+) ∈ 〈(e0, e

+
0 )〉(16)

for all g ∈ It. In particular x− ∈
(
R−∞,0/〈e0〉

)It
, x+ ∈

(
R+
∞,0/〈e

+
0 〉
)It

and by Lemma

4.10 below it follows that x− (resp. x+) belongs to the (pt−1 + 1)-dimensional
submodule of R−∞,0 (resp. R+

∞,0), i. e. that x− ∈ Fpt−1 .

Hence, for g =

[
1 + pta pt−1b
ptc 1 + ptd

]
∈ It we deduce from Proposition 4.6 that

(g − 1)x− = cκ−e0

where κ− ∈ k depends only on x−. By symmetry (see Remark 4.7 and Proposition
3.8) we similarly have

(g − 1)x+ = bκ+e+
0

for an appropriate scalar κ+ ∈ k depending only on x+.
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It follows from (16) that κ−c = κ+b for any choice of c, b ∈ Zp and this implies
κ− = κ+ = 0, i.e. γ is the zero homomorphism.

Thanks to Proposition 4.6, Remark 4.7 and the isomorphism R−∞,−1
∼→ (R+

∞,0)s

(Proposition 3.8) we deduce from (15) that

dim(R∞,0)It = (2pt−1 − 1)

if either t ≥ 1 and p ≥ 5 or t ≥ 2 and p = 3, and hence (by generality of σ and
Proposition 4.1)

dim(π(σ, 0, 1))It = 2(2pt−1 − 1).

if either t ≥ 1 and p ≥ 5 or t ≥ 2 and p = 3. The remaining case t = 1 and p = 3
is covered in [Bre03a] and the proof is complete. �

Lemma 4.10. In the notations and hypotheses of Proposition 4.9 we have

dim
(
R−∞,0/〈e0〉

)It
= pt−1 = dim

(
R+
∞,0/〈e

+
0 〉
)It
.

Proof. The equivariant exact sequence

0→ 〈e0〉 → R−∞,0 → R−∞,0/〈e0〉 → 0

yields the exact sequence

0→ 〈e0〉 →
(
R−∞,0

)U(ptZp) →
(
R−∞,0/〈e0〉

)U(ptZp) → H1(ptZp, 〈e0〉).

We have H1(ptZp, 〈e0〉) ∼= Hom(ptZp, k) and, as k is p-elementary abelian and the
Frattini quotient of ptZp is Z/(p), we deduce that Hom(ptZp, k) is one dimensional.

We therefore deduce by Remark 4.8 that dim
(
R−∞,0/〈e0〉

)It ≤ pt−1.

Finally, the element e1 ∈ R−∞,0 defined in Proposition 4.4 is It-fixed in R−∞,0/〈e0〉
(Proposition 4.6) and linearly independent with the elements in

(
R−∞,0

)It
: it follows

that dim
(
R−∞,0/〈e0〉

)It
= pt−1.

By Remark 4.7 we have an analogous result for R−∞,−1, and the equality

dim
(
R+
∞,0/〈e

+
0 〉
)It

= pt−1

follows then from the intertwinings of Proposition 3.8. �

We turn our attention to the analysis of Kt fixed vectors for supersingular rep-
resentations of GL2(Qp). We start recalling some results (cf. [Mo1]) concerning

the KZ-socle filtration for the representations indKK0(p)(R
−
∞,0) and π(σ, 0, 1).

TheK0(p)-socle filtrationR−∞,0 induces aK-equivariant filtration on indKK0(p)(R
−
∞,0)

(hence on R∞,0); the extensions between its first graded pieces look as follow:

indKK0(p)χ
s
ra
r—indKK0(p)χ

s
ra
r+1—indKK0(p)χ

s
ra
r+2—indKK0(p)χ

s
ra
r+3— . . .(17)

One can show ([Mo1], Lemmas 6.8 and 6.9 or [AM]) that the KZ-equivariant

filtration on indKK0(p)(R
−
∞,0) obtained by the evident refinement of (17) is indeed

the KZ-socle filtration for indKK0(p)(R
−
∞,0) (cf. [Mo1], Theorem 1.1).

In particular, if e1 ∈ Fpt−1 is a linear generator for the socle

socK0(p)

(
R−∞,0/F(pt−1−1)

)
= χsra

r+1



30 STEFANO MORRA

we see that

socK

(
indKK0(p)

(
R−∞,0/F(pt−1−1)

))
= socK

(
indKK0(p)χ

s
ra
r+1
)
,

where the finite induction of the RHS is generated, under K, by the image of the
element [1, e1] via the map indKK0(p)(R

−
∞,0) � indKK0(p)

(
R−∞,0/F(pt−1−1)

)
. Notice

moreover that if R∞,t denotes the image of indKK0(p)(F(pt−1−1)) inside R∞,0 we
have, for t ≥ 1

indKK0(p)

(
R−∞,0/F(pt−1−1)

) ∼→ R∞,0/R∞,t

via the epimorphism of Corollary 3.5.
We recall that the main properties of the element e1 ∈ Fpt−1 were described in

Proposition 4.4 and 4.6 and we define the following element of indKK0(p)(R
−
∞,0):

f(e1)
def
=

∑
λ0∈Fp

[
[λ0] 1
1 0

]
[1, e1]− δr,p−3[1, e1] ∈ indKK0(p)(R

−
∞,0).

By Proposition 2.1 we see that

Lemma 4.11. Via the natural epimorphism indKK0(p)(R
−
∞,0) � indKK0(p)

(
R−∞,0/F(pt−1−1)

)
the element f(e1) maps to a highest weight vector for the Serre weight Symbp−3−rck2⊗
detr+1 appearing in socK

(
indKK0(p)χ

s
ra
r+1
)
, unless (r, p) = (p− 1, 3) (in which case

it maps to a highest weight vector for St⊗ det).

Since Kt is normal in K, the sub-module R∞,t is formed by Kt fixed vectors.
Nevertheless, for r ≤ p− 3, it is strictly contained in (R∞,0)Kt :

Lemma 4.12. Assume r ≤ p− 3. The natural morphism〈
indKK0(p)

(
F(pt−1−1)

)
, f(e1)

〉
k[K]

↪→ indKK0(p)(R
−
∞,0) � R∞,0

factors through (R∞,0)Kt ↪→ R∞,0.

Proof. It suffices to show that for any κ ∈ Kt we have

(κ− 1) · f(e1) ∈ ker
(
indKK0(p)(R

−
∞,0) � R∞,0

)
.

For a, b, c, d ∈ Zp we have[
1 + pta ptb
ptc 1 + ptd

] [
[λ0] 1
1 0

]
=

[
[λ0] 1
1 0

] [
1 + pta′ ptb′

ptc′ 1 + ptd′

]
(18)

with c′ = b+ (a− d)λ0 − cλ2
0.

We therefore deduce from Proposition 4.4 the following equality in indKK0(p)(R
−
∞,0):([

1 + pta ptb
ptc 1 + ptd

]
−1

)
·f(e1) = bf0(e0)+(a− d)f1(e0)−c(f2(e0)+δr,p−3[1, e0]).

where e0 is a linear generator of socK0(p)(R
−
∞,0).

Since the kernel of the epimorphism indKK0(p)(R
−
∞,0) � R∞,0 is linearly generated

by the elements

ker
(
indKK0(p)(R

−
∞,0) � R∞,0

)
= 〈f0(e0), . . . , fp−2−r(e0), fp−1−r(e0) + [1, e0]〉k

(cf. Corollary 3.5 and Proposition 2.1) the required result follows. �

We can now describe completely the Kt fixed vectors of R∞,0:
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Proposition 4.13. Let t ≥ 1. The space of Kt fixed vectors of R∞,0 is given by1

(R∞,0)Kt =


〈

indKK0(p)

(
F(pt−1−1)

)
, f(e1)

〉
k[K]

if r ≤ p− 3

indKK0(p)

(
F(pt−1−1)

)
if r ∈ {p− 2, p− 1}.

(19)

Proof. In order to ease notations we define the k[K]-module

M0
def
=


〈

indKK0(p)

(
F(pt−1−1)

)
, f(e1)

〉
k[K]

if r ≤ p− 3

indKK0(p)

(
F(pt−1−1)

)
if r ∈ {p− 2, p− 1}

and write M for its image in R∞,0 under the epimorphism indKK0(p)(R
−
∞,0) � R∞,0.

Assume that RKt∞,0/M 6= {0}.
Then, by the description of the K-socle filtration for R∞,0, we see that

soc
(
RKt∞,0/M

)
= soc

(
R∞,0/M

)
=


cosoc(indKK0(p)χ

s
ra
r+1) if r ≤ p− 4

St⊗ det−1 if r = p− 3

soc(indKK0(p)χ
s
ra
r+1) if r ∈ {p− 2, p− 1}.

Moreover, the following elements of indKK0(p)(R
−
∞,0) fp−3−r(e1) if r ≤ p− 3

f0(e1) if r ∈ {p− 2, p− 1} and (r, p) 6= (p− 1, 3)
f0(e1), f0(e1)− [1, e1] if (r, p) = (p− 1, 3).

(20)

are mapped to a linear basis for the highest weight space of soc
(
R∞,0/M

)
(in the

case (r, p) = (p−1, 3) then f0(e1), f0(e1)− [1, e1] are mapped to the highest weight
space of St⊗ det, det respectively).

Since M is formed by Kt fixed vectors the elements described in (20) should be
Kt fixed vectors of R∞,0. This is absurd, as we show in the following lines.

We treat first the case r ≤ p − 3. Thanks to (18) and Proposition 4.4 we have

the following equality in indKK0(p)(R
−
∞,0):([

1 + pta ptb
ptc 1 + ptd

]
−1

)
·fp−3−r(e1) = bfp−3−r(e0)+(a− d)fp−2−r(e0)−cfp−1−r(e0)

(where e0 is again an appropriate linear generator of socK0(p)(R
−
∞,0)).

Via Proposition 2.1 and the epimorphism of Corollary 3.5 we deduce the following
equality in R∞,0:([

1 + pta ptb
ptc 1 + ptd

]
− 1

)
· fp−3−r(e1) = −cfp−1−r(e0).

But fp−1−r(e0) is a linear generator for the highest weight space of soc(R∞,0)
(Proposition 2.1) and hence fp−3−r(e1) cannot be a Kt fixed vector in R∞,0.

1The scrupolous reader will notice a slight abuse of notation: in the RHS of (19) we have

k[K]-submodules of indK
K0(p)(R

−
∞,0) and one should consider their images under the epimorphism

indK
K0(p)(R

−
∞,0) � R∞,0. This abuse should cause no confusion, avoiding instead an overload of

notations.
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The case r ∈ {p− 2, p− 1} is completely analogous: we have([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· f0(e1) = bf0(e0) + (a− d)f1(e0)− cf2(e0)(21)

(resp.([
1 + pta ptb
ptc 1 + ptd

]
− 1

)
· (f0(e1)− [1, e1]) = bf0(e0) + (a− d)f1(e0)− c(f2(e0) + [1, e0])(22)

when (r, p) = (p − 1, 3)) and one verifies by Proposition 2.1 that the RHS of (21)
(resp. of (22)) is mapped to a linearly independent family inside soc(R∞,0) via the

epimorphism indKK0(p)(R
−
∞,0) � R∞,0.

This completes the proof. �

As a corollary, we get the desired structure for Kt fixed vectors of supersingular
representations of GL2(Qp):

Corollary 4.14. Let t ≥ 1. The space of Kt fixed vectors for the supersingu-
lar representation π(σ, 0, 1) decomposes into the direct sum of two k[K]-modules
(π(σ, 0, 1))Kt = (R∞,0)Kt ⊕ (R∞,−1)Kt , whose socle filtration is respectively de-
scribed by:

(R∞,0)Kt : Symrk2—socfil(indKK0(p)χ
s
ra
r+1)—socfil(indKK0(p)χ

s
ra
r+2)— . . .—socfil(indKK0(p)χ

s
ra
r)—Symp−3−rk2 ⊗ detr+1

(R∞,−1)Kt : Symp−1−rk2 ⊗ detr—socfil(indKK0(p)χ
s
ra)—socfil(indKK0(p)χ

s
ra

2)— . . .—socfil(indKK0(p)χ
s
r)—Symr−2k2 ⊗ det

where we have pt−1−1 parabolic inductions in each line and the weight Symp−3−rk2⊗
detr+1 in the first line (resp. Symr−2k2 ⊗ det in the second line) appears only if
p− 3− r ≥ 0 (resp. r − 2 ≥ 0).

Proof. The statement concerning the direct summand (R∞,0)Kt follows immedi-
ately from Corollary 3.5 and Proposition 4.13. By the generality of σ and Propo-
sition 4.1 one deduces the result for (R∞,−1)Kt . �

In particular, we have

Corollary 4.15. Let t ≥ 1. The dimension of Kt invariant for the supersingular
representation π(σ, 0, 1) is given by

dim((π(σ, 0, 1))Kt) = (p+ 1)(2pt−1 − 1) +

{
p− 3 if r /∈ {0, p− 1}
p− 2 if r ∈ {0, p− 1}.

5. The case of principal and special series

In order to complete the picture concerning Kt and It invariants for irreducible
admissible representations of GL2(Qp) we are left to treat the case of principal and
special series.

Recall ([BL94], [Her2]) that the irreducible principal series for GL2(Qp) are
described by the parabolic induction

ind
GL2(Qp)

B(Qp) (unµ ⊗ ωrunµ−1)
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where µ ∈ k×, unµ is the unramified character of Q×p verifying unµ(p) = µ, r ∈
{0, . . . , p − 1} and (r, µ) /∈ {(0,±1), (p − 1,±1)}. The special series are described
(up to twist) by the short exact sequence

0→ 1→ ind
GL2(Qp)

B(Qp) 1→ St→ 0.(23)

It is easy to see that we have K-equivariant isomorphisms (see for instance [Mo1],
§10):

(
ind

GL2(Qp)

B(Qp) (unµ ⊗ ωrunµ−1)
)
|K ∼= indKK0(p∞)χ

s
r
∼= lim
−→
n≥1

(
indKK0(pn+1)χ

s
r

)
where K0(p∞)

def
= B(Zp) and the transition morphisms for the co-limit in the RHS

are obtained inducing the natural monomorphisms of K0(pn)-representations

χsr ↪→ ind
K0(pn)
K0(pn+1)χ

s
r.

Moreover by the Bruhat-Iwahori and Mackey decompositions, we have a K0(p)-
equivariant split exact sequence

0→
(
indKK0(p∞)χ

s
r

)+ → indKK0(p∞)χ
s
r → ind

K0(p)
K0(p∞)χ

s
r → 0.

The following results are formal.

Lemma 5.1. Let µ ∈ k× and r ∈ {0, . . . , p − 1}. We have a K-equivariant iso-
morphism(

ind
GL2(Qp)

B(Qp) (unµ ⊗ ωrunµ−1)
)
|K ∼= indKK0(p)

(
lim
−→
n≥1

(
ind

K0(p)
K0(pn+1)χ

s
r

))
.

The action of

[
0 1
p 0

]
on the principal series ind

GL2(Qp)

B(Qp) (unµ⊗ωrunµ−1) induces

an isomorphism (
ind

K0(p)
K0(p∞)χ

s
r

)s ∼−→
(
indKK0(p∞)χ

s
r

)+
.

Proof. The first isomorphism comes from the continuity and transitivity of the
induction functor indKK0(p)( ). The second comes from a direct computation on the
explicit isomorphism

(ind
GL2(Qp)

B(Qp) (unµ ⊗ ωrunµ−1)
)
|K0(p)

∼= ind
K0(p)
K0(p∞)χ

s
r ⊕

(
indKK0(p∞)χ

s
r

)+
given by Mackey decomposition (recalling that

[
0 1
p 0

]
normalizes K0(p)). �

The Kt, It fixed vectors for the co-limit lim
−→
n≥1

(
ind

K0(p)
K0(pn+1)χ

s
r

)
are described by

Proposition 5.2. Let t ≥ 1 and r ∈ {0, . . . , p− 2}. Then(
ind

K0(p)
K0(p∞)χ

s
r

)Kt
= ind

K0(p)
K0(pt)χ

s
r =

(
ind

K0(p)
K0(p∞)χ

s
r

)It
Proof. We know that ind

K0(p)
K0(pn+1)χ

s
r is uniserial for all n ≥ 1, in particular the co-

limit lim
−→
n≥1

(
ind

K0(p)
K0(pn+1)χ

s
r

)
is uniserial. It is therefore sufficient to prove the result in

the statement replacing the co-limit by ind
K0(p)
K0(pt+1)χ

s
r.
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In this case, we have again an explicit linear basis B−t+1 for the induced repre-

sentation ind
K0(p)
K0(pt+1)χ

s
r, endowed with a linear ordering which is compatible with

the K0(p)-socle filtration (see [Mo1] §5 or [Mo5], §4):

B−t+1 3 F
(1,t)
l1,...,lt

def
=

∑
λ1∈Fp

λl11

[
1 0

p[λ1] 1

]
. . .

∑
λt∈Fp

λltt

[
1 0

pt[λt] 1

]
[1, e]

where (l1, . . . , lt) ∈ {0, . . . , p−1}t and e is a linear basis for the character χsr (again
B−t+1 is endowed with the lexicographical order).

The statement can be now verified directly, as for Proposition 4.4, 4.6, but the
computations are much easier. �

We finally deduce:

Proposition 5.3. Let µ ∈ k× and r ∈ {0, . . . , p − 1} and let t ≥ 1. The K-socle

filtration for the Kt invariants of the principal series ind
GL2(Qp)

B(Qp) (unµ ⊗ ωrunµ−1)

is described by

socfil(indKK0(p)χ
s
r)—socfil(indKK0(p)χ

s
ra)—socfil(indKK0(p)χ

s
ra

2)— . . .—socfil(indKK0(p)χ
s
r)

where the number of parabolic induction is pt−1.

Moreover, the It fixed vectors for the principal series ind
GL2(Qp)

B(Qp) (unµ⊗ωrunµ−1)

are described by(
ind

GL2(Qp)

B(Qp) (unµ ⊗ ωrunµ−1)
)It ∼= ind

K0(p)
K0(pt)χ

s
r ⊕

(
ind

K0(p)
K0(pt)χ

s
r

)s
.

The Steinberg representation verifies in particular

(St)Kt : St—socfil(indKK0(p)a)—socfil(indKK0(p)a
2)— . . .—socfil(indKK0(p)1)

(where the number of parabolic induction is pt−1 − 1) and

(St)It ∼= ind
K0(p)
K0(pt)1⊕1

(
ind

K0(p)
K0(pt)1

)s
where the amalgamated sum on the RHS is defined through the natural K0(p)-

equivariant morphism 1 ↪→ ind
K0(p)
K0(pt)1.

Proof. This is an immediate consequence of Lemma 5.1 and Proposition 5.2 (using
the fact that Kt is normal in K).

The statement concerning the Steinberg representation is clear from the exact
sequence (23). �

Notice that from the uniseriality of ind
K0(p)
K0(p∞)χ

s
r and Lemma 5.1 we have an

isomorphism (
ind

K0(p)
K0(pt)χ

s
r

)s ∼−→
(
indKK0(pt−1)χ

s
r

)+
for any t ≥ 1 and any smooth character χsr (by a counting dimension argument).
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6. Global applications

In this section we describe the relation between the results of §4.2 and the local-
global compatibility of the p-modular Langlands correspondence recently estab-
lished by Emerton. We first need to recall some of the constructions of [Eme10]
(see also [Bre11]).

Let Af be the ring of finite adeles of Q, GQ be the absolute Galois group of Q
and write GQ`

for its decomposition group at a rational prime `.
For a compact open subgroup Kf of the adelic group GL2(Af ) we write Y (Kf )

to denote the modular curve (defined over Q) whose complex points are

Y (Kf )(C) = GL2(Q)\
(
(C \R)×GL2(Af )/Kf

)
.

For A ∈ {O, k} we consider the first étale cohomology group

H1(Kf )A
def
= H1

ét(Y (Kf )Q, A)

where Y (Kf )Q is the base change of Y (Kf ) to Q.

For a fixed compact open subgroup Kp of GL2(Ap
f ) we introduce the following

modules, endowed with commuting actions of GQ and GL2(Qp):

H1(Kp)k
def
= lim
−→
Kp

H1(KpK
p)k, and Ĥ1(Kp)O

def
=
(
lim
−→
Kp

H1(KpK
p)O

)∧
where Kp runs over the compact open subgroups of GL2(Qp) and the hat ∧ denotes
the p-adic completion of the O-module lim

−→
Kp

H1(KpK
p)O .

Let Σ0 be a finite set of non-Archimedean places of Q, not containing p and let

Σ
def
= Σ0∪{p}. We will be interested in compact open subgroups of GL2(Ap

f ) of the

form KΣ0K
Σ
0 , where KΣ0 is a compact open subgroup of GΣ0

def
=
∏
`∈Σ0

GL2(Q`)

and KΣ
0

def
=
∏
`/∈Σ GL2(Z`); we will write for short

H1(KΣ0)k
def
= H1(KΣ0K

Σ
0 )k, and Ĥ1(KΣ0)O

def
= Ĥ1(KΣ0K

Σ
0 )O .

For a compact open subgroup Kp in GL2(Qp) we write T(KpKΣ0
KΣ

0 ) for the
sub O-algebra of

EndO[GQ](H
1(KpKΣ0

KΣ
0 )O)

generated by the Hecke operators T`, S` for those primes ` /∈ Σ.
If K ′p ≤ Kp are compact open in GL2(Qp) we have a (surjective) transition ho-

momorphism T(K ′pKΣ0
KΣ

0 ) � T(KpKΣ0
KΣ

0 ), which is compatible, in the evident
sense, with the actions on the étale cohomologies. We deduce a GQ ×GL2(Qp)
equivariant action of

T(KΣ0)
def
= lim
←−
Kp

T(KpKΣ0K
Σ
0 )

on the module Ĥ1(KΣ0)O , hence ([Eme10], (5.1.2)) on H1(KΣ0)k.
By construction, the action of T(KΣ0) on the sub-module H1(KpKΣ0K

Σ
0 )O

(resp. H1(KpKΣ0
KΣ

0 )k) factors through the surjection T(KΣ0
) � T(KpKΣ0

KΣ
0 ).

Let ρ : GQ → GL2(k) be a continuous, absolutely irreducible Galois represen-
tation. We assume moreover that ρ is modular and we define Σ0 to be the set of
primes dividing the Artin conductor of ρ ([Ser87], §1.2).
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We recall that a compact open subgroup KΣ0
of GΣ0

is an allowable level for ρ
if there exists a maximal ideal m of T(KΣ0), having residue field k and such that

T` ≡ tr(ρ(Frob`)) modm, S` ≡ `−1det(ρ(Frob`)) modm.

Since ρ is modular we deduce from the level part of Serre conjecture that any

compact open subgroup in the Σ0-component of ker
(
GL2(Ẑ) → GL2(Ẑ/(N))

)
is

an allowable level for ρ.
If KΣ0 is allowable and m is a maximal ideal associated to ρ in the previous

sense, we consider the following m-adic completion:

T(KΣ0
)ρ

def
= T(KΣ0

)m, Ĥ1(KΣ0
)O,ρ

def
=
(
Ĥ1(KΣ0

)O

)
m
, H1(KΣ0

)k,ρ
def
=
(
H1(KΣ0

)k
)
m
.

The action of the completed Hecke algebra T(KΣ0
)ρ on the GQ×GL2(Qp)-modules

Ĥ1(KΣ0
)O,ρ, H

1(KΣ0
)k,ρ is equivariant. Moreover for an inclusion of allowable

levels K ′Σ0
≤ KΣ0

we have a surjective transition homomorphism T(K ′Σ0
)ρ �

T(KΣ0
)ρ which is compatible, in the evident sense, with the actions on the com-

pleted étale cohomologies.

Therefore, the co-limit Ĥ1
O,ρ,Σ

def
= lim
−→
KΣ0

Ĥ1(KΣ0
)O,ρ, taken over all allowable levels

KΣ0
in GΣ0

, is naturally a module over the O-algebra Tρ,Σ
def
= lim
←−
KΣ0

T(KΣ0
)ρ and

the same holds for the co-limit H1
k,ρ,Σ

def
= lim
−→
KΣ0

H1(KΣ0
)k,ρ ([Eme10], (5.3.4)).

The modules Ĥ1
O,ρ,Σ, H1

k,ρ,Σ are furthermore endowed with a linear action of

GQ ×GL2(Qp) × GΣ0 which turns out to be Tρ,Σ-linear. Notice again that, by

construction, the action of Tρ,Σ on the sub-module Ĥ1(KΣ0
)O,ρ (resp. H1(KΣ0

)k,ρ)
factors through the surjection of local O-algebras Tρ,Σ � T(KΣ0

)ρ.
We can now introduce a local-global application of the results in section 4.2.

Proposition 6.1. Let p ≥ 3 and ρ : GQ → GL2(k) be an odd, continuous, abso-
lutely irreducible Galois representation such that ρ|GQp

is absolutely irreducible. Let
Σ0 be the set of primes dividing the Artin conductor of ρ and let κ be the minimal
weight associated to ρ|GQp

(cf. [Ser87], §2.2).
Let KΣ0 be an allowable level for ρ and define

d
def
= dimk

( ⊗
`∈Σ0

π(ρ|GQ`
)
)KΣ0(24)

where π(ρ|GQ`
) is the smooth p-modular representations of GL2(Q`) attached to

ρ|GQ`
via the p-modular Langlands correspondence of Emerton-Helm ([EH]).

Then, if either t ≥ 1 and p ≥ 5 or t ≥ 2 and p = 3 we have

dimk

(
H1
ét(Y (KtKΣ0

KΣ
0 )Q, k)[m]

)
= 2d

(
2pt−1(p+ 1)− 3

)
if κ− 2 ≡ 0 mod p+ 1

dimk

(
H1
ét(Y (KtKΣ0

KΣ
0 )Q, k)[m]

)
= 2d

(
2pt−1(p+ 1)− 4

)
if κ− 2 6≡ 0 mod p+ 1

dimk

(
H1
ét(Y (ItKΣ0

KΣ
0 )Q, k)[m]

)
= 4d

(
2pt−1 − 1

)
.

where KΣ
0

def
=
∏
`/∈(Σ0∪{p}) GL2(Z`) and m is a maximal ideal associated to ρ in the

Hecke algebra T(KΣ0
).
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Proof. Let m be a maximal ideal of the Hecke algebra T(KΣ0
) associated to ρ.

We will use the same notation m for the maximal ideals of the local O-algebras
T(KΣ0)ρ, Tρ,Σ.

Assume that either t ≥ 1 and p ≥ 5 or t ≥ 2 and p = 3. Then for Kp ∈ {Kt, It},
the congruence subgroup Kp

∏
` 6=p GL2(Z`) is neat2 in the sense of [Eme10], Defi-

nition 5.3.7 (the proof of Lemme 2 (1) in §5.5 of Carayol’s article [Car] applies line
to line).

We can therefore use [Eme10] Lemma 5.3.8 (2) and the equivariance of the Hecke
action on the cohomology spaces to obtain(

H1
k,ρ,Σ

)KpKΣ0 [m] = H1(KpKΣ0
KΣ

0 )k,ρ[m] = H1(KpKΣ0
KΣ

0 )k[m]

(where m is seen as an ideal of Tρ,Σ, T(KΣ0
)ρ or T(KΣ) thanks to the compatibility

of the Hecke action on the sub-modules of H1
k,ρ,Σ, H1(KpKΣ0

KΣ
0 )k).

Let κ− 2 ∈ {0, . . . , p} be defined by κ− 2 ≡ κ − 2 mod p + 1 (we know from
[Ser87] that κ− 2 < p − 1). From the proof of Proposition 6.1.20 in [Eme10] we
have an equivariant isomorphism

H1
k,ρ,Σ[m] ∼= ρ⊗ πp ⊗ πΣ0

(ρ)

where πΣ0(ρ)
def
= ⊗`∈Σ0π(ρ|GQl

) and πp is a supersingular representation whose

KZ-socle contains, up to twist, the weight σ
def
= Symκ−2k2 (more precisely πp is,

up to twist, the supersingular representation attached to ρ|GQp
in [Bre03a]).

We deduce

H1(KpKΣ0K
Σ
0 )k[m] ∼= ρ⊗

(
πp)

Kp ⊗
(
πΣ0(ρ)

)KΣ0

and the result follows from Proposition 4.9, Corollary 4.15 and the definition of d,
noticing that πp ∼= π(σ, 0, 1) up to twist. �

Remark 6.2. By the level part of the refined Serre conjecture ([Ser87]) one expects
the subgroup

K1,Σ0
(N)

def
=

{[
a b
c d

]
∈
∏
`∈Σ0

GL2(Z`)| c ≡ d− 1 ≡ 0 modN

}
to be an allowable level for which d = 1 in (24), at least if the semi-simplifications
ρ|ssGQ`

are not twists of 1⊕ | · |.
In the classical `-adic correspondence this is indeed the compatibility between the

Artin and the adelic conductor but in the `-modular case, such compatibility does
not seem to appear in the current literature.
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tions, Seminaire Bourbaki 1031, to appear in Astérisque
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