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Abstract

We deal in this paper with an agricultural production planning problem where crops
must be scheduled on land plots so as to satisfy crop demands every period of time and to
minimize the overall surface of land used for cultivation. This problem can be formulated
as a covering integer program with a huge number of variables. A resolution scheme
based on column generation is thus proposed, where the resulting pricing problem is
efficiently solved by dynamic programming. The numerical experiments show that the
method is all the more so efficient and robust as the planning horizon is long and plot
sizes are small.

Key-words: Crop rotations, agricultural production planning, column generation, cov-
ering integer programming, dynamic programming.

1 Introduction

This paper deals with a class of production problems in agriculture, that of planning crops
over a given time horizon and given land plots so that the total production of each crop every
season meets the needs of the farmer. The difficulty of these problems lies in the decreas-
ing yields of cultivated lands over time, which enforce to plan fallow periods over the time
horizon and to alternate crops in the best possible way, which is not a trivial issue. Whereas
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typical crop-rotation problems focus on building rotations that maximize a profit or yield
function as in [6, 4, 9, 3], the objective of the specific problem studied in this paper is to
minimize space needed to meet the demand. This problem was originally presented in [1, 2]
in a Madagascan context where the minimization of cultivated space helped to contribute in
the long-term to the sustainable development of the primary forest around the farms. The
model and software developed in [2] were part of a project of struggle against deforestation
sponsored by the French-Madagascan Cooperation. Whereas the previous paper mainly fo-
cused on the formulation of the application and agricultural conclusions, this paper focuses
on dedicated solving methods for a generic variant, where a single crop can be cultivated
on a land plot every season when this plot is not left fallow. The proposed solving method
is a column-generation method based on a Dantzig-Wolfe decomposition of the problem. A
column generation approach was also applied in [3], where the objective is to maximize the
total time during which the land is cultivated (space is fixed contrary to our problem). Let us
remark that the space-minimization problem studied in this paper has the particularity that
the objective value is a multiple of the number of selected columns in the master program,
which is also the number of plots used for production. Another particularity of this paper
is that the planning is studied over a much longer horizon, up to 30 years, because the aim,
inherited from the Madagascan project, was not only to satisfy the farmer constraints but
also to measure the long term impact on the primary forest. This critical parameter in the
computational tests motivated the use of a column generation approach which is known to
be a powerful tool for solving large size covering problems.

The paper is organized as follows. Section 2 introduces the problem statement and data
as well as the covering integer program formulation of the generic crop rotation problem.
Section 3 describes the pricing problem and the dynamic programming method dedicated
to its resolution. Section 4 presents computational experiments for various lengths of the
time horizon and various sizes of the plots, comparing the column generation approach to
direct solving using CPLEX solver. The numerical results show that the column generation
algorithm is all the more so efficient as the time horizon is long. Section 5 concludes the
paper.

2 The covering master problem for column generation

The Minimum-Space Crop Rotation Planning (MSCRP) problem is that of constructing crop
rotations minimizing required space area for covering seasonal crop demands. We consider in
this paper the case where all plots have the same unitary surface area and yield characteristics,
which happens when the planting is done in the same area, so the objective amounts to
minimizing the number of plots used. MSCRP can be formulated by an arc-flow model, as
done by Alfandari et al. in [2] for a variant of the problem presented in this paper. However,
a natural alternative attempt to model it consists in considering the set of feasible rotations
over the scheduling time horizon, and then selecting a minimum number of rotations that
meets the seasonal crops demand. Note that there is an equivalence between the arc-flow
model and the model presented in this paper using the classical Dantzig-Wolfe decomposition.
Let us define the notations that will be used throughout the paper. We consider:
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• T = {1, .., T} the set of time periods of the planning horizon

• R the set of feasible rotations of a plot over the planning horizon

• C the set of crops that can be cultivated over the time horizon

• bjt, j ∈ C, t ∈ T the demand (in tons) of crop j on season t

• ρrjt, j ∈ C, t ∈ T , r ∈ R the unitary yield of crop j (in tons) provided by rotation r on
season t, which can be 0 if crop j is not cultivated on that period t in rotation r.

• S the surface area of a plot

and let θr be a decision variable representing the number of plots on which rotation r ∈ R is
planned. The Minimum-Space Crop Rotation Planning (MSCRP) problem can be formulated
as a Covering Integer Program where the objective function minimizes the total surface area
used, while the covering constraints ensure the crop demand satisfaction. It is given as follows
for a given surface area S:

(MSCRP )S



z(S) = min
∑
r∈R

Sθr

s.t ∑
r∈R

Sρrjtθ
r ≥ bjt ∀j ∈ C, t ∈ T

θr ∈ N ∀r ∈ R.

(1)

As problem (MSCRP )S is untractable in this form because of the huge number of variables
representing all feasible rotations, we apply the column generation approach suggested by
Gilmore and Gomory [5]. It consists of generating new rotations (i.e. columns of the con-
straint matrix) only when needed instead of enumerating all feasible ones, in order to solve
the continuous relaxation of the problem.

We denote the linear relaxation of (MSCRP )S as the Master Problem (MP )S and we
note z(S) its optimal value:

(MP )S



z(S) = min
∑
r∈R

Sθr

s.t ∑
r∈R

Sρrjtθ
r ≥ bjt ∀j ∈ C, t ∈ T

θr ≥ 0 ∀r ∈ R

(2)

The well-known iterative principle of a column generation approach can be summarized as
follows. We start with a limited number of crop rotations and solve a master problem reduced
to this subset of columns. Then, given the dual variables obtained by this LP solving, we
check whether there is any new feasible crop rotation of negative reduced cost that could be
added to the restricted master problem in order to improve the LP bound. If no such negative
reduced cost column is found, then the current solution is optimal for (MP )S , otherwise we
add a subset of negative reduced-cost columns to the Master Problem and reiterate the
process.
We keep the constant factor S in the objective because, as shown in the following proposition,
this formulation will allow to solve the same pricing problem whatever the value of S.
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Proposition 1. The continuous relaxation value of the master problem (MP )S is a constant
independent of S.

Proof. Let µjt be the dual variables associated with the covering constraints, and let (D −
MP )S denote the dual problem associated with (MP )S .

(D −MP )S



zD(S) = max
∑
j∈C

∑
t∈T

bjtµjt

s.t ∑
j∈C

∑
t∈T

Sρrjtµjt ≤ S ∀r ∈ R

µjt ≥ 0 ∀j ∈ C, t ∈ T

(3)

Dividing by S in the (D−MP ) constraints, we obtain a dual problem that does not depend
on S. As zD(S) = z(S), we get the claimed result.

3 Pricing problem formulation

We can either generate new columns in the column generation process or verify optimality of
a current solution by solving a pricing problem producing the minimum reduced cost rotation
among all rotations of the original set R. Because of identical yields and surface areas of
plots, a single pricing problem is solved at every iteration of the column generation process.
We first present its formulation and then its efficient solving by dynamic programming.

Let µjt be the dual variables associated with the covering constraints of the master prob-
lem (MP )S , and let cr be the reduced cost of rotation r ∈ R. The pricing problem of
minimizing the reduced cost of variables θr is given as follows:

min
r∈R

c̄r = S(1−
∑
t∈T

∑
j∈C

ρrjtµjt) (4)

Let us now model precisely a valid crop rotation of a plot. A rotation is defined as a sequence
of cultivation and fallow periods over the time horizon. Let P (j) be the set of crops that can
precede crop j ∈ C. We denote by (l, a) the state of a cultivated plot at period t, meaning
that l fallow periods preceded a cultivation periods until current cultivated period t, where
1 ≤ l ≤ l̄ and 1 ≤ a ≤ ā (l will be called the fallow length and a will be called the cultivation
age of the plot). l̄ is the number of periods beyond which no yield improvement is achievable
when going back to cultivation, and ā is the number of cultivation periods beyond which
the plot necessarily returns fallow because yield has decreased in too large amounts. If the
plot has been left fallow at current period for l periods, l is also called the state of the plot.
Taking into account the state of the plot enables to better model yields through plot history,
as explained in [2]. Indeed, we denote by wla

ij the yield of a plot in state (l, a) cultivated with
crop j in current period preceded by crop i ∈ P (j) (decreasing function of a and increasing
function of l), and by wl1

fj the yield of a plot that returns cultivated with crop j after l fallow
periods (the yield is equal to zero when a plot is left fallow).
In order to represent sequences that will form a rotation, we define decision variables asso-
ciated with a given period t ∈ {2, ..T}, state (l, a), 1 ≤ l ≤ l̄, 1 ≤ a ≤ ā, crops j ∈ C and
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i ∈ P (j):

xlaijt =

{
1 if plot is in state (l, a), cultivated with crops j and i in periods t and t− 1 respectively
0 otherwise

we distinguish then the cases when a fallow of length l (1 ≤ l ≤ l̄) precedes or follows a crop
j ∈ C:

xlfjt =

{
1 if plot returns to cultivation with crop j ∈ C in period t ∈ T after l fallow periods
0 otherwise

xlajft =


1 if plot is left fallow in period t (t ≥ 2) and was cultivated with crop j ∈ C in state

(l, a) in period t− 1

0 otherwise

and finally the case of a fallow-fallow sequence without exceeding the maximal length l̄ for
1 ≤ l ≤ l̄ − 1:

xlfft =

{
1 if, in period t, plot has been left fallow for l + 1 periods
0 otherwise

and the particular case where the maximal fallow length is exceeded on a plot:

F l
t =

{
1 if plot has been left fallow at least l + 1 periods at period t
0 otherwise

These last two series of variables differ from [2] because going back to cultivation after a long
fallow period is not mandatory in this paper, and lead to the following flow conservation
constraints to define feasible crop rotations.

1 =
∑
j∈C

xlfj1 + F l
1 (5)

∑
i∈P (j)

xlaijt =
∑

k:j∈P (k)

xl,a+1
jk,t+1 + xlajf,t+1 ∀t ∈ {2, . . . , T − 1}, j ∈ C, a ∈ {2, . . . , a− 1}, l ∈ {1, . . . , l}(6)

∑
i∈P (j)

xlaijt = xlajf,t+1 ∀t ∈ {2, . . . , T − 1}, j ∈ C, l ∈ {1, .., l} (7)

xlfjt =
∑

k∈C:j∈P (k)

xl2jk,t+1 + xl1jf,t+1 ∀t ∈ {1, . . . , T − 1}, l ∈ {1, . . . , l}, j ∈ C (8)

∑
l∈{1,...,l}

∑
a∈{1,...,a}

∑
j∈C

xlajft = x1
ff,t+1 +

∑
i∈C

x1
fi,t+1 ∀t ∈ {2, . . . , T − 1} (9)

xl−1
fft =

∑
j∈C

xlfj,t+1 + xlff,t+1 ∀t ∈ {1, . . . , T − 1}, l ∈ {2, . . . , l − 1} (10)

F l
t + xl−1

fft =
∑
j∈C

xlfj,t+1 + F l
t+1 ∀t ∈ {1, . . . , T − 1} (11)
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Assuming that the plot is initially in a fallow state of length l, constraint (5) establishes
possible successions during the first period of the planning horizon. Constraints (6) are the
flow conservation constraints when two crops follow one another without exceeding maximal
cultivation age ā. When the maximal cultivation age is reached, then a fallow period is
required to reset the plot; this is given by constraints (7). Constraints (8-9) are the flow
conservation constraints when a fallow state precedes or follows a crop ensuring the possibility
to move from a cultivation to a fallow period and vice versa. Finally, constraints (10-11) define
the flow conservation when there is a succession of fallows resulting either from a fallow of
maximal age or a fallow of lower age.

4 Solving the pricing problem by dynamic programming

As established before, the objective of the pricing problem is to determine a rotation with
minimum reduced cost according to the dual values provided by LP solving of the current
Master Problem. The yield ρrjt of a given crop j ∈ C at period t ∈ T in rotation r ∈ R can be

written as ρrjt =
l∑

l=1

(
∑

i∈P (j)

a∑
a=2

wla
ijx

la
ijt+wl1

fjx
l
fjt), where variables x

la
ijt, x

l
fjt satisfy constraints

(5-11). Thereby, the objective of the pricing problem (4) aiming at minimizing the reduced
cost of rotations is given as follows:

min S −
∑
t∈T

∑
j∈C

l∑
l=1

Sµjt(w
l1
fjx

l
fjt +

∑
i∈P (j)

a∑
a=2

wla
ijx

la
ijt)

which is equivalent to

min 1−
∑
t∈T

∑
j∈C

l∑
l=1

µjt(w
l1
fjx

l
fjt +

∑
i∈P (j)

a∑
a=2

wla
ijx

la
ijt) (12)

The following proposition provides a dynamic programming method for solving the pric-
ing subproblem of finding the minimum reduced cost column at each iteration of the column
generation scheme.

Proposition 2. Let πjlat and πflt denote the values computed by the following recurrence
formula for t = 1, .., T :

πjlat =

{
πfl,t−1 − µjtw

l1
fj if a = 1

min
i∈P (j)

{πi,l,a−1,t−1 − µjtw
la
ij } if 2 ≤ a ≤ ā

πflt =


min

j∈C,l′≤l̄,a≤ā,
{πjl′a,t−1} if l = 1

πf,l−1,t−1 if 2 ≤ l < l

min(πf,l−1,t−1, πf,l,t−1) if l = l

with initial conditions:

πf l̄0 = 1, πfl0 = πjla0 =∞ ∀l ∈ {1, .., l̄ − 1}, a ∈ {1, .., ā}, j ∈ C
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Then,

π∗T = min(min
j,l,a

πjlaT ,min
l
πflT )

will be the value of a minimum reduced cost column. The corresponding column can be found
by backtracking from t = T to t = 0.

Proof. We show that the recurrence formula of Proposition 2 amount to solve a shortest path
in an acyclic graph G where paths represent all feasible columns and the value of a path is
the reduced cost of a column. The acyclic graph is a connected graph G = ∪Tt=1G

t, where
Gt = (V t−1 ∪ V t, At) is a bipartite graph associated with each pair of periods (t− 1, t), such
that:

V t = {(j, l, a, t)j∈C,l∈{1,..,l̄},a∈{1,..,ā}} ∪ {(f, l, t)l∈{1,..,l̄}}

where

• (j, l, a, t), j ∈ C, l ∈ {1, .., l̄}, a ∈ {1, .., ā} represent cultivation state nodes, meaning
that plot is in state (j, l, a) at period t

• (f, l, t), l ∈ {1, .., l̄} represent fallow state nodes, meaning that plot has been left fallow
for l periods.

and

At = {(u, v) ∈ V t−1 × V t : state u can precede state v}

represents feasible state sequences between each pair of nodes from t−1 to t according to the
flow conservation constraints (5-11). Values λtuv on arcs (u, v) ∈ At are equal to the opposite
of the yield associated to state v after state u, multiplied by the dual variable associated with
state v, i.e.

λtuv =



−µjtw
la
ij if u = (i, l, a− 1, t− 1), v = (j, l, a, t),

−µjtw
l1
fj if u = (f, l, t− 1), v = (j, l, 1, t),

0 if u = (j, l, a, t− 1), v = (f, 1, t),

0 if u = (f, l, t− 1), v = (f, l + 1, t),

0 if u = (f, l̄, t− 1), v = (f, l̄, t)

(13)

Figure 1 illustrates an example of a bipartite state subgraphGt defined on C = {Rice, Potatos}
with (l, a) = (2, 2).

By construction, there is a 1-1 correspondence between paths in graph G and feasible
columns of the Master Program, i.e. each path in G corresponds to a crop rotation on the
plot, and vice versa. Also by construction, the value of a path in G is the reduced cost of the
corresponding column. As graph G is acyclic, it can be solved by the Bellman-Ford algorithm
computing for t = 1, . . . , T

πv = min
u:(u,v)∈At

(πu + λtuv) ∀v ∈ V t (14)
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(Potato, 1, 2, t)

(Rice, 2, 1, t)

(Potato, 2, 1, t)

(Rice, 1, 1, t)

(Potato, 1, 1, t)

(f, 2, t)

(f, 1, t)

(Potato, 2, 2, t− 1)

(Rice, 2, 2, t− 1)

(Rice, 1, 2, t− 1)

(Potato, 1, 2, t− 1)
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(Potato, 2, 1, t− 1)

(Rice, 1, 1, t− 1)

(Potato, 1, 1, t− 1)

(f, 2, t− 1)

(f, 1, t− 1)

−µ
Rice,tw 21

fRice−µ
Potato,tw 12

Potato,Potato

−µ
Rice,tw 22

Rice,Rice

Figure 1: Bipartite subgraph Gt = (V t−1 ∪ V t, At) with (l̄, ā) = (2, 2)

with initial conditions πf,l̄,0 = 1, πv =∞ for v 6= (f, l̄, 0), and output minv∈V T πv. As v ∈ V t

describes all possible states (j, l, a, t) and (f, l, t), the above Bellman-Ford recurrence formula
are equivalent to the dynamic programming formula of Proposition 2. The backtracking
process to find the optimal column is the same as backtracking from t = T to t = 0 in graph
G to find the path associated with the optimal value.

The next section is devoted to computational results comparing the column generation
scheme to a direct solving of the arc-flow model by a commercial solver.

5 Computational experiments

To evaluate the contribution of the column generation approach, we have modeled the ex-
plicit arc-flow model whose constraints on plots are constraints (5)-(11) with our problem
specifications. In the following sections, direct solving means that the solution of the explicit
arc-flow model is computed by the MIP-solver of cplex.
We have generated (MSCRP )S instances in the same way as in [2].

Regarding the column generation strategies, we opted to initialize the first restricted mas-
ter problem with a heuristic set of columns provided by a greedy algorithm and to add, at
each iteration, a set of columns of negative reduced cost obtained from solving the pricing
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problem by the dynamic programming method described above. Finally, to get integer solu-
tions, we use an enumeration heuristic based on a depth-first search, within a specified time
limit, based on the last master problem. We call this resolution scheme the Integer Column
Generation Heuristic (ICGH).

The comparative tests are performed for time horizons T = 20, 30, 40, and 60 seasons
(resp. 10, 15, 20, and 30 years) that correspond to a long term strategic planning in a con-
text of sustainable development. On the other hand, for each class of instances of a fixed
time horizon we evaluate the impact of varying the area S which gives another point of view
that is more relevant for farmers than the long-term planning aspect.
All the computations reported in this section have been carried out on a DELL Latitude
D610 Personal Computer with Pentium M-1.73 Ghz processor and 512 Mo RAM. The code
has been written in C++ and the solver is Cplex 12.0.

About agricultural data, we considered a set C of two crops such as each one can precede
the other, and we fixed the maximal cultivation and fallow ages to a = 4, l = 5 respectively
as in [2].

The first observation that can be made concerns the continuous relaxation value. As
expected the value of the column generation relaxation, which is a lagrangian relaxation,
is, in most cases, tighter (very slightly, however) than the classical continuous relaxation of
direct solving and is obtained in very short time as shown in Table 1 where average CPU
indicates the average running time over 10 instances of different S for each class of a fixed
T . In addition, as the problem size increases (eg. T = 60 seasons) direct solving by Cplex is
even unable to find a feasible solution for 3 instances within the allowed time of 3600s CPU.

Continuous resolution of:
T Master problem by CG Arc-flow model by Cplex

Optimal value average CPU Optimal value average CPU
20 18.57 1.88 18.54 82.91
30 19.07 7.23 19.05 247.21
40 19.23 18.46 19.22 563.86
60 19.32 99.37 19.32 ***

Table 1: Continuous resolution of Master problem vs. Arc-flow model

Table 2 presents the results of the Integer Column Generation Heuristic (ICGH) (i.e
column generation followed by the enumeration heuristic) compared to direct solving. We
compare the two methods in terms of: number of used plots (which, multiplied by corre-
sponding surface S equals the objective value z(S)) and computational time CPU . We also
report the time to the best integer solution found by both methods.
We can see that, for most instances, (ICGH) provides integer solutions of high quality. More
precisely, over the 40 instances we have that:

• for 95% of instances integer solutions found by (ICGH) are either optimal, or lower or
equal to the best integer bound reached by direct solving on its time limit
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Integer Column Generation Heuristic Direct Solving

T S # plots CG CPU Total CPU CPU-2-best # plots CPU CPU-2-best
20 0.1 187 1.34 >3600 1.34 188 >3600 3500

0.2 94 1.31 >3600 1.31 94 >3600 2813
0.5 38 1.51 1.52 1.52 38 477,46 477,46
0.7 28 1.56 >3600 1.56 28 >3600 619,64
1 20 3.66 >3600 3.66 20 >3600 270.23
2 11 2.44 334.44 2.44 11 >3600 97.11
4 6 1.84 2.11 2.11 6 2648 40.31
6 4 1.65 1.69 1.69 4 11 11.07
8 3 1.88 4.25 4.25 3 94 94.04
10 3 1.64 1.89 1.89 3 3.95 3,95

30 0.1 192 6.14 >3600 6.14 ** >3600 >3600
0.2 97 8.01 >3600 8.01 ** >3600 >3600
0.5 40 7.11 >3600 7.11 40 >3600 2282,64
0.7 28 7.48 7.58 7.58 28 951,57 951,57
1 20 9.30 9.41 9.41 21 >3600 755,29
2 11 6.78 6.94 6.94 11 >3600 359,63
4 6 1.96 2.02 2.02 6 62.4 62,4
6 4 7.46 7.5 7.5 4 31.78 1.78
8 4 8.09 34.84 8.09 3 550.85 550.85
10 4 10.06 78 10.06 3 569.9 569.9

40 0.1 194 19.51 >3600 19.51 ** >3600 >3600
0.2 97 16.07 60.43 60.43 ** >3600 >3600
0.5 40 16.3 601 16.3 ** >3600 >3600
0.7 28 22.23 46.43 46.43 28 3469,1 3469,1
1 20 15.37 15.9 15.9 20 1479.3 1479.3
2 11 13.3 216.8 216.8 12 >3600 954.42
4 6 13.98 61 61 7 >3600 279.3
6 4 24.74 31.16 31.16 4 1476.48 1476.48
8 4 22.15 103.83 22.15 4 >3600 140.13
10 4 21 2048 21 4 >3600 71.32

60 0.1 195 102.5 >3600 102.5 ** >3600 >3600
0.2 98 128.8 >3600 128.8 ** >3600 >3600
0.5 40 108.8 >3600 118.8 ** >3600 >3600
0.7 28 123.14 123.87 123.87 ** >3600 >3600
1 20 57.69 70.83 70.83 ** >3600 >3600
2 11 67.21 >3600 615.21 13 >3600 2243.66
4 6 60.21 640 640 8 >3600 1348.34
6 4 119.4 363.92 363.92 4 1458.6 1458.6
8 4 102 >3600 102 4 >3600 183.49
10 4 124 3400 124 4 >3600 190.47

Table 2: Comparison between direct solving with Cplex and integer column generation heuris-
tic ICGH
** a feasible integer solution was not obtained within one hour
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• for 37.5% of instances they are strictly better than the best integer bounds obtained
by direct solving

• for only 5% of instances, they are worse than direct solving with a gap of 1 unit corre-
sponding to only one supplementary plot

Furthermore, direct solving failed to find integer solutions in 25% of the cases.

Concerning the running time of the two methods, direct solving is clearly more time-
consuming than column generation. However, in the integer column generation heuristic, the
enumeration heuristic dedicated to get integer solutions is still time consuming (see Total
CPU), but as reported in column CPU-2-best, in most cases, this time is spent to prove
optimality of the obtained integer solutions that are often found at the beginning of the
enumeration process.
On the other hand, direct solving is even unable to find feasible solutions when the surface
value decreases and the time horizon increases, while column generation had the same trend
for any value of S but increases only with T with a very low computational time. Plots
of figures 2 − 3 express statistical performance in terms of total running time to the best
integer of each resolution method in function of the surface area in figure 2 and in function
of the running time in figure 3. In order to have an homogeneous comparison, this average
is computed over all T for a given S for figure 2, and it is computed over all S for a given T
for figure 3.

We clearly see in figure 2 that the behavior of direct solving depends on the value of S,
whereas (ICGH) is insensitive to this parameter. Also, we observe in figure 3 the dramatic
increase of the running time while increasing the size of the problem, when column generation
increases in a monotonic way with a small slope.

In conclusion, these tests show that our method based on column generation outperforms
direct solving on all the following performance criteria: robustness, solution quality and
running time.

6 Conclusion

In this paper, we presented a heuristic resolution scheme based on column generation for
Minimum-Space Crop Rotation Planning. The master problem is modeled as a covering
integer program and the pricing problem is efficiently solved by dynamic programming. Nu-
merical tests demonstrate that this resolution scheme can be used on problems with up to 60
seasons, as well as problems of small values of surface area where direct solving failed to find
solutions in the time limit. The method is quite robust then for long-term strategic planning
in the framework of an environmental evaluation, and for small division of land as this is
often the case in developing countries.

11



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  2  4  6  8  10

C
P

U

S

direct solving

ICGH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  2  4  6  8  10

C
P

U

S

direct solving

ICGH

Figure 2: Evolution of CPU-time with surface S = 0.1, 0.2, .., 10
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