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Oblique Projections for Direction-of-Arrival
Estimation With Prior Knowledge

Rémy Boyer and Guillaume Bouleux

Abstract—Estimation of directions-of-arrival (DOA) is an im-
portant problem in various applications and a priori knowledge
on the source location is sometimes available. To exploit this in-
formation, standard methods are based on the orthogonal projec-
tion of the steering manifold onto the noise subspace associated
with the a priori known DOA. In this paper, we derive and analyze
the Cramér-Rao bound associated with this model and in partic-
ular we point out the limitations of this approach when the known
and unknown DOA are closely spaced and the associated sources
are uncorrelated (block-diagonal source covariance). To fill this
need, we propose to integrate a priori known locations of several
sources into the MUSIC algorithm based on oblique projection of
the steering manifold. Finally, we show that the proposed approach
is able to almost completely cancel the influence of the known DOA
on the unknown ones for block-diagonal source covariance and for
sufficient signal-to-noise ratio (SNR).

Index Terms—Cramér-Rao bound, MUSIC algorithm, orthog-
onal and oblique projectors, prior knowledge of DOA.

I. INTRODUCTION

DIRECTIONS-OF-ARRIVAL (DOA) of narrowband
sources estimation is one of the central problems in

passive radar, sensor sonar, radio-astronomy, and seismology.
This problem has received considerable attention in the last
30 years, and a variety of techniques for its solution have
been proposed. In practical situations, we have sometimes
the knowledge of some a priori known subset of the DOA as
for instance in a radar application where the emitted signal is
backscattered by a number of stationary objects with known
positions situated in the radar’s viewing field [6], [11]. So,
several methods have been proposed to incorporate this prior
knowledge into an estimation algorithm. Prior knowledge
of DOA can be classified into two families depending if we
assume soft or hard constraints [11]. Soft constraints mean that
we known approximatively all the DOA. This class of method
is known under the name of beamspace methods [20] and has
received attention as data reduction methods. The second class
of approach incorporates the exact knowledge of a subset of
the DOA. This constraint is somewhat more restricting but
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more interesting gains can be expected. The exact knowledge
of DOA allows the deflation of the signal subspace and, thus, to
mitigate the influence of the known DOA on the unknown ones.

It is well known that subspace-based methods are very sen-
sitive to over or underestimation of the number of sources and
a small error on this parameter leads to a poor accuracy. On
the other hand, estimate all the DOA and extract from this set,
only the unknown DOA is not easy, especially for closely spaced
DOA or/and for low SNRs. So, a specific strategy must be car-
ried out to set up an estimation scheme which extracts only
the unknown DOA without bias. In [6] and [11], a constrained-
MUSIC algorithm has been presented. The key idea is to or-
thogonally project the noisy array response onto the noise sub-
space spanned by the steering vectors associated with the known
DOA. Note that, we can find the same principle in some sequen-
tial MUSIC algorithms as in [3], [14], and [13]. But, in contrast
with our framework, the prior knowledge is uncertain since it is
constituted from the previously estimated DOA.

In this paper, we derive and analyze the Cramér-Rao bound
(CRB), named Prior-CRB (P-CRB), associated with the orthog-
onal deflation of the signal subspace. In particular, we show
that the prior knowledge of a subset of the DOA leads to a
smaller variance for coherent (or highly correlated) sources as-
sociated with closely spaced DOA. Another result lies in the
fact that if the known and unknown DOA are closely spaced
and the associated sources are uncorrelated, the orthogonal de-
flation cannot help. To fill this need, we advocate that a better
scheme for the deflation of the signal subspace is based not only
on orthogonal projectors but also on oblique projectors. Based
on this principle, we propose to rewrite the MUSIC [16], [19]
Least-Squares (LS) criterion in the context of the oblique pro-
jector algebra. The resulting LS criterion can be decomposed
into the sum of two contributions: the first term is a MUSIC-like
criterion and the second one is a corrective function which inte-
grates the prior knowledge.

Note that oblique projectors have received relatively little at-
tention in the literature of signal processing. However, we can
find in [9] a first application of oblique projectors to sensor ar-
rays. In [1], Behrens and Scharf propose a very detailed review
on this topic and several signal processing oriented applications.
More recently, these projection operators have been exploited
in [24] and [28] in the context of blind channel identification, in
image restoration [27], in noise reduction [8] and in the context
of DOA estimation by McCloud and Scharf [12]. Remark that
the framework of this latter publication is different to the context
of this paper since the authors propose a scaled version of the
MUSIC algorithm based on oblique projection but they do not
assume prior knowledge of DOA. Finally, our methodology is
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also valid for all the methods belonging to the class of subspace
fitting techniques [26]. In addition, some potential applications
of this algorithm can be considered in biomedical signal anal-
ysis [5], [22] and harmonic retrieval [25].

After this brief introduction, Section II discusses the matrix-
based model of the DOA problem and defines in particular the
partitioned steering manifold. In Section III, we present our
derivation and the analysis of the P-CRB. In Section IV, we ex-
plain how integrate into the MUSIC algorithm the prior knowl-
edge of a subset of the DOA by means of oblique projectors.
Section V is dedicated to the practical implementation of the
spectral and the root versions of the Prior-MUSIC algorithm.
Section VII presents some numerical simulations. Finally, we
recall some important facts on oblique projectors and we present
the demonstration of the theorems in the Appendix. We de-
note by bold font vectors and matrices. In addition,

and mean, respectively, transpose, con-
jugated-transpose, Moore-Penrose pseudoinverse, trace, deter-
minant, Kronecker product, Hadamard product, and the direct
sum of two subspaces.

II. MATRIX-BASED REPRESENTATION OF THE DOA
ESTIMATION PROBLEM

In this section, we introduce the standard matrix-based repre-
sentation of the DOA estimation problem for an Uniform Linear
Array (ULA) and in particular, we define the notion of parti-
tioned steering manifold.

A. Parametric Multi-Input Multi-Output (MIMO) Model

Assume there are narrowband plane waves simultaneously
incident on an ULA with sensors. The complex array response
for the th snapshot is given by

(1)

where
is the noisy observation on the th sensor and is the

complex amplitude of the th source. The noise vector is de-
noted by in which the noise on each
sensor, denoted by , is assumed to be additive, white, and
Gaussian of parameter and is a positive real param-
eter. Matrix is the Vandermonde steering manifold
defined by

(2)

where is the steering vector parameterized by DOA (in
radian), given by

in which is the intersensor distance and is the wavelength.
Parameter is assumed to be known or previously estimated
([18, Appendix C]). So, the parametric MIMO model for
snapshots can be written according to

(3)

where with
and is the noise matrix.

B. Partitioned Steering Manifold and Deflated Signal
Subspace

Assume that we know DOA among . Without loss of
generality, the steering manifold can be partitioned according
to

(4)

where the submanifold is the matrix composed by the
desired DOA and submanifold collects the a priori

known DOA. We name the subspace of interest or the
deflated signal subspace as its dimension is which is
smaller than , the dimension of the signal subspace .
In addition, we assume that the DOA are all distinct (
for ) or equivalently the rank of the steering manifold is

(here, we assume ) then and intersect
trivially, i.e., . This implies that

.

C. Structure of the Spatial Covariance

The spatial covariance matrix admits a Vandermonde-
type plus noise decomposition according to

(5)

where is the mathematical expectation and the noise-free
spatial covariance is given by

(6)

If we assume that all the sources are correlated, the source co-
variance is a full matrix, otherwise in the sequel we will
sometimes assume that this matrix is block-diagonal, i.e., the
sources associated with the known and unknown parts of the
steering manifold are uncorrelated. In that case, we have

(7)

with and where (re-
spectively, ) is the covariance associated with the unknown
(respectively, known) sources.

III. DERIVATION AND ANALYSIS OF THE PRIOR-CRB

A. Incorporate Prior Knowledge

In [6] and [11], a prior knowledge MUSIC algorithm has
been introduced and analyzed. This algorithm, called con-
strained MUSIC, is based on the projection of the noisy array
response onto . In a view to derive the Prior-CRB, we
“vectorize” model (3) according to

(8)



1376 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 4, APRIL 2008

in which the noise is denoted by vector . Conse-
quently, is an additive white Gaussian process of parameters

and

(9)

and .
To incorporate prior knowledge of the known DOA set:

collected in submanifold , model (8) is
modified according to

(10)

where and the notation “prior” indicates that
we have projected signal onto the noise subspace associated
with the a priori known DOA. Following the same notation, we
define the noise-free signal according to

(11)

where with
.

B. Prior-CRB Based on Model (10) (P-CRB)

There are several ways to derive the P-CRB. A first approach
could be to derive this bound in the framework of Gaussian col-
ored processes where the inverse of the noise error covariance,
involved in the general CRB formula [21], is computed from
a truncated pseudoinverse of projector . An equivalent and
more handy way is based on the following proposition.

Proposition 1: The “compressed”1 signal

(12)

where is a unitary basis of , follows
a Gaussian distribution of parameters
where .

Proof: See Appendix B.
Let define the signal plus nuisance model parameter vector

by where
and . A standard re-

sult ([18], Appendix B) is that the Mean Squares Error (MSE)
for any unbiased estimate, , of the parameter vector satisfies

with

(13)

where is the likelihood function. Consequently, the
P-CRB is a lower bound on the minimal achievable variance.
According to proposition 1, (13) can be rewritten for Gaussian

1In the sense that (III 
UUU ) is a “fat” matrix (more columns than rows).

distribution according to

(14)

where denotes the th block of vector for .
Finally, we can formulate the following result.

Theorem 1: The P-CRB with respect to the “signal” param-
eter is given by

(15)

where with and
.

Proof: See Appendix C.

C. CRB Without Prior Knowledge Based on Model (8)

The derivation of these bounds is well known [18, p. 392,
(B.6.32)]. Then, we have

(16)

(17)

where , and
. Expressions (16) and (17) are, respectively,

the CRB over the subspace of interest and over the whole
space . Remark that the P-CRB mixes the and the

in the sense that only the unknown derivative steering
vectors are projected onto the orthogonal complement of the
whole space.

D. Comparison of the Bounds

The following theorem discusses some properties linking the
derived bounds.

Theorem 2: For any unbiased estimator of , we have the
following relations.

• For full :
(i)

(ii)
for .

• If is block-diagonal:
(iii)
(iv) for closely
spaced DOA
(v) for closely spaced
DOA and deficient.
(vi) for widely spaced
DOA.

Proof: See Appendix D.
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Note that closely spaced DOA means that at least one known
DOA is close to at least one unknown DOA.2

If the sources are correlated and according to property (i), we
cannot expect perform better than the CRB over the subspace
of interest, . This is a fundamental limit. Regarding prop-
erty (ii), prior knowledge cannot help for a large number of sen-
sors. If the known and unknown sources are uncorrelated, the
known sources are not coherent and the DOA are widely spaced,
then properties (iii) and (vi) mean that all the CRB are merged.
Inversely [cf. property (v)], if the known sources are coherent or
highly correlated, prior knowledge can be exploited. In conclu-
sion, the use of orthogonal projector to introduce prior knowl-
edge into an estimation algorithm is recommended for some
limit situations as for closely spaced DOA associated with co-
herent (or possibly highly correlated) sources with small/mod-
erate number of sensors. Some of these conclusions have been
already obtained in [6] and [11] in the context of the constrained
MUSIC algorithm but here we present a more general argumen-
tation since we base our analysis on a statistical quantity which
is independent of the specific choice of the estimation algorithm.
An important point is that, for finite , property (iv) suggests
that the orthogonal projector does not completely cancel the in-
fluence of the known DOA on the estimation of the unknown
ones and does not reach the CRB over for block-diag-
onal source covariance associated with closely spaced DOA. In
Section IV, we propose an estimation scheme which solves this
problem.

IV. PRIOR KNOWLEDGE-BASED MUSIC ALGORITHMS

To be in line with property (iv), we assume that the sources
associated with the known and with the unknown parts of the
steering manifold are uncorrelated. Consequently, the spatial
covariance matrix of the sources is block-diagonal and is de-
fined in (7). In addition, we denote unknown quantities by the
“hat” symbol. According to this notation, we have .

It can be seen that the Constrained-MUSIC (CMUSIC) algo-
rithm [6], [11] attempts to find one component at a time which
is most orthogonal to the noise subspace of the partially known
steering manifold, . The CMUSIC optimization problem can
be described according to where

(18)

Note that this problem is different to the standard un-
constrained problem associated with the MUSIC algorithm:

with where
both matrices and are unknown.

Following the formalism introduced in [7], [16] for the
MUSIC algorithm, the constrained Prior-MUSIC criterion is
given by

(19)

2More precisely, the inter-DOA distance must be under the Rayleigh resolu-
tion [23], i.e., j�(sin(� ) � sin(� ))j � 2 6=(L � 1).

where the cost function is defined by

(20)

in which is a complex amplitude vector. Let
then the cost function can be rewritten according to

(21)

(22)

since and . Consequently ac-
cording to (22), minimizing is equivalent to look for
vectors in the subspace of interest and in the same
time to discard the DOA belonging to the known space .
In contrast with orthogonal projectors, the steering manifold
is not affected by projector [cf. (11)].

A. Prior-MUSIC (P-MUSIC) Algorithm

A standard minimal-norm solution of with respect to
parameter is given by

(23)

This solution satisfies .
Consequently, the cost function of the P-MUSIC algorithm

(24)

reaches its minimum value (wrt. ) for the known and unknown
DOA. However, criterion (19) must be minimal only for the
known DOA. So, we can expect that in some limit situations
as for low SNR or for closely spaced DOA, this approach will
be suboptimal. Consequently, in the next paragraph, we propose
another approach which completely solves criterion (19).

B. Weighted Prior-MUSIC (WP-MUSIC) Algorithm

1) A Second Resolution Based on the Obliquely Weighted
Pseudoinverse: To solve criterion (19), consider the following
minimal-norm solution:

(25)

where is the obliquely weighted pseudoinverse3 defined by

. Then, the cost function can be rewritten ac-
cording to

(26)

(27)

(28)

3We do not confuse the obliquely weighted pseudoinverse with the standard
oblique pseudoinverse defined in [1].
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The previous expressions are derived by using some basic
properties of oblique projectors defined in (53) and (54) and the
fact that projectors are idempotent. So, the final WP-MUSIC
criterion is given by . Note that

• , we have . So,
and thus is minimal.

• , we have and
and thus . So, is not minimal.

To show that is a minimal-norm solution of criterion (19),
we consider the partial derivative wrt. of the cost function
according to

(29)

We have two cases,
• then . So, is a minimal-

norm solution of criterion (19) for the unknown DOA.
• then . Thus for the known

DOA, is not a minimal-norm solution or in other words,
the cost function does not reached its minimum
wrt. for the known DOA. This fact is very desirable
since criterion (19) must be minimum only for the unknown
DOA. This property can be understood as a reinforcement
of the rejection of the known DOA. In addition, for the
known DOA, it comes .

2) Link To the MUSIC-Like Criterion: One can easily verify
that and, therefore, the cost function
can be decomposed into two contributions according to

(30)

where has been defined in (18) and
. As we can see, the above expression is a

CMUSIC criterion with an additional corrective term which
takes into account the prior knowledge.

C. Large Number of Sensors

We begin by exposing an asymptotic result regarding oblique
projectors.

1) Proposition 2: For large and if and in-

tersect trivially, we have and

.

Proof: As , we have

where and
then and are mutually orthogonal. This implies

. Using these properties
together with the definition of an oblique projector given in
(52), it is easy to show the proposition.

It is straightforward to see that for a large number of sensors,
we have

where (31)

According to (23) and the fact that , it is direct

to show . In addition, it comes

(32)

(33)

(34)

(35)

where we have used the results given in proposition 2. Conse-
quently, the P-MUSIC and WP-MUSIC cost functions become

This result means that asymptotically, the criterions of the
P-MUSIC and WP-MUSIC are in fact the criterion of the
MUSIC over the orthonormalized subspace of interest. In
addition, the WP-MUSIC and P-MUSIC algorithms based,
respectively, on criterion and are asymptoti-
cally equivalent. However, for more realistic situations where

takes moderate values, we show in the simulation part that
the two approaches are no longer equivalent, as expected in
Sections IV-A and IV-B.

V. IMPLEMENTATION OF THE WP-MUSIC CRITERION

As claimed at the end of Section IV-B, we focus our analysis
on the WP-MUSIC algorithm. To implement this algorithm, we
have two possibilities. We can use (27) or (28). The latter is
more readable since it explains how the WP-MUSIC algorithm
works. However, it is preferable to implement (27) for the two
following reasons.

1) More DOA can be estimated. Since the second expres-
sion of the WP-MUSIC criterion involves projector ,
we have to satisfy constraint to ensure that is
a rank- matrix. For the first expression, only matrices
and are involved through projector . In that case,
we have to satisfy the following constraints:

is of rank-

is of rank-

The two last constraints can be reformulated as
which is less restrictive than

since we have . In fact,
combining the constraints on the rank of matrices and

, we obtain which allows possible values for
greater than .

2) In a computational point of view, (28) involves the estima-
tion of projectors and while (27) involves only
the estimation of projector .

A. Estimation of Oblique Projectors

1) Invariant to Change of Basis: The oblique projectors
and are invariant to change of basis. Indeed
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a basis of space is not unique, so consider another
basis such as . We know that there exits
an invertible matrix such as . In that case, it
comes the two following equalities and

. This invariance property for is
a consequence of the fact that is essentially unique since

. For projector , we can show
this result in the following manner:

(36)

2) Estimation of Projector : In criterion (27), we need
to partially estimate projector . So, knowing projector

, we have to estimate a basis of . Consider the sample
weighted spatial covariance matrix of the noise-free array re-
sponse:

(37)

As admits a Vandermonde-type decomposition according
to (6) and as we assume that is block-diagonal, it comes

(38)

and the rank of is . Now, consider the Singular Value De-
composition (SVD, [18, p. 355]) of the sample weighted spatial
covariance

(39)

where is a unitary basis of and is a
unitary basis of the null-space of the sample weighted spatial

covariance, denoted by . We use the right basis since
projector destroys the Hermitian character of the sample
spatial covariance. Projector can be computed according
to

(40)

(41)

(42)

where . In presence of noise, it is preferable to
consider where is defined in (55)
since we have shown that does not destroy the statistical
properties of the noise. Finally, we can formulate the spectral
form of the WP-MUSIC algorithm.

B. Spectral WP-MUSIC

The spectral WP-MUSIC criterion is

where

(43)

The peaks in the pseudospectrum coincide with the
unknown DOA. Note that the minimization of can be in-
terpreted as a generic one-dimensional subspace fitting problem
[25].

C. Root WP-MUSIC

The enumerative search procedure associated with the
spectral WP-MUSIC criterion is a costly operation. Thanks
to the ULA assumption, we expose the “root” version of the
WP-MUSIC algorithm which has a lower complexity cost. In
addition, it is well known that the “root” version of the MUSIC
algorithm is superior to its spectral form [15].

1) Root-CMUSIC Principle: Let . The cri-
terion of the root-CMUSIC4 is given by

(44)

where denotes an unitary basis of the noise space
obtained through the methodology introduced in [6] and [11].
Due to the ULA assumption, has a Vandermonde struc-
ture and the DOA estimation problem can be formulated in
term of finding the zeros of the above conjugate centrosym-
metric polynomial of degree . This symmetry is a conse-
quence of the Hermitian character of projector and the
explicit computation of the coefficients of denoted
by is given by summing along the diagonal of
the projector matrix. In addition, we have and is

real and equals to . Moreover, one can
easily verify that is equal to its reciprocal polyno-
mial [2] and, therefore, if is a zero then is also a zero,
i.e., occur in pairs. Note that for the desired DOA,
we have constraint , i.e., the DOA belong to the unit
circle. In presence of noise, the DOA may be extracted (among

possible roots) based on their proximity to the unit circle.
2) Polynomial Form of the Corrective Function and Root

WP-MUSIC Algorithm: Here, we follow the same methodology
as for the root-CMUSIC approach, and we associate a polyno-
mial form to such as for all unknown DOA, the fol-
lowing polynomial:

(45)

(46)

must be zero. By analogy to (42), we have .
Then, polynomial (46) is obtained by remarking that

(47)

(48)

(49)

4Here again, we expose the “root” version of the WP-MUSIC algorithm based
on (28) since we consider that this expression clearly highlights the link be-
tween the root WP-MUSIC and the root-CMUSIC. However, for the two rea-
sons explained in Section V, it is preferable to use (27) to really implement
the root WP-MUSIC based on the resolution of polynomial ppp(1=z) (III �

ÊEE )(III � ÊEE )ppp(z) where projector ÊEE is given by (42).
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Fig. 1. CRB versus SNR [dB]. (a) Widely spaced DOA (� = [5 80 ]).
(b) Closely spaced DOA (� = [5 5:2 ]).

Note that due to the fact that is Hermitian,
the coefficients of , noted , are conju-

gate centrosymmetry, i.e.,
and therefore occur in pairs. Consequently, the root
WP-MUSIC is based on the following result.

Theorem 3: The roots of polynomial
where and has

been defined in (44) and (45), respectively, are the set of the
DOA without the subset of the known DOA.

Proof: See Appendix E.

VI. NUMERICAL SIMULATIONS

A. Numerical Analysis of the Prior-CRB

The geometry of the array is Uniform and Linear (ULA) of
sensors and snapshots. So, the Rayleigh res-

olution is about 0.49. To illustrate the comparison between the

Fig. 2. CRB versus SNR [dB], Closely spaced DOA, (top) L = 10, (middle)
L = 300, (bottom) L = 1000.

three derived bounds: the , the and the ,
we consider two situations.

1) One Known DOA and One Unknown: In this situation,
is known and have to be estimated. The covariance ma-

trix of the sources is given by with

and . The coherent scenario
is considered for singular spatial covariance, i.e., for .
In Fig. 1(a), we consider uncorrelated, correlated and coherent
sources with widely spaced DOA. In that case, the Prior-CRB is
comparable with the CRB for a single or two DOA. So, in this
situation, the knowledge of cannot help the estimation of .
This situation confirms property (vi) and (iii) even if the sources
are correlated.

In Fig. 1(b), the DOA are closely spaced. In this case, the CRB
for one DOA is much lower than the P-CRB and the CRB for
two DOA, as expected in (iv). In addition, for block-diagonal
source covariance, the P-CRB and the CRB for two DOA are
merged according to property (iii). This illustrates in particular
property (iv). The important point is that even if the sources
are highly correlated, the gain associated with the P-CRB with
respect to the CRB for two DOA is small. Inversely, for coherent
sources with closely spaced DOA, the P-CRB is much lower
than the CRB for two DOA. This observation illustrates property
(v). In that case, prior knowledge is beneficial.

Finally, in Fig. 2, we vary the number of sensors for closely
spaced DOA. We can see that the CRB are asymptotically
merged which confirms property (ii).

2) Two Known DOA and One Unknown: Here, we know
and and we want to estimate . The spatial covariance is
given by

(50)

where and

(51)
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Fig. 3. CRB versus SNR [dB]. (a) Widely spaced DOA (� = [5 80 40 ]).
(b) Closely spaced DOA (� = [5 5:2 7 ]).

with , and varies according to
in the previous section. So, the known DOA are highly corre-

lated and the correlation coefficient between the unknown DOA
associated with the first and third sources varies until to the co-
herent scenario. On Fig. 3, we have drawn the CRB for closely
spaced and for widely spaced DOA. Like in the previous situa-
tion, the P-CRB indicates that the exploitation of prior knowl-
edge is interesting only for coherent sources with closely spaced
DOA.

B. Illustration of the WP-MUSIC Algorithm

Here, we consider a numerical example to illustrate the
WP-MUSIC algorithm. On Fig. 4(a), we have drawn the pseu-
dospectrums of the CMUSIC and the WP-MUSIC algorithms
for three DOA where one is known and two others have to be
estimated. First, note on the Prior-MUSIC pseudospectrum that
the known DOA at 100 has been efficiently cancelled from
the CMUSIC pseudospectrum without altering the unknown

Fig. 4. (a) CMUSIC and WP-MUSIC pseudospectrums for three DOA
(one known and two unknown). (b) f (�); f (�) and C(�) for
L = 18 sensors. (c) Zero location with respect to the unit circle.

one. In contrast with the CMUSIC algorithm, we can note on
Fig. 4(b) that has only two null values at 50 and 150 .
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In Fig. 4(c), we have drawn the zero location with respect to
the unit circle for the root-CMUSIC and root WP-MUSIC al-
gorithms. Note that the zeros occur in pairs, as expected. How-
ever, in presence of noise, selecting the zeros (with unit mod-
ulus constraint) based only on is a difficult task due to
their proximity to the unit circle. So, a decision only based on

seems ineffective. Inversely, note that a decision on
criterion is a more practicable task.

C. Performances of the Algorithms

1) Accuracy of the Proposed Methods: We assume that the
source covariance is block-diagonal. The tested methods are

• WP-MUSIC: The MUSIC algorithm with prior knowl-
edge based on the obliquely weighted pseudoinverse (cf.
Section IV-B).

• P-MUSIC: The MUSIC algorithm with prior knowledge
based on standard LS resolution (cf. Section IV-A).

• P-MUSIC (SI): The MUSIC algorithm with prior knowl-
edge based on the implementation of the oblique projector
proposed by McCloud and Scharf [12].

• MUSIC: The standard root version of the MUSIC algo-
rithm.

• CMUSIC: The root version of the constrained MUSIC al-
gorithm presented by DeGroat et al. [6].

The accuracy of the DOA of interest estimation is measured
through the Standard Deviation (Std) which is defined as the
root of the MSE. Each simulation is based on 1000 Monte
Carlo trials. In Fig. 5(a), we consider widely spaced DOA,
e.g., . In this situation, all the tested algorithms
are equivalent. On Fig. 5(b), we choose closely spaced DOA,
e.g., which corresponds to a distance inter-DOA
much lower than the Rayleigh resolution for 10 sensors. In this
scenario, the CRB for two DOA and the P-CRB for the DOA of
interest are merged, as expected in property (iii) of Theorem 1
(cf. Section III-D) in the context of more than two DOA. We
can note that for sufficient SNR, the CMUSIC and the MUSIC
algorithms reach these bounds but they cannot outperform it for
closely spaced DOA and for block-diagonal source covariance.
The WP-MUSIC, P-MUSIC, and P-MUSIC (SI) show Std
close to the CRB for only one DOA at high SNR. By the light
of this example, we can say that most of the influence of the
known DOA has been efficiently cancelled by the proposed
algorithms. This is not the case for the CMUSIC algorithm.
According to Fig. 5(b) and (c), the WP-MUSIC algorithm is
slightly more efficient than the P-MUSIC algorithm at low
SNR ( dB) and for closely spaced DOA. This observation
confirms the discussion in Sections IV-A and IV.B. Finally, we
perform in Fig. 5(d), (e), and (f), some experiments with two
known DOA and one unknown. The conclusions are similar to
the more simple case of one unknown and one known.

2) Robustness to a Small Error on the a Priori: The scenario
is the same as for Fig. 5(a), i.e., the known DOA is
and the unknown DOA is . We perturb according to

and we compute the standard deviation for the DOA
of interest, . This scenario is repeated for different SNR and
number of sensors. The number of snapshots is equal to 100.

Fig. 6(a) shows that without noise, the P-MUSIC (SI) and the
CMUSIC are very sensitive to a small error on the known DOA.
Inversely, the P-MUSIC and WP-MUSIC algorithms are more
robust. These observations are confirmed by Fig. 6(b) where
the SNR is equal to 30 dB. Indeed, we can note the remarkable
robustness of the P-MUSIC and WP-MUSIC algorithms since
the Std associated with these methods follow a flat curve. This
is a clear advantage of these approaches. In Fig. 6(c), we can see
that all the tested methods have similar robustness at low SNR
(0 dB). In this situation, the error induced by the noise dominates
the error associated with the error on the known DOA.

In Fig. 6(d), we have drawn the Std for the tested methods
without noise and for a large number of sensor .
As expected, in this asymptotic regime, the CMUSIC, the
P-MUSIC and the WP-MUSIC have the same efficiency and
robustness. Note that in this case, the bad results for the
P-MUSIC (SI) algorithm. These observations are confirmed in
Fig. 6(e) and (f) in the noisy situation.

VII. CONCLUSION OF THE SIMULATION PART

1) For a small number of sensors, the WP-MUSIC shows the
best accuracy and the best robustness to a small error on the
known DOA. In particular, the accuracy of this algorithm
is near the CRB associated with the subspace of interest.
Consequently, the influence of the known DOA is almost
cancelled.

2) As explained in Sections IV-A, IV-B and in the simula-
tion part, the P-MUSIC algorithm is slightly less efficient
than the WP-MUSIC algorithm but its robustness is com-
parable. This is a valuable solution.

3) The P-MUSIC (SI) shows a comparable accuracy as the
P-MUSIC and the WP-MUSIC algorithms at high SNR but
this algorithm is less efficient in severely noisy situations.
In addition, its robustness is weak. So, essentially for the
latest reason mentioned, we prefer the implementation of
the oblique projector introduced in Section V-A rather than
the one presented by McCloud and Scharf.5

4) For a small number of sensors and for closely spaced
DOA associated with block-diagonal source covariance,
the P-MUSIC, the WP-MUSIC, and the P-MUSIC (SI)
algorithms outperform the CMUSIC algorithms, in par-
ticular at high SNR where the CMUSIC algorithm is
lower bounded by the CRB over the whole space. For a
large number of sensors and/or widely spaced sources,
this algorithm is equivalent to the ones based on oblique
projectors.

VIII. CONCLUSION

In this paper, we have presented a subspace-based solution
to estimate DOA among using the knowledge of
known DOA. In a first part of this paper, we have derived and
analyzed the CRB associated with the orthogonal deflation of
the signal subspace and we have shown several limitations of
this approach. Consequently in the second part, we have pro-
posed alternative solutions based on an oblique deflation of the

5Note that in this work, the proposed methodology also assumes the block-
diagonal structure of the spatial covariance of the sources.
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Fig. 5. Std versus SNR for two sources. (a) Widely spaced DOA � = [80 5 ] with L = 10 sensors and T = 100 snapshots. Closely spaced DOA � = [8 5 ]
with L = 10 sensors. (b) With T = 100 snapshots. (c) With T = 500 snapshots. Std versus SNR for three sources. (d) Closely spaced DOA � = [8 5 12 ]
with L = 10 sensors and T = 100 snapshots. (e) Closely spaced DOA � = [8 5 80 ] L = 10 sensors and T = 100 snapshots. (f) Widely spaced DOA
� = [8 50 80 ] L = 10 sensors and T = 100 snapshots.
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signal subspace. We show that the proposed algorithm, called
Prior-MUSIC, mitigates almost the influence of the known DOA
on the DOA of interest in particular when the DOA are closely
spaced and the source covariance is block-diagonal. Finally, the
oblique projector framework provides a suitable way to integrate
prior knowledge into subspace-based methods and more gener-
ally into subspace fitting techniques.

APPENDIX

A. Brief Discussion of Oblique Projectors

This appendix is dedicated to oblique projections [1]. In par-
ticular, we recall that the only requirement of a matrix to
be a projector is is idempotent, i.e., .
Let and be subspaces of that intersect trivially,
i.e., . Then, the projector on along

is the linear operator satisfying:
• ;
• ;
• .
The geometric interpretation of the above properties is

where and
then . So, the complex Euclidean Space

is decomposed according to
. Let be a complex matrix having full column rank,

obtaining by the concatenation of matrices and according
to . The orthogonal projector onto is then
defined as and

(52)

This property is important since it highlights the link between
the orthogonal projector and oblique projectors and

. In addition, the ranges for and are
and , respectively, and the null spaces for

and are and , respec-
tively. A useful rewritten of can be deduced from (VIII-A)
according to

(53)

Finally, note that

(54)

B. Demonstration of Proposition 1

First, note that an ordered eigendecomposition of any
rank- idempotent matrices is

(55)

where is the first columns of the left eigen-
factor. Thanks to the property that the noise is zero-mean and

, it is not difficult to see that

(56)

Fig. 6. Std versus Error on the known DOA with L = 10 sensors. (a) Without
noise. (b) With SNR = 30 dB. (c) With SNR = 0 dB. L = 100 sensors
and T = 100 snapshots. (d) Without noise. (e) With L = 30 sensors and
T = 100 snapshots and SNR = 30 dB. (f) With SNR = 0 dB.

(57)

(58)

The error covariance, noted , is given by the covariance of
the following centered signal
then

(59)

(60)

(61)

C. Demonstration of Theorem 1

We recall that the signal plus nuisance model parameter

vector by where
and . The first

term in (14) is associated with the noise and is given by

(62)

The second term which involved the partial derivatives of the
noise-free model with respect to the parameter vector can be
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expressed according to

(63)

(64)

(65)

where

...
... (66)

with . So, we obtain

The P-CRB is given by the matrix at the bottom of the page.
As the nuisance and signal parameters are decoupled, the

P-CRB has a block-diagonal structure. To obtain the P-CRB for
subvector , we follow the block-diagonalization method in-
troduced in [18, p. 390]. Finally, we have

where

.
After some straightforward algebraic derivations and for suf-

ficient number of snapshots, it comes

Let (respectively, ) be the oblique projector on
(respectively, ) along (respectively, )

defined in (52). Based on these operators, we have the following
property:

(67)

(68)

(69)

(70)

where to obtain (68) [respectively, (69)], we use (53) [respec-
tively, (54)]. Consequently, the P-CRB can be simplified to (15).

D. Demonstration of Theorem 2

To show property (i), it is equivalent to prove that
is a positive semidefinite

(psd) matrix. First, using , it is
straightforward to see that is idempotent. Therefore,
the eigenvalues of is 1 or 0 and, thus, is
psd. Next, as is a nondeficient matrix,
is also psd. Finally using that (1) the Hadamard product of two
psd matrices is also a psd matrix (cf. result R19 in [18]) and (2)
the real part of a psd matrix is psd itself, we prove (i).

Property (ii) can be proved in the following manner. In
[21], it has been shown that

. For the P-CRB, we have

and then

(71)

Consequently, using the definition of the P-CRB, it comes

which proves property (ii).
Next, note that the CRB over the whole space can be rewritten

according to

(73)

where . In addition, suppose that
is block-diagonal in (73) then it is easy to deduce prop-

erty (iii) since

(74)

Note that this relation holds for widely or closely spaced
DOA.

If the DOA are widely spaced, the influence between the DOA
is weak then it is well known that .
Consequently, according to property (iii), the
reaches its minimum near the by superior
values [cf. relation (i)], which proves property (vi). In-
versely, for closely spaced DOA, the is invariant
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while the inverse of is near the singularity
(large condition number with respect to the inversion). Thus,

. This fact together with prop-
erty (iii) give property (iv).

Now suppose that is deficient (coherent sources), then
due to its block structure, is also deficient.6 In addition, if we
consider closely spaced DOA then takes a large
value as the inverse of the Hadamard product of two (near) sin-
gular matrices. In the same time and through projector , the
P-CRB remains sensitive to the known DOA but insensitive to
the correlation between the sources associated with the known
DOA, i.e., to the spatial covariance . Consequently, prop-
erty (v) holds. For correlated sources, the problem is more com-
plicated and we have deferred the discussion to the simulation
part.

E. Demonstration of Theorem 3

As we know occur in pairs, we can give the factor-
ized forms of polynomials and according
to

(75)

and

(76)

where are the desired (known or unknown) zeros and
and are the extraneous zeros. Based on (75) and

(76), admits the following factorization:

(77)

where

and

6We have det(RRR ) = det(RRR ) det(RRR ) = 0 since we assume that
det(RRR ) = 0.

Clearly, has no trivial roots, i.e., any known or unknown
DOA are solution of . Inversely, we only have

for the unknown DOA. So, according to (77), zeros of
are only the DOA which annulate , i.e., the unknown DOA.
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