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Abstract

The 1D Burgers equation is used as a toy model to mimick the resulting behaviour of

numerical schemes when replacing a conservation law by a form which is equivalent

for smooth solutions, such as the total energy by the internal energy balance in the

Euler equations. If the initial Burgers equation is replaced by a balance equation

for one of its entropies (the square of the unknown) and discretized by a standard

scheme, the numerical solution converges, as expected, to a function which is not a

weak solution to the initial problem. However, if we first add to Burgers’ equation

a diffusion term scaled by a small positive parameter ǫ before deriving the entropy

balance (this yields a non conservative diffusion term in the resulting equation), and

then choose ǫ and the discretization parameters adequately and let them tend to

zero, we observe that we recover a convergence to the correct solution.
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1 Introduction

Computer codes developed for the simulation of inviscid and non heat-conducting compressible
flows are in general based on the conservative form of the Euler equations, which read in the
one-dimensional case:

∂tρ + ∂x(ρu) = 0, (1a)

∂t(ρu) + ∂x(ρu2) + ∂xp = 0, (1b)

∂tE + ∂x

(

(E + p)u
)

= 0, (1c)

where t stands for the time, ρ, u and p are the density, velocity and pressure in the flow, and
E stands for the total energy:

E = ρ (
1

2
u2 + e),

with e the internal energy. This system must be complemented by an equation of state, giving
for instance the pressure as a function of the density and the internal energy p = ℘(ρ, e).
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For physical reasons, the density and internal energy must be non-negative (in usual applications,
positive). In addition, for the continuous problem as well as, at the discrete level, for a wide
range of schemes (the so-called conservative schemes), the non-negativity of these variables
allows a (weak) control on the solution; assuming that ρ and E are known on the parts of the
boundary where the flow is entering the computational domain, Equations (1a) and (1c) indeed
yield an L∞(0, T ; L1(Ω))-estimate (with Ω × (0, T ) the space-time domain of computation) for
the density and the total energy respectively. The positivity of the density at the discrete level
is easily obtained from a convenient discretization of (1a). The positivity of the internal energy
does not seem easily obtained other than by replacing Equation (1c) by a balance equation
for the internal energy in the discrete problem; this balance equation is formally derived (i.e.
supposing that the solution is regular) from (1b) and (1c) and reads:

∂t(ρe) + ∂x(ρeu) + p∂xu = 0. (2)

In this relation, the discrete convection operator may be built so as to respect the positivity of e:
provided that the equation of state is such that for any value of ρ, p vanishes for e = 0, testing
the discrete counterpart of (2) by the negative part of e proves e ≥ 0 (see [5] for the initial
paper, [2, Appendix B] for another proof suitable in this context, and [4] in the framework of
the compressible Navier-Stokes equations).

Instead of Equation (1c), one may also prefer to use a conservation equation for the physical
entropy s, because this equation (derived for regular solutions) is a simple transport equation:

∂t(ρs) + ∂x(ρsu) = 0. (3)

Let us then consider that, for computational efficiency or robustess reasons, (2) or (3) are
prefered to (1c). Since both (2) and (3) are derived from (1c) assuming a regular solution, there
is no reason for their discretization to yield the correct weak solutions in the presence of shocks.
Nevertheless, we may reasonably expect to recover the correct shock solutions if we use the
following strategy:

(i) regularize the problem by adding a small diffusion term,

(ii) derive the counterpart of (2) or (3) taking into account the diffusion terms,

(iii) solve these equations,

(iv) let ǫ tend to zero.

Of course, step (iii) is performed numerically, and convergence is monitored by the space and
time discretization steps h and k; the question which arises is then to find a convenient way to
let ǫ and the numerical parameters h and k tend to zero. The aim of this paper is to perform
numerical experiments in order to investigate this issue on a toy problem, namely the inviscid
Burgers equation. Note that we only consider explicit schemes in this study.

2 The equations and the numerical schemes

The inviscid Burgers equation reads:

∂tu + ∂x(u2) = 0, for x ∈ R, t ∈ (0, T ), (4)

which we complement with the initial condition:

u(x, 0) = u0(x), for x ∈ R. (5)
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Following the above mentioned strategy (items (i)-(iv)), we first add to (4) a viscous term, to
obtain: ∂tu + ∂x(u2) − ǫ∂xxu = 0. Now, multiplying this relation by 2u yields the following
perturbed equation:

∂tu
2 +

4

3
∂xu3 − 2uǫ∂xxu = 0. (6)

For ε = 0, we get the following “Burgers square entropy” equation:

∂tu
2 +

4

3
∂xu3 = 0. (7)

which also reads, setting v = u2:

∂tv +
4

3
∂x(v

3

2 ) = 0. (8)

We consider the following initial data, chosen such that the entropy solution of (4)-(5) contains
a discontinuity:

u0(x) =

{

10, x ≤ −0.25

1, x > −0.25
. (9)

It is well known that for such an initial condition, the entropy weak solutions of equations (4)
and (7) differ. Let us then turn to their numerical approximations. Since the chosen initial
data (9) is positive, the celebrated Godunov scheme reduces for both equations to the classical
upwind scheme, thanks to the fact that the upwind scheme preserves (for these equations) the
sign of the solution; it is well known that it leads to an approximate solution which converges,
under a so called CFL condition, to the exact solution as the discretization parameters go to
zero [1] (note that this is not the case for the centred finite volume scheme, although it is
conservative). For the sake of simplicity, we consider constant time and space steps h and k.
For i ∈ Z, we set xi = ih and for n ∈ {0, . . . ,M}, with (M − 1)k < T ≤ Mk, we set tn = nk.

The discrete unknowns are the real numbers u
(n)
i , with i ∈ Z and n ∈ {0, . . . ,M}. The values

u
(0)
i are obtained with the initial condition:

u
(0)
i =

1

h

∫ xi+
h

2

xi−
h

2

u0(x)dx. (10)

Since the discrete solution is positive, the upwind scheme for Equation (4) reads:

u
(n)
i = u

(n−1)
i +

k

h

[

(

u
(n−1)
i−1

)2
−

(

u
(n−1)
i

)2
]

. (11)

For this particular problem and scheme, the maximum value for the solution is reached at the
initial time step so that the CFL number is the number G such that:

k = G
h

max{2s, s ∈ [1, 10]}
= G

h

20
. (12)

Similarly, the upwind scheme for Equation (8) reads:

v
(n)
i = v

(n−1)
i +

4k

3h

[

(

v
(n−1)
i−1

)
3

2 −
(

v
(n−1)
i

)
3

2

]

, (13)

and the CFL number is the same number G. The numerical solutions obtained with (11) for the
Burgers equation (4) and with (13) for the Burgers square entropy equation (7) are depicted in
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Figure 1: Upwind Scheme for (4)-(9) (top) and (7)-(9) (bottom) with different mesh sizes,
CFL = 1.

Figure 1. Both are obtained with CFL equal to 1, for T = 1/20 and with various values of N ,
starting from N = 200 and multiplying successively by two the number of cells up to N = 1600.
As expected, the upwind scheme (13) yields a numerical solution which converges (as the dis-
cretization parameters go to zero and under a CFL condition) to a weak solution of (7) (and
even to its entropy solution), which is not a weak solution of (4), since the Rankine-Hugoniot
conditions differ. At time T = 1/20, the shock for the solution of (4) is located at x = 0.3, while
the shock of the solution of (7) is located at x > 0.4.

Remark 1 (Link with a non-conservative diffusion term) For the Burgers equation (4), upwind-
ing may be seen as adding a diffusion, namely discretizing (since u > 0):

∂tu + ∂x(u2) − ∂x((hu − 2ku2)∂xu) = 0, x ∈ R, t ∈ (0, T ).

Note that one has hu− 2ku2 ≥ 0 thanks to the CFL condition. For the Burgers square entropy
equation (7), upwinding may be seen, formally, as solving the following parabolic equation (since
u > 0):

∂tu
2 +

4

3
∂x(u3) − ∂x((2hu2 − 4ku3)∂xu) = 0.
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This equation is equivalent to the following parabolic perturbation of the Burgers equation:

∂tu + ∂x(u2) −
1

u
∂x((hu2 − 2ku3)∂xu) = 0.

The third term at the left-hand side may be seen as a numerical diffusion (thanks to the CFL
condition) which is not in a conservative form, because of the factor 1/u. The above numerical
results show that such a non conservative diffusion may lead to wrong discontinuities.

3 Numerical solution of the perturbed equation

We then discretize the perturbed equation (6) with ǫ = ǫ0 hα, where ǫ0 > 0 and α > 0 are fixed.
Note that, setting v = u2, (6) can also be recast as:

∂tv +
4

3
∂x(v

3

2 ) − v
1

2 hα∂x(v−
1

2 ∂xv) = 0, (14)

that is a nonlinear hyperbolic equation augmented with a nonlinear nonconservative diffusion
term. The upwind finite volume discretization of this equation reads (in the u variable), with

u
(0)
i given by (10):

(

u
(n)
i

)2
=

(

u
(n−1)
i

)2
+

4k

3h

[

(

u
(n−1)
i−1

)3
−

(

u
(n−1)
i

)3
]

+
k

h2
ǫ0 hα u

(n−1)
i

[

u
(n−1)
i−1 − 2u

(n−1)
i + u

(n−1)
i+1

]

. (15)

We present in Figures 2, 3 and 4 the numerical solutions obtained with (15) for α = 0.5, α = 1
and α = 2 respectively, and for the same time T = 1/20, CFL=1 and meshes as in Section 2.
The parameter ǫ0 is such that ǫ0h

α = 0.2 for N = 200 (whatever α may be). Figure 2 shows
that for 0 < α < 1, the sequence of approximate solutions given by (15) converges to a weak
solution of the initial Burgers equation (4), as h and k tend to 0, under a stability condition,
which, since α < 1, becomes more stringent than a CFL condition when h tends to zero. Figure
3 shows that for α > 1, we obtain the convergence to the solution of (7); figure 4 shows that for
α = 1, the location of the discontinuity lies in between the discontinuities of the solution to (6)
and (7). These results seem to indicate that the convergence to the solution of (7) (resp. (6))
occurs when the added diffusion dominates (resp. is dominated by) the numerical one.
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Figure 2: Upwind Scheme for (6) with non conservative diffusion term, α = 0.5.

Figure 3: Upwind Scheme for (6) with non conservative diffusion term, α = 1.

Figure 4: Upwind Scheme for (6) with non conservative diffusion term, α = 2.
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Figure 5: Centered Scheme for (6) with non conservative diffusion term, α = 1.

Figure 6: Centered Scheme for (6) with non conservative diffusion term, α = 1.5.

Let us then study the following finite volume centred scheme for Equation (7), which reads:

(

u
(n)
i

)2
=

(

u
(n−1)
i

)2
+

4k

3h

[

(u
(n−1)
i−1 + u

(n−1)
i

2

)3
−

(u
(n−1)
i + u

(n−1)
i+1

2

)3
]

+
k

h2
ǫ0 hα u

(n−1)
i

[

u
(n−1)
i−1 − 2u

(n−1)
i + u

(n−1)
i+1 ]. (16)

Results for α = 1, α = 1.5 and α = 2 (and ǫ0 such that ǫ0h
α = 0.2 for N = 200, whatever α

may be) are reported on Figures 5, 6 and 7, respectively. The numerical solution now seems
to converge to the solution of (7), at least for α ∈ (0, 2). For the finest mesh and α = 2,
the diffusion is no longer sufficient to prevent some spurious oscillations near the shock. Last
but not least, the additional diffusion which is necessary to recover the right shock location
is considerably reduced with respect to the upwind scheme (even if the scheme still appears
more diffusive than the standard upwind scheme applied to (4)), which is encouraging in view
of practical extensions to Euler equations.
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Figure 7: Centered Scheme for (6) with non conservative diffusion term, α = 2.

Figure 8: Modified centered Scheme for (6) with non conservative diffusion term, α = 0.5.

Finally, we study another finite volume centred scheme for Equation (7), which reads:

(

u
(n)
i

)2
=

(

u
(n−1)
i

)2
+

4k

3h

[

((u
(n−1)
i−1 )2 + (u

(n−1)
i )2

2

)3/2
−

((u
(n−1)
i )2 + (u

(n−1)
i+1 )2

2

)3/2
]

+
k

h2
ǫ0 hα u

(n−1)
i

[

u
(n−1)
i−1 − 2u

(n−1)
i + u

(n−1)
i+1 ]. (17)

This scheme is indeed a natural centred scheme of Equation (14) for the variable v = u2. Results
for α = 0.5, α = 1, α = 1.5 and α = 2 are reported on Figures 8, 9, 10 and 11 respectively. They
now look quite different, since the scheme does not yields the good shock location for α = 1.5
(and, of course, α = 2).

4 Conclusion

We tested two discretizations for the modified equation (6):
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Figure 9: Modified centered Scheme for (6) with non conservative diffusion term, α = 1.

Figure 10: Modified centered Scheme for (6) with non conservative diffusion term, α = 1.5.

– an upwind scheme for which the solution converges to the weak solution of (4) if the viscous
term is predominant with respect to the numerical diffusion, that is if ǫ = ǫ0h

α, with ǫ0 > 0
and α ∈ (0, 1).

– two centred schemes which yield less smeared solutions, with the correct shock locations for
α ∈ (0, 1].

The extension of this work to Euler equations is under way, and results are encouraging. Indeed,
it seems that we are able to build convergent schemes, even in the presence of shocks, using either
the entropy or internal energy balance. A next step might be to use a nonlinear viscosity to
avoid an excessive smearing of the solutions, following the ideas developed in [3].
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Figure 11: Modified centered Scheme for (6) with non conservative diffusion term, α = 2.
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