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Theoretical basis of the community effect in
development
Yasushi Saka1*, Cédric Lhoussaine2,3, Celine Kuttler2,3, Ekkehard Ullner1,4 and Marco Thiel4

Abstract

Background: Genetically identical cells often show significant variation in gene expression profile and behaviour

even in the same physiological condition. Notably, embryonic cells destined to the same tissue maintain a uniform

transcriptional regulatory state and form a homogeneous cell group. One mechanism to keep the homogeneity

within embryonic tissues is the so-called community effect in animal development. The community effect is an

interaction among a group of many nearby precursor cells, and is necessary for them to maintain tissue-specific

gene expression and differentiate in a coordinated manner. Although it has been shown that the cell-cell

communication by a diffusible factor plays a crucial role, it is not immediately obvious why a community effect

needs many cells.

Results: In this work, we propose a model of the community effect in development, which consists in a linear

gene cascade and cell-cell communication. We examined the properties of the model theoretically using a

combination of stochastic and deterministic modelling methods. We have derived the analytical formula for the

threshold size of a cell population that is necessary for a community effect, which is in good agreement with

stochastic simulation results.

Conclusions: Our theoretical analysis indicates that a simple model with a linear gene cascade and cell-cell

communication is sufficient to reproduce the community effect in development. The model explains why a

community needs many cells. It suggests that the community’s long-term behaviour is independent of the initial

induction level, although the initiation of a community effect requires a sufficient amount of inducing signal. The

mechanism of the community effect revealed by our theoretical analysis is analogous to that of quorum sensing in

bacteria. The community effect may underlie the size control in animal development and also the genesis of

autosomal dominant diseases including tumorigenesis.

Background

During embryonic development, cell-cell interaction

plays a pivotal role in generating many types of cells

that constitute a functional adult body. The most preva-

lent of such interaction is embryonic induction, a pro-

cess by which part of a tissue within the embryo

changes its direction of differentiation into another

upon receipt of a signal emanating from the nearby tis-

sue. Such induction events, however, are transient and

therefore the cells that have received the signal must

‘remember’ the event until they terminally differentiate.

The precursor cells generated by an embryonic induc-

tion tend to stay together and form a cell group of like

character. Despite the fact that those cells often proliferate

and their surrounding environment changes as a conse-

quence of morphogenesis, cells in such a group behave as

a collective and express the same set of genes that are

unique to their differentiation process. One of the

mechanisms that control such collective behaviour of cells

during animal development is the so-called community

effect [1]. A community effect was first discovered in the

muscle precursor cells of Xenopus embryos [2]. Muscle

cells are formed from mesoderm, which itself is generated

by an inductive interaction of cells in the equatorial region

of blastula embryos in Xenopus. Naïve ectoderm cells from

blastula embryos change their fate to mesodermal one

when juxtaposed to the endodermal tissue that produces
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the mesoderm-inducing signalling molecules Activin and

Xnr (Xenopus nodal-related) proteins. Mesoderm cells

that contain muscle precursor cells induced in this way or

isolated from early embryos can differentiate into muscle

cells when cultured as a group of many cells but not as

single cells (Figure 1) [3]. This community effect of many

nearby muscle precursor cells requires cell-cell interaction

mediated by FGF4 (Fibroblast Growth Factor 4) protein.

FGF4 (also known as embryonic FGF or eFGF in Xenopus)

is distinct from the mesoderm-inducing signals [4]. FGF4

and the early mesodermal transcription factor Xbra (Xeno-

pus Brachyury) induce expression of each other, thus

forming a positive feedback among a group of cells [5,6]. If

FGF signalling is blocked by the expression of a dominant

negative form of FGF receptor, Xbra expression will be

lost [7]. Although it is intuitively apparent that cell-cell

communication by diffusible factors plays a crucial role in

the community effect, its mechanism is not immediately

obvious. Bolouri and Davidson proposed a model of the

community effect in sea urchin embryos, which is based

on the gene regulatory network operating in the oral ecto-

derm [8]. In their model, cell-cell communication also

plays the central role for the community effect, which is

mediated by the Nodal gene product. The basic regulatory

unit for a community effect thus seems to be a self-activat-

ing feedback loop of a gene that expresses extracellular

signalling ligands.

The model of Bolouri and Davidson also incorporated

an interlinked loop of negative feedback by the Nodal

antagonist Lefty. This negative feedback is responsible

for restricting the area of Nodal expression within the

boundary of the oral ectoderm [9]. Although their model

provides an underlying logic to the gene regulatory net-

work of a community effect, many questions still remain

unanswered: Is positive feedback signalling among cells

sufficient for the community effect? Why does the com-

munity effect require many cells? How is such a popula-

tion size determined? We have addressed these questions

theoretically using a combination of stochastic and deter-

ministic modelling methods. We found that a simple lin-

ear gene cascade that produces a diffusible factor for cell-

cell communication is sufficient to reproduce the com-

munity effect in development. We derived the formula

for the minimal number of cells required for a commu-

nity effect and discuss its wider implications for the

mechanism of collective behaviour of cells.

Results

A minimal model of the community effect in animal

development

Our first model of a community effect is based on a

simplified abstract scheme as illustrated in Figure 2A.

This model does not include transcription (mRNA)

steps, and is described by Michaelis-Menten rate equa-

tions without Hill coefficient (cooperativity). The system

has n cells and three components (proteins), xi, yi (i = 1,

2, ..., n) and z. yi is exported from the cell, and is added

to the extracellular pool z. z in turn activates the synth-

esis of xi. z diffuses into and out of the cell freely. This

model explicitly takes account of the system volume Vs

(extracellular volume plus total cell volume) and the

volume of a cell Vc, both of which remain constant in

this model. Note that Vs >n Vc. In the deterministic

regime, each cell has identical dynamics. The system is

described by a set of ordinary differential equations

(ODEs) as follows:

x′

i =
k1 z

z + 1
− δ1xi

y′

i =
k2 xi

xi + 1
− δ2yi

z′ =
n
∑

i=1

(

Vc

Vs − n Vc

k3 yi

yi + 1

)

− δ3z.

(1)

Note that Vs - n Vc is the extracellular volume of the

system, so Vc /(Vs - n Vc) is the factor of concentration

adjustment. k1, k2 and k3 are the rate constants for pro-

duction of xi, yi and z, respectively, and δ1, δ 2 and δ 3 for

degradation. Because cells are identical, Eqs.1 reduce to:

x′ =
k1z

z + 1
− δ1x

y′ =
k2x

x + 1
− δ2y

z′ =
μy

y + 1
− δ3z,

(2)

Figure 1 Diagram depicting the community effect in

development. This figure illustrates the concept of the community

effect in an abstract manner. See Introduction for a description of

the community effect in muscle development.
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where

μ =
n Vck3

Vs − n Vc
. (3)

The initial condition is zt = 0 > 0 (or xt = 0 > 0 or yt =

0 > 0).

The condition for a community effect

The ODEs of Eqs.2 can be solved analytically (see

additional file 1). We found that above a certain criti-

cal cell number nc, the system is activated and

becomes self-sustaining. Figure 2B shows a typical pro-

file of cell activity (concentration of x) at the steady

state plotted as a function of community size n. The

critical community size nc is

nc =
Vs

Vc(ξ + 1)
, (4)

where

ξ =
k1 k2k3

δ1δ2δ3
. (5)

From Eq.3 and cell density h = n Vc /Vs, the critical

cell density for a community effect hc is

ηc =
1

ξ + 1
. (6)

Note that ξ’s numerator is the product of the synthesis

rates and the denominator is the product of the degra-

dation rates. Therefore nc is partly determined by the

balance of synthesis and degradation of the components

in the positive feedback network. Interestingly, we will

reach a similar conclusion about the determinant of nc
for a more elaborate model described below.

A model of the community effect with transcription

The second model includes transcription (mRNA) steps

and is basically a linear combination of the three-stage

model of gene expression described in additional file 1,

coupled with cell-cell communication. Similar models of

gene expression have been adopted in a number of pre-

vious studies ([10] for example; see [11] for review).

The model consists of a linear cascade of two genes, A

and B. Gene A corresponds to the transcription factor

Xbra gene and gene B is analogous to FGF4 gene in

Xenopus, which is the direct target of Xbra [6]. Protein

molecules synthesized from active gene B (Bpin) are

transported out of the cell at the rate �. After diffusing

away from the cell that produced them, a secreted extra-

cellular Bp (Bpout) molecule binds to one of the cells in

the community irreversibly, and the protein is then con-

verted into another transcriptional activator (Cp). This

process corresponds in real Xenopus embryonic cells to

the binding of FGF4 proteins to FGF receptors that acti-

vate the signal transduction mediated by the MAP

kinase cascade, which in turn induces Xbra expression

[12-15].

In the model, the diffusion of Bpout, its binding to a

cell surface receptor and conversion into Cp are treated

as a single process, which is represented by a combined

rate constant ε. In this lumped-up process, diffusion of

Bpout and its binding to the receptor is the rate-limiting

step because the intracellular FGF signalling mediated

by the MAP kinase pathway is thought to be fast relative

to those processes. Unless taken up by the cells, Bpout
decays with the rate δd, either by degradation or by dif-

fusion away from the cells. Cp activates the gene A, thus

closing the positive feedback loop. A crucial aspect of

the model is that this positive feedback is not a simple

loop but a complex network with many cells. Also
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Figure 2 A minimal model of a community effect . (A) A

schematic depiction of the model. Each molecule or state is

indicated in red, and arrows indicate reactions/transitions between

those states with reaction rate parameters as indicated. See text for

details. (B) Steady state of [x] plotted as a function of community

size n. Parameter values used for the plot are: k1, k2, k3 = 0.02; δ1, δ

2, δ 3 = 0.01; Vc = 1; Vs = 800.
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important is that the model has no explicit intracellular

feedback mechanism.

For the sake of simplicity of the model, we have made

some assumptions. First, a Bpout protein binds to any

cell in the system with equal probability. This assump-

tion is valid if extracellular concentration of Bpout is

similar across the cell community. We have examined

whether this is the case in embryos theoretically. In zeb-

rafish embryos, a half-life of FGF8, a member of FGF

protein family, was measured to be around 18 min [16]

and its diffusion coefficient about 91 μm2/s. We would

expect FGF4 proteins in Xenopus embryos has similar

degradation and diffusion rates and applied them to a

simple model of diffusion. From this analysis, we have

concluded that the assumption is valid under a certain

condition (see additional file 1).

Second, cell division is not considered in the model

and cell number remains constant. Third, cells are in a

closed system whose size (i.e., volume) is also constant.

In real Xenopus embryos, the cell community is sur-

rounded by other tissues or cells. Finally, we set the

initial condition as follows: at time = 0, both genes A

and B are inactive. In early Xenopus embryos, Activin/

Xnr signalling induces naïve ectodermal cells to become

muscle precursors cells. Instead of introducing another

molecule as an inducer into our model, Bpout substitutes

the role and 500 molecules of it is present at time = 0,

which rapidly decays (t1/2 ≈ 33min ≪ duration of simu-

lations). This substitution does not affect our analysis

because the steady state is independent of the initial

condition (see below).

The deterministic model and the condition for a

community effect

The model we have just described is represented by a

set of rate equations:

[Ac]′ = α1 [Cp] [Ag] − α2 [Ac] (7)

[Ar]′ = β [Ac] − δm [Ar] (8)

[Ap]′ = γ [Ar] − α1 [Ap] [Bg] + α2 [Ba] − δa[Ap] (9)

[Ba]′ = α1 [Ap] [Bg] − α2 [Ba] (10)

[Br]′ = β [Ba] − δm[Br] (11)

[Bpin]′ = γ [Br] − (κ + δb)[Bpin] (12)

[Bpout]
′ = nκ [Bpin] − (nε + δd)[Bpout] (13)

[Cp]′ = ε[Bpout] − α1 [Cp] [Ag] + α2 [Ac] − δc[Cp]. (14)

Here, [Ag] + [Ac] = [Bg] + [Ba] = 1 because of the con-

servation of the gene copy numbers. In Eq.13, ε is multi-

plied by n because each cell acts as a sink for Bpout. All

variables in Eqs.7-14 are the number of each molecule

(per unit volume) per cell except [Bpout], which repre-

sents the number of extracellular Bp. All other reaction

rates are depicted by the arrows in Figure 3.

We first performed numerical simulations of the

deterministic rate equations Eqs.7-14 (parameter values

in Table 1). Figure 4A and 4B show the time course of

[Ap] and [Bpout] (ε = 5.78 × 10-7). The analysis revealed

that following induction at t = 0 with [Bpout] = 500,

gene expressions increase after a time lag and become

self-sustaining. But the cell’s activity becomes self-sus-

taining only when the number of cells present is above

a certain critical number nc. This is a community effect,

which is analogous to the one observed in Xenopus

embryos. We asked how this critical community size nc
is determined. In fact, nc can be derived from the steady

state solution of Eqs.7-14 as

nc =
δd

ε(ρ − 1)
, (15)

where

ρ =
α2

1 β2γ 2κ

α2
2 δaδcδ

2
m(κ + δb)

(16)

(see additional file 1). r must be larger than 1 in order

to have a community effect for any community size.

With the parameter values used in the simulations (Table

1), we obtain r ≈ 7.2 and the critical community size nc ≈

97. Comparing the diagram of the model (Figure 3) and

Eq.16, the meaning of r becomes apparent: the numera-

tor of r is the product of the rate constants of all reaction

steps that promote the cascade of gene expressions in the

cell, while the denominator is the product of the rates of

reactions in the opposite direction such as protein degra-

dation. An important conclusion drawn here is that nc is

independent of the initial condition. Therefore, so long

as [Bpout] > 0 at t = 0, a community effect will be trig-

gered when the community size n >nc, although in sto-

chastic simulations [Bpout] at t = 0 must be sufficiently

large (see below). We have already seen a similar condi-

tion for a community effect with a simplified model of

the community effect that omits transcription steps (for

which nc is described in Eqs.4 and 5, see Figure 2). When

ξ ≫ 1, nc is proportional to 1/ξ. Similarly from Eq.15,

when r ≫ 1, nc is proportional to 1/r.

Gene copy number and the critical population size for a

community effect

We next asked how copy number of genes affects the

community effect in our model. This is an important

Saka et al. BMC Systems Biology 2011, 5:54

http://www.biomedcentral.com/1752-0509/5/54

Page 4 of 14



question to ask because certain types of genetic disor-

ders such as cancer may be the consequence of a muta-

tion in one of the two copies of the gene that is

required for a community effect (see Discussion). When

multiple copies of genes are present per cell, such as

diploid cells, the critical cell number nc for a community

effect is:

nc =
δd

ε(a bρ − 1)
, (17)

where a and b are the copy numbers of gene A and

gene B, respectively and r is defined in Eq.16 (see addi-

tional file 1, Eq.38 for derivation). The critical commu-

nity sizes nc are 22 for a = 2, b = 2, and 45 for a = 1, b

Figure 3 A model for the community effect in development. See main text for details. Each molecule or state is indicated in red, and arrows

indicate reactions/transitions between those states with reaction rate parameters as indicated.

Table 1 Parameter values used in simulations

Parameter Reaction Parameter value (sec -1) t0.5(approx.)

a1 Binding of transcriptional activator to promoter 1.93 × 10 -4 1 hr

a 2 Dissociation of transcriptional activator from promoter 3.47 × 10 -2 20 sec

b Transcription 1.16 × 10 -2 1 min

g Translation 2.31 × 10 -2 30 sec

δa, δb, δc, δd Degradation/disappearance of proteins 3.47 × 10 -4 33 min

δm Degradation of mRNA 1.16 × 10 -3 10 min

� Exocytosis 3.85 × 10 -4 30 min

ε ’Communication’ by extracellular factor 2.31 × 10 -6 or 5.78 × 10 -7 83 or 333 hrs

Simulation parameters are all within biologically or biochemically relevant range, which usually spans orders of magnitude, such as the one for protein

degradation rates. Where possible, we have referred to reaction rates that have been determined experimentally to choose parameter values for simulations (for

example, [39-45]). ε is an abstract parameter and its value for stochastic simulations was estimated and chosen so that a community effect could be realised in

silico.
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= 2 according to Eq.17 with the parameters listed in

Table 1 and ε = 5.78 ×10-7. These values are in good

agreement with the stochastic simulation results (see

below). Therefore, nc for the community of heterozy-

gous diploid cells, i.e., one copy of gene A is defective, is

larger than that of the community of homozygous

diploid cells. Gene copy number also significantly affects

the expression of the genes at steady state (see below).

Stochastic simulations of the community effect model

We next performed stochastic simulations over a range

of n communicating cells. Because a community effect

concerns the heterogeneity of a cell population, noise in

gene expression becomes an important aspect that

needs to be examined by stochastic simulations. We

used the same parameter values as those for the three-

stage model of gene expression (Table 1). Figure 4D and

Figure 4 Simulation results of the community effect model. (A, B) Numerical simulations of the deterministic rate equations Eqs.7-14. (A) is

the plot for [Ap] and (B) for [Bpout]. Simulation results for different community size are shown. With 100 cells, very little gene expression occurs

at steady state (not shown) as 100 cells are close to nc ≈ 97. (C) Average number of Ap at steady state (10000 min) as a function of community

size (solid lines). Dotted curves indicate number of Ap at steady state ([Ap]*) obtained by Eqs.35 in additional file 1. Plots are shown for ε = 2.31

× 10-6 and 5.78 × 10-7. (D, E) Time series of [Ap] and [Bpout] as overlays of 100 stochastic simulation results (temperature map) for community

size of 300 cells and ε = 5.78 × 10 -7. Solid lines show a typical simulation result. (F) Probability distributions of [Ap] at steady state (t = 10000

min in stochastic simulations) for community size n = 140, 200, and 500 cells. ε = 5.78 × 10 -7. All simulations in this figure are with one gene

copy each for gene A and gene B.
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4E show a plot of [Ap] and [Bpout] over time in the

simulations with n = 300. After an almost quiescent

time lag, [Ap] and [Bpout] increase and reach steady dis-

tributions, and their expressions become self-sustaining.

The steady-state average of [Ap] in the stochastic simu-

lations (solid lines in Figure 4C) is in good agreement

with that of the deterministic rate equations (dotted

lines in Figure 4C, which are calculated by Eqs.35 in

additional file 1).

We performed 100 simulations for each community

size n, and calculated the percentage of active cells ([Ap]

> 0) at the end of each simulation: the results are shown

for haploid (Figure 5A, B), homozygous diploid (C, D)

and heterozygous diploid cell communities (E, F; also

see the next section). When the community size is

below the critical cell number nc (indicated in each

panel in red), the community effect does not occur and

all cells become quiescent. In contrast, when the com-

munity size n is larger than nc but close to it (n ≈ nc),

the behaviour of cells becomes unpredictable: sometime

all the cells are active while in other occasions they are

all inactive or only partially active (Figure 5A, B, C and

5E, t = 3000 min). However, this heterogeneity is transi-

ent and the community eventually become homoge-

neous after a sufficiently extended time period (Figure

5D and 5F, t = 10000 min). These results indicate the

probabilistic nature of a community effect when n ≈ nc ,

that is, the system can end up with either of two stable

states with a finite probability. In contrast, if the com-

munity size is sufficiently large (n ≫ nc), all cells

become active (Figure 4F and Figure 5).

Gene expression control by a community effect

During embryogenesis, cell differentiation usually

accompanies cell proliferation. Before terminal differen-

tiation, precursor cells must divide and achieve a certain

population size. But at the same time they must main-

tain a constant gene expression profile that is required

for them to become specific tissue such as muscle. We

asked how the amount of gene expressions changes if

community size grows in our scenario of a community

effect.

Figure 6A shows that the heterozygous diploid cell

community (a = 1, b = 2 or a = 2, b = 1) have a dimin-

ished expression of gene A (and gene B, data not

shown) compared to the homozygous diploid cell com-

munity (a = 2, b = 2). Figure 6B shows [Ap] at steady

state ([Ap]*) as a function of community size n with dif-

ferent gene copy numbers. The plot indicates that, even

when cells in the community continue to proliferate,

[Ap]* (and also [Bpin]*, data not shown) of the heterozy-

gous diploid cells never reaches that of normal homozy-

gous cells. The analysis revealed that [Ap]* has a

theoretical upper limit [Ap]∗max (dotted lines in Figure

6B). Therefore, the compromised gene expression in the

heterozygous diploid cell community cannot be com-

pensated by increasing its population size.

Figure 6B also indicate that [Ap]* remains fairly con-

stant for large cell community. This is advantageous for

the community because the gene expression is not

affected by the change of cell number. In contrast, the

steady state level of Bpout ([Bpout]*) increases as the

community size grows (Figure 6C). [Bpout]* is also

orders of magnitude larger than [Ap]* for a large com-

munity. Therefore, [Bpout] works as a collective ‘mem-

ory’ of cells while the activity (gene expressions) of each

cell is still weak after the induction of the community.

We next asked how different environments outside

the cell affect gene expressions. It is easily imaginable

that the extracellular environment changes during

embryogenesis. This should alter ε, which reflects how

fast cells communicate with each other (i.e. the average

distance between cells), and δd that defines how fast

Bpout decays or drifts away from the cells.

Figure 7 shows steady-state activity [Ap]* and [Bpout]*

as a function of ε (Figure 7A, B) and δd (Figure 7C, D).

In Figure 7A and 7B, the intersection of each line for

constant cell number with the axis of ε corresponds to

the value of ε for which that cell number is nc. Similar

argument can be applied in Figure 7C and 7D to the

value of δd with regard to nc. Figure 7A indicates that

for the large population n ≫ nc, [Ap]* is independent of

ε. Therefore, a small fluctuation of has little influence

on the expression of Ap at steady state. In contrast,

[Bpout]* can change dramatically in response to a slight

change in ε if n ≈ nc. For example, for ε = 1.12 × 10 -6

and n = 50 (≈ nc), [Bpout]* is ≈ 23 but increases to ≈

3200 when ε changes upward by half (ε ≈ 1.68 10 -6)

while it becomes 0 when ε changes downward by the

same amount (ε ≈ 0.56 × 10 -6). On the other hand,

when n ≫ nc, [Bpout]* is relatively insensitive to small

changes in ε. Similarly, [Ap]* and [Bpout]* is independent

of δd when n ≫ nc. For n ≫ nc, a small perturbation of

δd barely influences [Bpout]* or [Ap]*. In contrast, [Bpout]

* could change drastically when n ≈ nc (Figure 7C, D).

We also examined how noise in gene expression is

affected by the change in ε when n ≫ nc, in other

words, how robust cell’s activity is to changes of extra-

cellular environment. Noise (coefficient of variation) was

calculated from the stochastic simulation results

described above. Table 2 summarises the calculations. It

turned out that, as system size (i.e., tissue size) grows

without cell proliferation (i.e., with smaller ε), the noise

of the steady state gene expression [Ap]* becomes larger.

On the other hand, as cell number in the community

grows with a constant system size, gene expression

noise decreases. Therefore, when cell number and sys-

tem size increase at the same time, the effect of these
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Figure 5 Community effect observed in stochastic simulations. Distributions of percentage of active cells in the community for a range of

community size as indicated. 100 simulations were performed for each community size. Percentage of active cells ([Ap]> 0) at the end of

simulation was calculated for each simulation, plotted as a histogram, which are combined as 3D plots. (A) The histogram for ε = 5.78 × 10 -7, a

(copy number of gene A) = 1, b (copy number of gene B) = 1. (B) ε = 2.31 × 10 -6, a = 1, b = 1. (C, D) ε = 5.78 × 10 -7, a = 2, b = 2. (E, F) ε =

5.78 × 10 -7, a = 1, b = 2. (A, B, C, E) are the histograms at t = 3000 min in the simulations and (D, F) at t = 10000 min. Note that (C) and (D) are

obtained at different time points from the same set of simulations, so are (E) and (F). Histograms for a = 2, b = 1 are similar to Fig. 5E and F

(data not shown).
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cancels out and noise in gene expression would remain

at the same level.

The above observations indicate that if a cell commu-

nity is dispersed (i.e., ε ® 0 and δd ® ∞), cells cannot

keep the self-sustaining gene expressions of a commu-

nity effect. Conversely, the gene expressions are main-

tained as long as cells are close enough to each other (ε

above the threshold) and the community is insulated to

prevent too much loss of Bpout (δd below the threshold).

These are the hallmarks of a community effect.

Discussion

The mechanism of the community effect in development

The pioneering experimental work by Gurdon et al.

[2-4] and the recent theoretical work by Bolouri and

Davidson [8] have suggested that the feedback cycle of

cell-cell communication by diffusible signalling proteins

and their self-induction is essential for a community

effect. However, it has been unknown whether this posi-

tive feedback among cells by cell-cell communication is

sufficient or an additional layer of interlinked gene regu-

lation is necessary for a community effect. Nor has it

been clear how the size of a cell community to bring

about a community effect is determined. Our present

work has provided a theoretical basis for the community

effect and demonstrated the crucial role of the positive

feedback between cells by diffusible factors. Our model

with a simple linear gene cascade and cell-cell commu-

nication by signalling factors reproduces the main char-

acteristics of a community effect, that is, (1) it requires

many cells, (2) cells in the community must be near

each other, and (3) the gene expressions for the com-

munity effect becomes self-sustaining after the initial

transient induction.

With regard to the condition for a community effect,

the same conclusion has been drawn from the simplified

minimal model and the more elaborate model with tran-

scription steps. The analytical formula for the critical

cell number of the community nc (Eqs.4 and 15)

explains the above characteristics (1) and (2) of the

community effect: first, nc is determined by the balance

of synthesis and degradation of the components

involved, i.e., mRNAs and proteins; second, it is gov-

erned by the parameter that reflects how fast cells can

communicate with each other (k1 or ε), and also by how

close cells are located to each other. In other words, the

cell density of the community must be above a critical

threshold to have a community effect. This is the most

fundamental principle of the community effect, which

has been observed experimentally but its theoretical

Figure 6 Influence of gene copy number on gene expressions

at steady state. (A) Probability distribution of [Ap] at the end of

stochastic simulations for the community size n = 100 (t = 10000

min). Plots for different combinations of gene copy numbers are

shown as indicated. (B) [Ap] at steady state ([Ap]*) is plotted as a

function of community size for different gene copy numbers as

indicated. [Ap]* is calculated according to Eqs.35 in additional file 1

with parameter values in Table 1, ε = 5.78 × 10 -7. Dotted lines are

the theoretical maxima [Ap]∗max. (C) [Bpout] at steady state ([Bpout]*)

is plotted as a function of community size for different gene copy

numbers. Parameter values are the same as in (B). [Bpout]* also

approaches to the theoretical upper limit [Bpout]
∗

max (not shown;

[Bpout]
∗

max ≈ 358000 for a = 2, b = 2; 308000 for a = 1, b = 2;

172000 for a = 2, b = 1; 143000 for a = 1, b = 1).
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basis has been unknown. When the size of the commu-

nity is less than nc, there is only one steady state with

all cells being quiescent.

The intrinsic property of the cell community dictates the

community effect

An important insight from our model analysis is that

the expression level of genes at self-sustaining steady

state ([Ap]* and [Bpin]*) is independent of the magni-

tude of the initial induction. The analytical solution of

the steady state (Eqs.35 in additional file 1) indeed con-

tains no term for the initial condition. But the system’s

dynamics changes according to the initial transient

induction, i.e., the higher, or the longer the initial induc-

tion, the shorter the time required for the system to

reach the steady state (data not shown). Therefore, it is

the intrinsic property such as the community size that

dictates the community effect and the outcome (i.e.,

steady state gene expressions). It is not the extrinsic

inductive signal that is required for a community effect

per se, although it is required to trigger the community

initially. Our model analysis also suggests that this

intrinsic self-organising property of the community

requires no explicit intracellular feedback mechanism,

but only a linear cascade of a signal transduction and its

downstream gene expressions of signalling molecules for

cell-cell communication.

Nevertheless, a community of precursor cells must

receive sufficient inductive signals because the lag period

before steady state (Figure 4A, B, D and 4E) must be

within the time frame of the program of embryogenesis

[17]. And also the amount and duration of the inductive

signal, which acts as a morphogen in a concentration-

Figure 7 Influence of the cell-cell communication rate ε and the decay rate of extracellular factor δd on gene expressions. Protein

number of Ap and Bpout at steady state for different communitysizes are plotted as a function of ε (A, B) and δd (C, D). These plots are with

gene copy numbers a = 1, b = 1, but qualitatively similar plots can be obtained with different gene copy numbers.

Table 2 Noise in gene expression depends on community

size and communication rate ε

Community size
(cell number)

ε (sec -1) Mean Standard
deviation

Noise

200 2.31 × 10 -6 260.8 70.0 0.268

200 5.78 × 10 -7 87.7 43.1 0.492

300 5.78 × 10 -7 146.6 54.7 0.373

500 5.78 × 10 -7 212.7 63.7 0.300

Noise (coefficient of variation = standard deviation/mean) in gene expression

was calculated from the steady state distribution of [Ap]*, which was derived

from the stochastic simulations with one copy each of genes A and B, and

with parameter values as listed in Table 1.
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dependent manner [18], must be within the right range.

For instance in early Xenopus embryos, naïve ectodermal

cells must receive a high concentration of Activin/Xnr

signal to become muscle precursor cells. For the pat-

terning of ventral neural tube by the morphogen Sonic

Hedgehog (Shh) in vertebrates, the duration of Shh sig-

nalling is critical for the morphogen interpretation [19].

In our model, the length of the initial induction also

affects the system’s dynamics as mentioned above. With

an adequate level and duration of the initial induction,

the community effect would be fully activated at the

right time and the precursor cells can proceed to the

next step of differentiation.

The community effect and pattern formation in

development

Although our model can reproduce the qualitative hall-

marks of the community effect quite well, it cannot pro-

vide the mechanism that restricts the area of the

community effect within a boundary. Simulations of our

model indeed showed that the community effect spreads

across the whole community (data not shown), indicat-

ing that an additional control mechanism is necessary to

restrict the community effect within the boundary of an

embryonic field. Such mechanism must be essential for

patterning the embryo. One obvious candidate for that

is a negative feedback regulation by an antagonist of the

diffusible factor for cell-cell communication, as indicated

in the model of Bolouri and Davidson [8], although such

additional control is dispensable for the community

effect.

For the sake of simplicity, we have omitted the spatial

information and presumed that the cells in a community

are well mixed in our model. Therefore it remains

unknown how the spatial arrangement of the cells influ-

ences the community effect. This question is highly rele-

vant to the mechanism of morphogenesis and the

patterning of embryonic tissues. It may well be the case

that the incorporation of explicit spatial information (i.

e., the cells’ relative position to each other in the com-

munity) and diffusion term of the extracellular factors

partly solves the problem of unrestricted spread of the

community effect in the current model (also see addi-

tional file 1). The importance of the spatial distribution

of cells has also been highlighted for quorum sensing of

bacteria [20], a process that is similar to the community

effect (see below). It remains to be seen how the com-

munity effect is coupled with the mechanism of pattern

formation in development.

Robust gene expression control by a community effect

We have found that the community effect is a robust

control mechanism to keep uniform gene expressions

across a group of cells. When the community size is

sufficiently large (n ≫ nc), gene expressions for the

community effect become independent of ε, which

reflects the average distance between each pair of cells

in the community, and δd, which defines how fast Bpout
decays or diffuses away form the community (Figure 7).

In other words, a small fluctuation of the extracellular

environment has little influence on the gene expression

of a large uniform cell community. This is an advantage

for the cells undergoing morphogenesis, because that

allows cells to move as long as they are close to each

other.

We also found that, although an individual cell’s activ-

ity is weak during the lag period just after the initial

induction (Figure 4), the pool of extracellular protein

(Bpout) accumulates quickly and becomes large enough

to buffer the fluctuations of gene expressions of each

cell. The community effect is thus a simple yet robust

mechanism to keep the uniform collective behaviour of

cells, especially in the changing environment during

embryogenesis.

Community effect as a mechanism of size control and

tumorigenesis

How size is controlled in embryos and in adults remains

an intriguing problem in biology. Size control is linked

to pattern formation during embryogenesis, which can

be viewed as the partitioning of the limited mass of an

embryo. Processes of cell proliferation, growth (increase

of cell mass) and death are all part of the size control

and their balance determines the size of tissues in

embryos, and ultimately that of the organs in adult

bodies [21]. But how do tissues or organs sense their

size and execute those processes? A community effect

may be a strong candidate for that mechanism because

it arises from the intrinsic self-organising property of

the cell population as our theoretical work suggests.

As a mechanism of the size control, a community

effect stops cell proliferation and growth, and promotes

cell death when the cell population and its density in

the tissue or organ exceeds a certain threshold. This

regulation can be achieved by placing a given compo-

nent in the gene circuit of the community effect (e.g.,

Ap in our model) upstream of the cell cycle/cell death

regulators or growth factors. This sort of system allows

tissues and organs to limit their size autonomously. The

community effect could be part of the mechanism not

only of size control but also of tissue homeostasis in

general. However, the mechanism of this sort is vulner-

able when something goes wrong with the community

effect. The positive feedback mechanism is indeed impli-

cated in the onset of autosomal dominant diseases

[22,23].

Let us consider diploid organisms for example. If one

of the two copies of gene A in our model has become
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defective due to a mutation of the gene, its expression at

steady state [Ap]* is greatly compromised (Figure 6A). If

the compromised steady state expression is below the

threshold for size control, cells in the tissue or organ

continue to proliferate and grow indefinitely in theory

because the loss of gene A’s expression cannot be com-

pensated by increasing the number of cells in the com-

munity, as we have seen in our model analysis. This

may explain the origin of a certain type of cancer.

Recent studies have demonstrated that haploinsuffi-

ciency of tumour suppressor genes contributes to

tumorigenesis (reviewed in [24]). In fact, it has been

proposed that disruption of a quorum sensing mechan-

ism triggers tumorigenesis [25]. Conversely, the abnor-

mal amplification of gene A or gene B in our model

may lead to the premature termination of a tissue

growth, or atrophy.

Similarity between the community effect in development

and the quorum sensing in bacteria

The community effect in development is a typical exam-

ple of a collective behaviour of cells, which seems to be

quite universal and can be found not only in metazoans

but also in microorganisms, for instance, the quorum

sensing of bacteria. Although there is a number of dif-

ferent mathematical models of quorum sensing, all

known quorum-sensing systems have the same network

architecture (reviewed in [26]): first, low molecular-

weight molecules called autoinducers are synthesized

and released by the cells; second, these autoinducers

bind to cognate receptors in the cells, which in turn

induce their own production as well as the enzyme that

catalyse the production of autoinducers. This leads to

change in gene expressions across the cell population.

The fundamental architecture of quorum-sensing net-

work is therefore analogous to that of community effect

and the positive feedback of cell-cell communication lies

at the heart of these two disparate systems of collective

cellular behaviour. The same principle for a community

effect described in this work may thus apply to quorum

sensing as well. To our knowledge, this mechanistic

similarity between the community effect and quorum

sensing has never been discussed. The quorum sensing

network structure is, however, different from that of the

community effect and has a pair of interlinked positive

feedbacks. This additional complexity is responsible for

the switch-like behaviour of the network [27], which

may enhance the system’s population-dependent

response (i.e., community effect).

Chen and Weiss constructed an artificial quorum sen-

sing system in yeast S.cerevisiae [28]. They integrated

the Arabidopsis cytokinin production and its receptor

components with the cell’s endogenous osmotic stress

sensing signalling pathway. This synthetic hybrid

circuitry allows cells to communicate with each other

and confers quorum sensing. Incidentally, their artificial

quorum-sensing system has demonstrated experimen-

tally that a simple signal transduction that stimulates

the production of a diffusible factor for cell-cell commu-

nication is sufficient for a collective behaviour of cells, i.

e., quorum sensing. This is consistent with our theoreti-

cal analysis of the community effect model, which has

similar network architecture.

For both community effect and quorum sensing, cell

density must be above the critical threshold. Our theo-

retical analysis has also indicated that cells need to be in

an insulated system to minimize the loss of extracellular

signalling factors from the community, especially just

after the induction before the system reaches fully-acti-

vated steady state. Conversely, these principles may be

relevant to collective behaviour of cells in general and

prove to be a useful guidance to tissue engineering and

biotechnology. For example, they may be applied to

maintain stem cells and direct their differentiation in

vitro, or to engineer bacterial cells that activate gene

expressions when the cell population reaches a critical

cell density [29].

Conclusions

Our model analysis indicates that a linear gene cascade

with positive cell-cell interactions is sufficient to repro-

duce the community effect in animal development. The

critical community size required for a community effect

is determined by the balance of synthesis and degrada-

tion of the components involved in the process, as well

as the cell density. It suggests that the community’s

long-term behaviour is independent of the initial induc-

tion level, although the initiation of a community effect

requires a sufficient amount of inducing signal. The

mechanism of the community effect is analogous to that

of quorum sensing in bacteria. The community effect

may underlie the size control in animal development

and also the genesis of autosomal dominant diseases

including tumorigenesis.

Methods

Stochastic simulations

Stochastic simulations were performed using the well-

established Gillespie Monte Carlo algorithm [30], which

is based on the theorem of Joseph L. Doob, one of the

founders of theory of stochastic processes [31]. The

algorithm offers an exact solution to the stochastic evo-

lution of a system of chemical reactions. We used two

different platforms that make use of the algorithm,

SPiM (the Stochastic Pi-Machine [32]) and a tailored

stochastic C-code. SPiM is a simulator package based

on the stochastic Pi-calculus [33], which has been

applied recently to modelling of chemical reactions and
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biological systems [34,35]. The codes used in this study

are provided in additional file 2 and 3 (stochastic Pi-cal-

culus) and additional file 4 (C code). Detailed descrip-

tion of SPiM including how to run simulations is

available at the web site [32]. The SPiM codes used in

this study have been built upon the earlier works

[36-38].

Mathematical analysis of the model

Mathematica® (Wolfram Research) was used for the

mathematical analysis and numerical integration of the

deterministic models, and also for statistical analysis of

stochastic simulations.

Additional material

Additional file 1: The deterministic community effect models,

derivation of the critical community size and a model of diffusion

in a spherical tissue. Details of the mathematical analysis is described in

this file for (1) a minimal model of a community effect (Eq.2), (2) a three-

stage model of gene expression and (3) the complete model with

transcription (Eqs.7-14) and (4) a model of diffusion in a spherical tissue.

Additional file 2: SPiM code for the three-step gene expression. The

file is in simple text format (.txt) and runs in SPiM without changing its

format. The name of the file may need to be changed without spaces, e.

g., AdditionalFile2.txt in order to run simulations by the

command line version of SPiM.

Additional file 3: SPiM code for the community effect model. This

file is also in simple text format (.txt) and runs in SPiM without changing

its format. The name of the file may need to be changed without

spaces, e.g., AdditionalFile3.txt to run simulations. This SPiM

code is for 10 cells with two copies each of gene A and gene B. You

would not see any interesting simulation results with 10 cells, but need

to increase the community size to at least above 22 cells to have a

community effect with the parameter values in the code.

Additional file 4: C code for the community effect model. This C-

program was written by EU. In order to run the program, it requires the

random number generators (C codes called <gasdev.c>, <nrutil.

c> and <ran1.c>) provided in [46] and a C-compiler installed on your

computer. It can be opened and read by a standard text editor.
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