Invariant elements for p-modular representations of GL2(Qp)

Abstract : Let p be an odd rational prime and F a p-adic field. We give a realization of the universal p- modular representationsof GL2(F) in terms of an explicit Iwasawa module. We specialize our constructions to the case F = Qp , giving a detailed description of the invariants under principal congruence subgroups of irreducible admissible p-modular representations of GL2(Qp), generalizing previous works of Breuil and Paskunas. We apply these results to the local/global compatibility of Emerton, giving a generalization of the classical multiplicity one results for the Jacobians of modularcurves with arbitrary level at p.
Type de document :
Pré-publication, Document de travail
Accepted for publication at the Transaction of the American Mathematical Society. 2013


https://hal.archives-ouvertes.fr/hal-00576945
Contributeur : Stefano Morra <>
Soumis le : mercredi 6 mars 2013 - 16:24:59
Dernière modification le : jeudi 1 octobre 2015 - 11:20:54

Fichier

Morra-Invariants.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00576945, version 3

Citation

Stefano Morra. Invariant elements for p-modular representations of GL2(Qp). Accepted for publication at the Transaction of the American Mathematical Society. 2013. <hal-00576945v3>

Exporter

Partager

Métriques

Consultations de
la notice

67

Téléchargements du document

42