The singular values and vectors of low rank perturbations of large rectangular random matrices

Abstract : In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalue aspect of the problem, the non-random limiting value is shown to depend explicitly on the limiting singular value distribution of the unperturbed matrix via an integral transforms that linearizes rectangular additive convolution in free probability theory. The large matrix limit of the extreme singular values of the perturbed matrix differs from that of the original matrix if and only if the singular values of the perturbing matrix are above a certain critical threshold which depends on this same aforementioned integral transform. We examine the consequence of this singular value phase transition on the associated left and right singular eigenvectors and discuss the finite $n$ fluctuations above these non-random limits.
Type de document :
Pré-publication, Document de travail
22 pages, presentation of the main results and of the hypotheses slightly modified. 2011
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00575203
Contributeur : Florent Benaych-Georges <>
Soumis le : jeudi 26 janvier 2012 - 14:47:28
Dernière modification le : lundi 29 mai 2017 - 14:22:48
Document(s) archivé(s) le : vendredi 27 avril 2012 - 02:35:12

Fichiers

rectspiked_v8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00575203, version 2
  • ARXIV : 1103.2221

Collections

Citation

Florent Benaych-Georges, Raj Rao Nadakuditi. The singular values and vectors of low rank perturbations of large rectangular random matrices. 22 pages, presentation of the main results and of the hypotheses slightly modified. 2011. 〈hal-00575203v2〉

Partager

Métriques

Consultations de
la notice

266

Téléchargements du document

74