
HAL Id: hal-00575978
https://hal.science/hal-00575978

Submitted on 11 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MULTILINEAR SINGULAR VALUE
DECOMPOSITION FOR STRUCTURED TENSORS

Roland Badeau, Remy Boyer

To cite this version:
Roland Badeau, Remy Boyer. MULTILINEAR SINGULAR VALUE DECOMPOSITION FOR
STRUCTURED TENSORS. SIAM Journal on Matrix Analysis and Applications, 2008, 30 (3). �hal-
00575978�

https://hal.science/hal-00575978
https://hal.archives-ouvertes.fr


MULTILINEAR SINGULAR VALUE DECOMPOSITION FOR
STRUCTURED TENSORS

ROLAND BADEAU∗ AND RÉMY BOYER†

Abstract. The Higher-Order SVD (HOSVD) is a generalization of the Singular Value Decompo-
sition (SVD) to higher-order tensors (i.e. arrays with more than two indices) and plays an important
role in various domains. Unfortunately, this decomposition is computationally demanding. Indeed,
the HOSVD of a third-order tensor involves the computation of the SVD of three matrices, which
are referred to as "modes", or "matrix unfoldings". In this paper, we present fast algorithms for
computing the full and the rank-truncated HOSVD of third-order structured (symmetric, Toeplitz
and Hankel) tensors. These algorithms are derived by considering two specific ways to unfold a
structured tensor, leading to structured matrix unfoldings whose SVD can be efficiently computed1.
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1. Introduction. The subject of multilinear decomposition is now mature [5,
19]. There are essentially two families. The first one is known under the name
of CANDECOMP/PARAFAC (CANonical DECOMPosition or PARAllel FACtors
model) and was independently proposed in [4, 8]. This decomposition is very useful
in several applications and is linked to the tensor rank [9]. The second one is related to
the multidimensional rank [6] and is known under the name of Tucker decomposition
[21]. This decomposition is a more general form which is often used. Orthogonality
constraints are not required in the general Tucker decomposition but if needed one can
refer to the Higher-Order Singular Value Decomposition (HOSVD) [6] or multilinear
SVD.

The HOSVD is a generalization of the SVD to higher-order tensors (ie. arrays
with more than two indices). This decomposition plays an important role in vari-
ous domains, such as harmonic retrieval [17], image processing [10], telecommunica-
tions, biomedical applications (magnetic resonance imaging and electrocardiography),
web search [20], computer facial recognition [23], handwriting analysis [18], statistical
methods involving Independent Component Analysis (ICA) [6].

In [14], it was shown that the HOSVD of a third-order tensor involves the com-
putation of the SVD of three matrices called modes, leading to a high computational
cost. A first approach for reducing the complexity of tensor-based methods consists
in a dimensionality reduction: only the principal components of the HOSVD are cal-
culated, leading to the rank-truncated HOSVD. In this paper, we present a standard
and fast algorithm for calculating the full and the rank-truncated HOSVD, which only
computes the left factors of the three SVD’s. Next, we focus on structured tensors,
such as symmetric and Toeplitz tensors, which naturally arise in signal processing
methods involving higher-order statistics [11, Chapter 9], and Hankel tensors [17],
introduced in the context of the Harmonic Retrieval problem [15], which is at the
heart of many signal processing applications. To the best of our knowledge, there
are no specific HOSVD algorithms proposed in the literature for exploiting tensors
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structures. In this paper however, we show that such tensors can be efficiently decom-
posed. We first observe that standard unfoldings [14, 12] do not present a particularly
noticeable structure even in the case of structured tensors. Consequently, we intro-
duce two different ways to unfold a structured tensor which clarify the link between
structured modes and structured tensors. By doing this, we can exploit fast product
techniques [7]. A second point of this work concerns Hankel and symmetric tensors.
The modes of these structured tensors are column-redundant so it is possible to reduce
the computational cost of the HOSVD algorithm by taking the redundant structure
of each mode into account. Finally, our fastest implementation of the rank-truncated
HOSVD (dedicated to Hankel tensors) has a quasilinear complexity with respects to
the tensor dimension.

Note that for applications involving very large tensor dimensions, an even lower
complexity may be required. In this case, one may be interested in rank-revealing ten-
sor decompositions which can be computed faster than the rank-truncated HOSVD.
Such an approach is developed in [16], based on cross approximation techniques which
are derived from LU factorizations [22, 2]. An algorithm is proposed which provides
a Tucker-like low rank approximation of unstructured cube tensors, the complexity
of which is linear with respects to the tensor dimension in many cases [16]. This
linear complexity is nevertheless obtained via an approximated rank reduction, in
comparison with an exact Tucker decomposition such as the HOSVD.

2. Preliminaries in multilinear algebra. We present some basic definitions
in the context of third-order tensor algebra. These definitions can be extended to
order greater than three and we refer the interested reader to [5, 6] for instance.

Tucker’s product. The Tucker’s product, also called s-mode product, of a third-
order complex-valued tensor A ∈ C

I1×I2×I3 by a matrix B ∈ C
Js×Is for s ∈ [1 : 3] is

defined according to:

[A×1 B]j1i2i3 =

I1−1∑

i1=0

[A]i1i2i3 [B]j1i1 , (2.1)

[A×2 B]i1j2i3 =

I2−1∑

i2=0

[A]i1i2i3 [B]j2i2 , (2.2)

[A×3 B]i1i2j3 =

I3−1∑

i3=0

[A]i1i2i3 [B]j3i3 , (2.3)

where we denoted the entries of A by [A]i1i2i3 with is ∈ {0 . . . Is − 1}. We have the
following properties:

A×s B ×s′ C = (A×s B) ×s′ C = (A×s′ C) ×s B, (2.4)

(A×s B) ×s C = A×s (BC). (2.5)

Mode of a tensor. There are several ways to represent an I1 × I2 × I3 third-order
complex-valued tensor A as a collection of matrices.
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Definition 2.1. The modes (also called "matrix unfoldings") A1, A2, A3 are
usually defined as follows:

[A1]i1,i2I3+i3 = [A]i1i2i3 , (2.6)

[A2]i2,i3I1+i1 = [A]i1i2i3 , (2.7)

[A3]i3,i1I2+i2 = [A]i1i2i3 . (2.8)

These matrices are of dimension (I1×I2I3), (I2×I3I1), (I3×I1I2), respectively.
The dimensions of the vector spaces generated by the columns of the modes of

A are called column rank (or 1-mode rank) R1, row rank (or 2-mode rank) R2 and
3-mode rank R3, respectively.

2.1. Multilinear SVD (HOSVD).

Theorem 2.2 (Third-Order SVD [6, 21]).
Every I1 × I2 × I3 tensor A can be written as the product:

A = S ×1 U (1) ×2 U (2) ×3 U (3) (2.9)

where ×s represents the Tucker s-mode product [6], U (s) is an unitary Is × Is matrix
and S is an all-orthogonal and ordered I1 × I2 × I3 tensor. All-orthogonality means

that the matrices Sis=α, obtained by fixing the sth index to α, are mutually orthogonal
with respect to (w.r.t.) the standard inner product. Ordering means that ‖Sis=0‖ >

‖Sis=1‖ > . . . > ‖Sis=Is−1‖ for all possible values of s. The Frobenius-norms ‖Sis=i‖,
symbolized by σ

(s)
i , are the s-mode singular values of A and the columns of U (s) are

the s-mode singular factors.
This decomposition is a generalization of the SVD because the diagonality of the

matrix containing the singular values, in the matrix case, is a special case of all-
orthogonality. Also, the HOSVD of a second-order tensor (matrix) yields the matrix
SVD, up to trivial indeterminacies. The matrix of s-mode singular factors, U (s), can
be found as the matrix of left singular vectors of the mode As, defined in (2.6)–(2.8).
The s-mode singular values correspond to the singular values of this matrix unfolding.
Note that the s-mode singular factors of a tensor, corresponding to the nonzero s-
mode singular values, form an orthonormal basis for its s-mode vector subspace, like
in the matrix case.

The core tensor S can then be computed (if needed) by bringing the matrices of
s-mode singular factors to the left side of equation (2.9):

S = A×1 U (1)H ×2 U (2)H ×3 U (3)H
(2.10)

where (.)H denotes the conjugate transpose.
Mode decompositions. Expression (2.9) can be written in terms of modes as fol-

lows:

A1 = U (1)S1

(

U (3) ⊗ U (2)
)H

,

A2 = U (2)S2

(

U (3) ⊗ U (1)
)H

,

A3 = U (3)S3

(

U (1) ⊗ U (2)
)H

,

where ⊗ denotes the Kronecker product and S1, S2 and S3 denote respectively the
first, second and third modes of the core tensor S.



4 R. BADEAU AND R. BOYER

2.2. HOSVD algorithm for unstructured tensors. In this section we present
an efficient implementation of the HOSVD in the general framework of unstructured
tensors, from which our fast algorithms for structured tensors will be derived in sec-
tion 4. Let I = 1

3 (I1 + I2 + I3). The computational costs of the various algorithms
presented below are related to the flop (floating point operation) count. For exam-
ple, a dot product of I-dimensional vectors involves 2I flops (I multiplications plus I
additions).

The calculation of the HOSVD of tensor A requires the computation, for all
s ∈ [1 : 3], of the left factor U (s) in the full SVD of matrix As, as defined above. Note
that in many applications, we are interested in computing the HOSVD truncated
at ranks (M1,M2,M3), which means that we only compute the Ms first columns of
the matrix U (s) (Ms is often supposed to be much lower than Is). We will suppose
throughout this paper that this possibly truncated SVD is computed by means of the
orthogonal iteration method, although other algorithms such as the Golub-Reinsch
SVD and R-SVD [7, pp. 253–254] could also be applied. When computing only the
n × r left factor U in the rank r-truncated SVD of an n × m matrix A with n < m,
the orthogonal iteration method consists in recursively computing the n × r matrix
Bi = A(AHUi−1), involving 2r matrix / vector products, and the QR factorization
Bi = UiRi of this n × r matrix [7, pp. 410–411]. Thus the computational cost of
one iteration is 2r c(n,m)+2r2n flops, where c(n,m) = 2nm is the cost of 1 matrix /
vector product, and 2r2n is the cost of 1 QR factorization [7, pp. 231–232]. Besides,
the s-mode As has n = Is rows and m =

∏

s′ 6=s Is′ columns. Assuming that
∏

s′ 6=s Is′

is much greater than Is, the dominant cost of one iteration for computing U (s) is
4MsI1I2I3 flops. Finally, the Tucker product (2.10) can be computed by folding for
instance its first mode given by

S1 = U (1)H
A1

(

U (3) ⊗ U (2)
)

. (2.11)

A fast implementation of equation (2.11) was proposed in [1], whose complexity is
6MsI1I2I3 flops, where M = 1

3 (M1 + M2 + M3). Note that the computation of the
Tucker product is generally not needed in applications, this is why it will be omitted
in the following developments.

The computational cost of the full and rank-truncated HOSVD is summarized in
table 2.1 (the full HOSVD is the same as the rank-truncated HOSVD with Ms = Is

for all s = 1, 2, 3). In this table and below, the global cost is provided as a maximum
w.r.t. I1, I2, I3, under the constraint I1 + I2 + I3 = 3I. In particular, the maximal
complexity per iteration is obtained for cube tensors (I1 = I2 = I3 = I) and equals
12MI3.

Table 2.1

HOSVD Algorithm for unstructured tensors
(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration
SVD of A1 4M1I1I2I3

SVD of A2 4M2I1I2I3

SVD of A3 4M3I1I2I3

Global cost 12MI3

3. Structured tensors and reordered tensor modes.
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In this section, we present three tensor structures which are usual in many ap-
plications. Next, we introduce new reordered tensor modes which clarify the link
between structured tensors and structured modes.

3.1. Structured tensors.
Definition 3.1 (Toeplitz tensors). A Toeplitz tensor is a structured tensor

which satisfies the following property: for all i1 ∈ {0 . . . I1 − 1}, i2 ∈ {0 . . . I2 − 1},
i3 ∈ {0 . . . I3 − 1}, ∀k ∈ {0 . . . min(I1 − i1, I2 − i2, I3 − i3) − 1},

[A]i1+k,i2+k,i3+k = [A]i1i2i3 .

Below, any permutation of 3 elements will be denoted π = (π1, π2, π3) where
π1, π2, π3 ∈ {1, 2, 3}, according to the following definition

π : (i1, i2, i3) 7→ (iπ1
, iπ2

, iπ3
).

Definition 3.2 (Symmetric tensors). A cube (I × I × I) tensor A which is
unchanged by any permutation π is called a symmetric tensor:

∀i1, i2, i3 ∈ {0, . . . , I − 1}, [A]π(i1,i2,i3) = [A]i1i2i3 .

Example 1 (Fast higher PCA for real moment and cumulant).
The HOSVD can be viewed (cf. reference [13] ) as a higher Principal Component

Analysis (PCA). This technique is often used as a data dimensional reduction for
moment and cumulant tensors [6]. Third-order moment and cumulant tensors are
defined according to

[M]t1t2t3 = E{x(t1)x(t2)x(t3)}, (3.1)

[C]t1t2t3 = E{x(t1)x(t2)x(t3)} + 2E{x(t1)}E{x(t2)}E{x(t3)}
− E{x(t1)}E{x(t2)x(t3)} − E{x(t2)}E{x(t1)x(t3)} − E{x(t3)}E{x(t1)x(t2)}.

(3.2)
where t1, t2, t3 ∈ {0 . . . I − 1}, and x(t) is a real random process.

Moment and cumulant tensors, defined in (3.1) and (3.2), are symmetric tensors
according to definition 3.2. The proof is straightforward and can be generalized to
larger orders [5]. Moreover, if x(t) is a third-order stationary process, the moment and
cumulant tensors defined in (3.1) and (3.2) are third-order Toeplitz tensors according
to definition 3.2. Indeed, if x(t) is a stationary process, its probability distribution is
invariant to temporal translations. This property implies [C]t+i1,t+i2,t+i3 = [C]i1i2i3 .

Definition 3.3 (Hankel tensors). A Hankel tensor is a structured tensor whose
coefficients [A]i1i2i3 only depend on i1 + i2 + i3.

Note that a cube Hankel tensor is symmetric. Hankel tensors were introduced
in [17] in the context of the Harmonic Retrieval problem [15]. This problem is at the
heart of many signal processing applications.

Example 2 (Definition and properties of the harmonic model).
We consider the complex harmonic model defined according to:
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xn =
M∑

m=1

αmzn
m, for n ∈ [0 : N − 1] (3.3)

where N is the analysis duration and M is the known number of components, zm =

eδm+iφm is called the mth pole of xn where i =
√
−1, φm is called the mth angular-

frequency belonging to (−π, π], and δm is the mth damping factor. In the sequel, we

assume that all the poles are distinct. In addition, αm = ameiφm is the non-zero mth

complex amplitude, ie., am 6= 0,∀m. Besides, we define the Vandermonde matrices
Z(I1), Z(I2) and Z(I3) associated to model (3.3), according to [Z(Is)]n,m = zn

m, and
we assume that M ≤ min(I1, I2, I3). Then the Hankel tensor [A]i1i2i3 = x(i1+i2+i3)

associated to model (3.3) is diagonalizable according to

A = D ×1 Z(I1) ×2 Z(I2) ×3 Z(I3)

where ×i denotes the i-th Tucker’s product and

[D]jkℓ =

{
αj if j = k = ℓ
0 otherwise

is a hyper-cubic M×M×M super-diagonal core tensor. As a consequence, the Hankel
tensor A is a rank-(M,M,M) tensor. Following standard subspace-based parametric
estimation methods, the harmonic model can then be estimated by computing the rank
M -truncated HOSVD of tensor A [17].

3.2. Modes of structured tensors.
As mentioned in the introduction, standard unfoldings of structured tensors [14,

12] do not present a particularly noticeable structure. Consequently, we introduce
in this section two different ways to unfold a structured tensor which clarify the link
between structured modes and structured tensors.

Example 3. Consider the 4 × 4 × 4 symmetric and Toeplitz tensor [A]ijk =
3 ∗ max(i, j, k) − sum(i, j, k). The classical 1-mode is formed of 4 symmetric sub-
matrices:

A1 =













0 2 4 6
2 1 3 5
4 3 2 4
6 5 4 3













2 1 3 5
1 0 2 4
3 2 1 3
5 4 3 2













4 3 2 4
3 2 1 3
2 1 0 2
4 3 2 1













6 5 4 3
5 4 3 2
4 3 2 1
3 2 1 0













.

However, by permuting its columns, we define an other mode A′
1 (referred to below

as the type-1 reordered tensor mode), which is formed of 4 Toeplitz matrices T0, T1,
T2 and T3 (referred to below as the type-1 oblique sub-matrices):

A′
1 =















6
5
4
3







︸ ︷︷ ︸

T3







4 5
3 4
2 3
4 2







︸ ︷︷ ︸

T2







2 3 4
1 2 3
3 1 2
5 3 1







︸ ︷︷ ︸

T1







0 1 2 3
2 0 1 2
4 2 0 1
6 4 2 0







︸ ︷︷ ︸

T0







2 3 4
1 2 3
3 1 2
5 3 1







︸ ︷︷ ︸

T1







4 5
3 4
2 3
4 2







︸ ︷︷ ︸

T2







6
5
4
3







︸ ︷︷ ︸

T3









.

It can be noted that this reordered mode satisfies an axial blockwise symmetry with
respect to its central oblique sub-matrix T0. Obviously, the left singular factor U (1) in
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the SVD of A1 is the same as the left singular factor in the SVD of A′
1, since both

matrices have the same columns. However, we will show below that the SVD of A′
1 can

be computed efficiently, by exploiting the Toeplitz structure of the oblique sub-matrices
Tk.

Example 4. Consider the 4×4×4 Hankel tensor [A]ijk = i+j+k. The standard
1-mode is formed of 4 Hankel sub-matrices:

A1 =













0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6













1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7













2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8













3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9













.

However, by permuting its columns, we define an other mode A′′
1 (referred to below

as the type-2 reordered tensor mode), which is formed of 7 rank-1 matrices R0 . . .R6

(referred to below as the type-2 oblique sub-matrices):

A′′
1 =















0
1
2
3







︸ ︷︷ ︸

R0







1 1
2 2
3 3
4 4







︸ ︷︷ ︸

R1







2 2 2
3 3 3
4 4 4
5 5 5







︸ ︷︷ ︸

R2







3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6







︸ ︷︷ ︸

R3







4 4 4
5 5 5
6 6 6
7 7 7







︸ ︷︷ ︸

R4







5 5
6 6
7 7
8 8







︸ ︷︷ ︸

R5







6
7
8
9







︸ ︷︷ ︸

R6









.

Again, the left singular factor in the SVD of A1 is the same as the left singular
factor in the SVD of A′′

1 , since both matrices have the same columns. However, we will
show below that the SVD of A′′

1 can be computed efficiently, by exploiting the rank-
1 structure of the oblique sub-matrices Rk, and the Hankel structure of the matrix
obtained by removing the repeated columns in A′′

1 .
In the following section, the type-1 and type-2 oblique sub-matrices will be defined

in the general case by "slicing" a third-order tensor according to 2 different oblique
directions, as shown in Fig. 3.1.

3.2.1. Oblique sub-matrices of a tensor.
Definition 3.4 (Type-1 and type-2 oblique sub-matrices of a tensor).
For any permutation π, the oblique sub-matrices of a tensor A are defined as

follows:

• For all k ∈ {0 . . . Iπ3
−1}, let J

(1)
(π2,π3)

(k) = min(Iπ2
, Iπ3

− k). The coefficients

of the kth type-1 oblique Iπ1
× J

(1)
(π2,π3)

(k) sub-matrix of A are

[T
(π)
k ]ij = [A]π−1(i,j,k+j) (3.4)

where 0 ≤ i ≤ Iπ1
− 1 and 0 ≤ j ≤ J

(1)
(π2,π3)

(k) − 1.

• For all k ∈ {0 . . . Iπ2
+ Iπ3

− 2}, let

J
(2)
(π2,π3)

(k) = min(Iπ2
, Iπ3

, 1 + k, Iπ2
+ Iπ3

− 1 − k). (3.5)

The coefficients of the Iπ1
× J

(2)
(π2,π3)

(k) type-2 oblique sub-matrix of A are

[R
(π)
k ]ij = [A]π−1(i, max(k−Iπ3

+1,0)+j, min(k,Iπ3
−1)−j) (3.6)

where 0 ≤ i ≤ Iπ1
− 1 and 0 ≤ j ≤ J

(2)
(π2,π3)

(k) − 1.
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Y

Iπ3

-

?

Iπ2

Iπ1

-T
(π)
0

T
(π)
1

-

T
(π)
Iπ3

−1
-

...

A

?

T
(π1,π3,π2)
1

?

T
(π1,π3,π2)
I2−1

· · ·

-

?

Y

A

Iπ2

Iπ3

Iπ1

-R
(π)
0

R
(π)
1

-

R
(π)
Iπ3

−1
-

...

6

R
(π)
Iπ3

6

R
(π)
Iπ2

+Iπ3
−2

· · ·
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Fig. 3.1. Type-1 and type-2 oblique sub-matrices of a tensor

Proposition 3.5.
1. If A is an (I × I × I) symmetric tensor, then ∀k ∈ {0 . . . I − 1}, all type-1

oblique sub-matrices T
(π)
k are equal ( i.e. ∀k, T

(π)
k = Tk does not depend on

π).
2. If A is a Toeplitz tensor, then for all permutation π and index k ∈ {0 . . . Iπ3

− 1},
the type-1 oblique sub-matrix T

(π)
k is Toeplitz.

3. If A is a Hankel tensor, all columns of the type-2 oblique sub-matrix R
(π)
k are

equal.
Proof.

1. If the tensor A is symmetric, equation (3.4) yields [T
(π)
k ]ij = [A]i,j,k+j , which

does not depend on π.
2. Applying equation (3.4) to i+1 and j +1 (for all 0 ≤ i < Iπ1

−1 and 0 ≤ j <

J
(1)
(π2,π3)

(k) − 1) yields [T
(π)
k ]i+1,j+1 = [A]π−1(i+1,j+1,k+j+1). However, since

the tensor A is Toeplitz, [A]π−1(i+1,j+1,k+j+1) = [A]π−1(i,j,k+j) = [T
(π)
k ]ij .

Therefore [T
(π)
k ]i+1,j+1 = [T

(π)
k ]ij , which means that the matrix Tk is Toeplitz.

3. If [A]i1i2i3 is of the form [A]i1i2i3 = x(i1+i2+i3), equation (3.6) shows that for

all permutation π and index k ∈ {0 . . . Iπ2
+ Iπ3

− 2}, [R
(π)
k ]ij = x(i+k) does

not depend on j.

3.2.2. Reordered tensor modes.
Below we introduce the type-1 and type-2 reordered tensor modes, formed by

concatenating the type-1 and type-2 oblique sub-matrices.
Definition 3.6.
The type-1 reordered tensor modes are defined by concatenating the type-1 oblique

sub-matrices:
• A′

1 is the I1 × (I2I3) matrix [T
(1,3,2)
I2−1 , . . . , T

(1,3,2)
0 = T

(1,2,3)
0 , . . . , T

(1,2,3)
I3−1 ],
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• A′
2 is the I2 × (I3I1) matrix [T

(2,1,3)
I3−1 , . . . , T

(2,1,3)
0 = T

(2,3,1)
0 , . . . , T

(2,3,1)
I1−1 ],

• A′
3 is the I3 × (I1I2) matrix [T

(3,2,1)
I1−1 , . . . , T

(3,2,1)
0 = T

(3,1,2)
0 , . . . , T

(3,1,2)
I2−1 ].

In the same way, the type-2 reordered tensor modes are defined by concatenating the
type-2 oblique sub-matrices:

• A′′
1 is the I1 × (I2I3) matrix [R

(1,2,3)
0 , . . . , R

(1,2,3)
I2+I3−2],

• A′′
2 is the I2 × (I3I1) matrix [R

(2,3,1)
0 , . . . , R

(2,3,1)
I3+I1−2],

• A′′
3 is the I3 × (I1I2) matrix [R

(3,1,2)
0 , . . . , R

(3,1,2)
I1+I2−2].

Proposition 3.7.
1. For all s = 1, 2, 3, the mode As and the reordered modes A′

s, A′′
s admit the

same singular values and left singular vectors.
2. If A is a symmetric tensor, then A′

1 = A′
2 = A′

3, and this unique mode admits
an axial blockwise symmetry w.r.t. its central oblique sub-matrix.

Proof.
1. For all s = 1, 2, 3, the columns of the reordered modes A′

s and A′′
s form a

permutation of the columns of the mode As defined in section 2.
2. This is a corollary of point 2 in proposition 3.5.

4. Fast algorithms for computing the HOSVD of structured tensors.
In this section, the reordered tensor modes introduced above are used to efficiently
compute the HOSVD of structured tensors. The first improvement consists in exploit-
ing the column-redundancy of symmetric and Hankel tensors. To further reduce the
computational cost, we then exploit the fast matrix-vector product techniques specific
to Toeplitz and Hankel matrices.

4.1. Algorithms exploiting column-redundancy. Here we suppose that the
s-mode of tensor A is redundant, e.g. some columns of the s-mode are equal (this
is the case of symmetric and Hankel tensors for instance). We aim at exploiting this
redundancy in order to efficiently implement the HOSVD of A. Toward this end, we
define the Is×Js matrix Hs as the matrix obtained by removing the repeated columns

in the s-mode (Js ≤ ∏

s′ 6=s Is′), and we denote d
(s)
k the number of occurrences of the

kth column of Hs in the s-mode. Then we consider the Is × Is correlation matrix of
the s-mode: C(s) = As As

H . It is clear that this matrix can be factorized as

C(s) = Hs D2
sHH

s ,

where

Ds = diag

(√

d
(s)
0 . . .

√

d
(s)
Js−1

)

(if the s-mode is not redundant, then we define Hs as the s-mode itself and Ds is
defined as the Js × Js identity matrix). As a consequence, the Ms highest singular
values and left singular vectors of the s-mode of dimensions Is × ∏

s′ 6=s Is′ are the
same as those of the smaller Is × Js matrix Hs Ds.

Algorithms for symmetric tensors. In the case of (I × I × I) symmetric tensors,
we proved in point 2 of proposition 3.7 that A′

1 = A′
2 = A′

3, and that this unique
mode admits an axial blockwise symmetry. Therefore we can define

• the non-redundant matrix Hs = [T
(1,2,3)
0 , . . . , T

(1,2,3)
I−1 ], ∀s ∈ {1, 2, 3}, of di-

mension I × J with J = I(I + 1)/2;
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• the weighting factors d
(s)
k =

{
1 if 0 ≤ k < I
2 if I ≤ k < J

.

In this way, the cost of the (rank-truncated) HOSVD is reduced to that of the
(rank-truncated) SVD of HsDs, which is 2MI3 flops per iteration. In particular, it
can be noted that the compression and weighting of the modes lead to a complexity
6 times as low as that of the algorithm in table 2.1.

Algorithms for Hankel tensors. In the case of (I1×I2×I3) Hankel tensors, [A]i1i2i3

is of the form [A]i1i2i3 = x(i1+i2+i3), and we proved in point 3 of proposition 3.5

that for all permutation π and index k ∈ {0 . . . Iπ2
+ Iπ3

− 2}, [R
(π)
k ]ij = x(i+k). In

particular, all columns of the type-2 oblique sub-matrix R
(π)
k are equal. Therefore for

each s-mode we can define
• the non-redundant Hankel matrix Hs(i, k) = x(i+k), of dimension Is×Js with

Js = (
∑

s′ 6=s Is′) − 1;

• the weighting factors d
(s)
k = J

(2)
{π

s′}s′ 6=s

(k) = min({Is′}s′ 6=s, 1+k, Js −k) (here

d
(s)
k is the number of columns of the kth oblique sub-matrix of the s-mode,

defined in equation (3.5)). It can be noted that the weighting function 1+k 7→
d
(s)
k (plotted in Fig. 4.1) is piecewise linear:

d
(s)
k =







1 + k if 1 ≤ 1 + k < min({Is′}s′ 6=s)
min({Is′}s′ 6=s) if min({Is′}s′ 6=s) ≤ 1 + k ≤ max({Is′}s′ 6=s)

Js − k if max({Is′}s′ 6=s) < 1 + k ≤ Js

0 elsewhere.
(4.1)

6

-
max({I

s′
}

s′ 6=s
))min({I

s′
}

s′ 6=s
)) Js

min({I
s′

}
s′ 6=s

)

1

d
(s)
k

1 + k

Fig. 4.1. Weighting function d
(s)
k

for Hankel tensors

The fast SVD-based algorithm for computing the full or rank-truncated HOSVD
of the Hankel tensor A is summarized in table 4.1. The compression and weighting of

Table 4.1

Fast HOSVD algorithms for Hankel tensors
(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration
SVD of H1 D1 4M1I1(I2 + I3)
SVD of H2 D2 4M2I2(I1 + I3)
SVD of H3 D3 4M3I3(I1 + I2)
Global cost 24MI2

the modes allow a reduction of the complexity of one order of magnitude w.r.t. the
algorithm in table 2.1. If additionally the Hankel tensor is cube (I1 = I2 = I3 = I),
then it is symmetric, and the three modes are equal. In this case, the global complexity
is reduced 8MI2 flops.
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Table 4.2

Fast HOSVD algorithm for Toeplitz tensors
(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration

SVD of A
′
1 2M1(90I

2 log2(I) + M1I1)
SVD of A

′
2 2M2(90I

2 log2(I) + M2I2)
SVD of A

′
3 2M3(90I

2 log2(I) + M3I3)

Global cost 6M 90I
2 log2(I)

4.2. Algorithms exploiting the Toeplitz or Hankel structure. In the
above developments, we assumed that the rank-r rank-truncated SVD of an n × m
matrix with n < m was computed by means of the orthogonal iteration method [7,
pp. 410–411], which consists in recursively performing 2r matrix / vector products
and 1 QR factorization of an n× r matrix (a full SVD corresponds to the case r = n).
We mentioned that the computational cost of one iteration is 2r c(n,m) + 2r2n flops,
where c(n,m) is the cost of 1 matrix / vector product, and 2r2n is the cost of 1 QR
factorization [7, pp. 231–232].

In the following, we will focus on the HOSVD of Toeplitz or Hankel tensors,
which can be computed efficiently, using fast matrix / vector products. Indeed, the
computational cost of a product between a p × q Toeplitz or Hankel matrix and a
vector can be reduced from 2pq flops to 15(p + q) log2(p + q) flops, by means of Fast
Fourier Transforms (FFT) [7, pp. 188-191,201–202].

Algorithms for Toeplitz tensors. In the case of Toeplitz tensors, we mentioned in
point 2 of proposition 3.5 that for all permutation π and index k ∈ {0 . . . Iπ3

− 1}, the

type-1 oblique sub-matrix T
(π)
k is Toeplitz. Therefore the oblique modes A′

s are formed
of Toeplitz blocks. As a consequence, the computational cost of the multiplication of
A′

s by a vector of appropriate dimension can be reduced from 2I3 flops to 90I2 log2(I)
flops2. By introducing those fast products into the orthogonal iteration method, the
cost of the (rank-truncated) SVD of A′

s is reduced to 2Ms(90I2 log2(I) + MsIs) per
iteration.

The fast algorithm for computing the full or rank-truncated HOSVD of a Toeplitz
tensor is summarized in table 4.2. If additionally the tensor A is symmetric, then
the three modes are equal. Moreover, as shown in section 4.1, the SVD of A′

s can

be replaced by that of HsDs, where the I × I(I+1)
2 matrix Hs is also block-Toeplitz.

Therefore the cost of the SVD of HsDs is half that of the SVD of A′
s. As a consequence,

the compression and weighting of the modes lead to a complexity 6 times as low as
that of the fast HOSVD algorithm in table 4.2.

Algorithms for Hankel tensors. In the case of Hankel tensors, we noted in sec-
tion 4.1 that the HOSVD could be obtained by computing the SVD of the matrices
HsDs, where each compressed mode Hs is a Hankel matrix (Hs(i, k) = x(i+k)). There-
fore we can again use fast matrix-vector products to further reduce the complexity.
More precisely, the computational cost of the multiplication of the Is×((

∑

s′ 6=s Is′)−1)

2Under the constraint I1+I2+I3 = 3I, the maximum cost is obtained for cube tensors (I1 = I2 =

I3 = I). Besides, left or right multiplying an I×k oblique sub-matrix T
(π)
I−k

by a vector of appropriate
dimension normally involves 2Ik flops. This complexity is reduced to 15(I + k) log2(I + k) flops by
means of FFT’s. Therefore left or right multiplying the block-Toeplitz matrix A′

s by a vector of
appropriate dimension normally involves 2

∑
I−1
k=0 2Ik ∼ 2I3 flops, or 2

∑
I−1
k=0 15(I + k) log2(I + k) ∼

90I2 log2(I) by means of FFT’s.
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Hankel matrix Hs by a vector of appropriate dimension can be reduced from 4I2

flops to 45I log2(I) flops, by means of FFT’s. By introducing those fast products
into the orthogonal iteration method, the cost of the SVD of HsDs is reduced to
2Ms(45I log2(I) + MsIs) per iteration.

The ultra-fast algorithm for computing the full or rank-truncated HOSVD of a
Hankel tensor is summarized in table 4.3. Its global cost is provided as a maximum
over M1,M2,M3, under the constraint M1 +M2 +M3 = 3M . It can be noted that the
cost due to the fast matrix / vector products, and the cost due to the QR factorizations
can be of the same order of magnitude if M = O(log2(I)).

Table 4.3

Ultra-fast HOSVD algorithm for Hankel tensors
(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration

SVD of H1D1 2M1(45I log2(I) + M1I1)
SVD of H2D2 2M2(45I log2(I) + M2I2)
SVD of H3D3 2M3(45I log2(I) + M3I3)

Global cost 6M(45I log2(I) + MI)

If additionally the Hankel tensor is cube (I1 = I2 = I3 = I), then it is symmetric,
and the three modes are equal. In this case, the global complexity is three times as
low as that of the ultra-fast HOSVD algorithm in table 4.3.

4.3. Comparison of the complexities. The overall costs of the various HOSVD
algorithms presented above are summarized in table 4.4 (sorted in decreasing order
of complexity). Note that only the complexity upper bounds are given in this table,
and that the calculation of the tensor S is not included. Besides, it can be noted that
the FFT-based HOSVD algorithms are not always the fastest, because of the high
constants in table 4.4. The best choice for computing the HOSVD actually depends
on I, and possibly on M (the dominant cost of all algorithms is linear w.r.t M , except
that of the ultra-fast algorithms for Hankel tensors). Fig. 4.2 represents the differ-
ent complexities for M = 10. From this figure we can draw general remarks, which
actually stand for any value of parameter M :

• the best algorithm for computing the HOSVD of Toeplitz (resp. symmetric
Toeplitz) tensors is that dedicated to such tensors if I & 400, or that dedicated
to unstructured (resp. symmetric) tensors otherwise;

• the best algorithms for computing the HOSVD of symmetric, Hankel and
cube Hankel tensors are always those dedicated to such tensors.

In other respects, the comparison between the fast and ultra-fast computations
of the HOSVD for Hankel and cube Hankel tensors are sensitive to parameter M , as
can be noted in table 4.4. Our simulations showed that:

• for small values of M (M ≪ I), the ultra-fast algorithm is faster if I & 70;
• for moderate values of M (M ≃ I/2), the ultra-fast algorithm is faster if

I & 80;
• for large values of M (M ≃ I), the ultra-fast algorithm is faster if I & 100.

5. Conclusions. In this paper, we proposed to decrease the computational cost
of the full or rank-truncated HOSVD, which is basically O(MI3), by exploiting the
structure of symmetric, Toeplitz, and Hankel tensors. For symmetric and Hankel
tensors, our solution is based on the fact that the HOSVD can be reduced to the
SVD of three non-redundant (no column are repeated) matrices whose columns are
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Table 4.4

Complexities of the HOSVD algorithms
(the cost corresponds to a single iteration of the orthogonal iteration method)

Structure Global cost per iteration
unstructured 12MI3

symmetric 2MI3

Toeplitz (fast) 540MI2 log2(I)
symmetric Toeplitz (fast) 90MI2 log2(I)

Hankel (fast) 24MI2

cube Hankel (fast) 8MI2

Hankel (ultra-fast) 270MI log2(I) + 6M2I
cube Hankel (ultra-fast) 90MI log2(I) + 2M2I
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Symmetric
Toeplitz (fast)
Symmetric Toeplitz (fast)
Hankel (fast)
Cube Hankel (fast)
Hankel (ultra−fast)
Cube Hankel (ultra−fast)

Fig. 4.2. Flops count vs. size I for M = 10.

multiplied by a given weighting function. In the case of Toeplitz and Hankel tensors,
we propose a new way to perform the tensor unfolding which allows fast matrix /
vector products. Finally, our fastest implementation of the HOSVD has a complexity
of O(MI log2(I)) in the case of Hankel tensors.
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