Parallel ion strings in linear multipole traps
Mathieu Marciante, Caroline Champenois, J. Pedregosa-Gutierrez, Annette Calisti, Martina Knoop

To cite this version:

HAL Id: hal-00574770
https://hal.archives-ouvertes.fr/hal-00574770
Submitted on 8 Mar 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Radio-frequency (rf) traps are very useful tools for a wide range of research interests such as high resolution spectroscopy [1], frequency standards [3], quantum information processing [2] and quantum simulations [4]. The ability to trap and cool atomic or molecular species in a well defined manner allows to control and study the quantum behaviour of these systems. Most experiments require a totally perturbation-free dynamics of the confined ions, and the micro-motion due to the rf trapping field can sometimes be a disturbing factor. In these cases, cold ions are confined in a string configuration along the longitudinal axis of a linear quadrupole trap, where the rf field vanishes. For a number of applications, in particular in quantum logic and quantum simulations [1, 4], it could be desirable to create more sites inside a trap where the ions do not undergo the rf parametric excitation. Linear traps of higher order, here called multipole traps, offer larger regions of low rf electric fields [5] which can be cancelled for any direction defined by their number, the ions can settle in each minimum as the rf field is nulled. In such a configuration and depending on their number, the ions can settle in each minimum as individual ions or as parallel strings of ions expanding in the axial direction. Due to the absence of a local rf electric field, laser cooling can reduce the temperature of the ions as low as for a chain of ions in a quadrupole trap.

In this letter we first give an example of principle of the creation of extra field nodes [6]. First, we describe the principle of the creation of extra rf electric field minima within the linear octupole trap geometry. In order to create additional nodes in the rf electric field, a rf quadrupole potential, with identical phase and frequency as the octupole potential, is superimposed onto theformer. By the superposition theorem, the resulting rf electric potential Φ_{rf} in the radial plane is given by

$$\Phi_{\text{rf}} = \Phi_{\text{rf}} + \Phi_{4\text{rf}},$$

where the expression of the $2k$-pole electric potentials $\Phi_{(2k)\text{rf}}$ using the polar coordinates (see Fig. 1) can be approximated by [5]:

$$\Phi_{(2k)\text{rf}} (R, \phi, t) = -V_{2k} R^k \cos (k \phi) \cos (\Omega t)$$

with Ω and V_{2k} respectively the frequency and the amplitude of the applied rf potentials, and $R = r/r_0$ the relative distance to the trap center, scaled to the inner radius of the trap r_0. The components of the electric field $\vec{E} = -\nabla \Phi_{\text{rf}}$ are:

$$E_r = -\frac{2}{r_0} \left[2V_4 R^3 \cos (4 \phi) + V_8 R \cos (2 \phi) \right] \cos (\Omega t),$$

$$E_\phi = -\frac{2}{r_0} \left[2V_8 R^3 \sin (4 \phi) + V_4 R \sin (2 \phi) \right] \cos (\Omega t).$$

With our choice of initial phase and frame reference (sketched on Fig. 1), it is straightforward from Eq. 4 that E_ϕ can be cancelled for any direction defined by $\phi_n = \pi n/2$, with $n \in \mathbb{Z}$. The relative variation of the cosines in Eq. 4 makes then possible a total rf field cancellation at the relative radial positions R_{of} for $\phi_{\pm 1} = \pm \pi/2$ (the y-axis in our case, see Fig. 1). This relative radial position depends on the ratio of the two rf voltages as:

$$R_{\text{of}}^2 = V_4/2V_8.$$
In the adiabatic approximation, where the rf period is much smaller than the time scale of the motion induced by the spatial variation of the electric field amplitude (the so-called macro-motion) [8], the dynamics of an ion of charge q_e and mass m inside the trap can be understood using the pseudopotential (psp) Ψ, which results from the time-average of the rf electric field $\Psi = q_e^2 E^2 / 2m\Omega^2$, where the overline holds for the average over one rf period. The psp does not obey the superposition theorem and in our case of superimposed rf fields, the resulting psp writes as:

$$\Psi(R, \phi) = \Psi_s(R) + \Psi_A(R) + 2\sqrt{\Psi_s(R)\Psi_A(R)} \cos(2\phi)$$

where $\Psi_{2k}(R)$ are the usual $2k$-polar psp, $2k$ being the number of electrodes [6].

$$\Psi_{2k}(R) = \frac{k^2 q_e^2 V_r^2}{4m} \frac{R^{2k} - 1}{\Omega^2}$$

By definition of the psp, the pseudo-potential wells exactly match the nodes of the rf electric field. Eq. 3 shows that two extra psp minima, compared to the simple Ψ_s case, are expected for $R \neq 0$ if $\cos(2\phi) = -1$.

However, the total effective trapping potential U_{trp} responsible for the ion confinement results from the psp itself and the static potential required to trap along the symmetry axis Oz and which can be approximated by a harmonic confinement $m\omega_z^2 z^2 / 2$. To obey the Laplace equation, this trapping potential has a de-confining counterpart $-m\omega_z^2 z^2 / 4$ which must be taken into account [6, 8]. In the case of an extra static octupole potential V_{st} applied to the electrodes, the effective trapping potential now reads

$$U_{\text{trp}} = \Psi + q_e V_{st} R^4 \cos(4\phi) + \frac{1}{2} m \omega_z^2 \left(z^2 - \frac{R^2}{2r_0^2} \right)$$

To make sure that the total potential minima still match the rf field-free positions, it is mandatory to compensate the radial de-confining force by an appropriate choice of the static potential V_{st}. The matching of these two forces at the field free positions ($R_{\text{off}}, \phi_{\pm 1}$) is obtained under the condition:

$$q_e V_{st} = m \frac{\omega_z^2}{8} \frac{r_0^2}{R_{\text{off}}^2}$$

To remain as general as possible, we have considered the extra octupole static voltage to compensate for the de-confining effect of the axial confinement. The use of a quadrupole voltage leads to a similar condition which theoretically does not depend on R_{off} (cf. discussion of the realization below). We would like to point out that the rf field cancellation condition Eq. 8 as well as the matching condition Eq. 9 do not depend on the mass of the trapped particles and the process described here can apply to a multi-species system (because $\omega_z^2 \propto 1/m$).

The lowest order expansion of the effective trapping potential around its minima ($R_{\text{off}}, \phi_{\pm 1}$) allows the definition of characteristic frequencies for the motion in the radial and angular directions, if Eq. 3 is satisfied:

$$\omega_{tr}^2 = \omega_z^2 \left(\frac{8\psi_4}{m r_0^2 \omega_z^2} + 1 \right) = 4\omega_0^2 + \omega_z^2,$$

$$\omega_{st}^2 = \omega_z^2 \left(\frac{8\psi_4}{m r_0^2 \omega_z^2} - 2 \right) = 4\omega_0^2 - 2\omega_z^2,$$

where ω_0 is the frequency of motion in the radial plane, when only the rf quadrupole potential is applied. The local steepness of the potential, given in Eq. 3 and 4, is controlled by the quadrupole potential V_4 and the axial confinement ω_z, thus ruling the morphology of a cold sample in the local 3D anisotropic harmonic potential $(\omega_r, \omega_\phi, \omega_z)$ [2, 4]. A close look at Eq. 3 shows that it takes $q_e V_4 > m r_0^2 \omega_z \Omega^2 / 2$ to reach this local 3D harmonic confinement. The local potential being independent of the octupole potential V_{st}, this last parameter can be tuned to independently control the distance between the two minima.

In a second step, we show that ions can effectively be cooled to the Doppler limit and localized in the two extra minima in a controlled manner. For this purpose we carry out m.d. simulations of a set of 10 calcium ions, Doppler laser-cooled along the three directions of space in an octupole trap. The m.d procedure for laser cooling takes into account the absorption and emission processes of photons on the involved atomic transitions. Details of its modeling as well as the definition of temperature used are explained in [3]. The rf electric fields obey Eq. 3 and 4 and at $t = 0$, the rf quadrupole potential V_4 and the static octupole potential V_{st} are off. The amplitude of the rf octupole potential V_8 is such that cold ions form a ~ 20 μm radius ring in the $z = 0$ plane for $\omega_z = 2\pi \times 1$ MHz, shown on figure 3a. The stability of such a structure has been studied elsewhere [3], where it is shown that the Doppler limit can be reached for the motion along the longitudinal direction and that the cooling of the motion in the radial plane is limited by rf heating [8]. At $t =2$ ms, the rf amplitude V_4 is switched on, breaking the cylindrical symmetry of the trapping potential and producing the separation of the ring in two sets of five ions, as shown on Fig. 3b. From $t = 2$ ms to $t = 4.4$ ms, the amplitude V_4 is linearly increased, increasing the distance between the two sets of ions and the steepness of the local potential to reach a separation of 0.22r_0. For $t = 4.4$ ms, the ions form two
strings along the z-axis (Fig. 2: and Fig. 3). At this time, V_4 is kept unchanged and V_{a4} is switched on from 0 to the value fulfilling Eq. 1 (1.7 V) in 1 ms, matching the equilibrium positions of the strings of ions and the field-free positions and reaching characteristic frequencies $\omega_r = 2\pi \times 4.2$ MHz and $\omega_d = 2\pi \times 3.8$ MHz. The signature of this position matching is the abrupt drop of T_y, the temperature of the motion along Oy, from 0.1 K to the Doppler limit (see Fig. 2).

![Figure 2](image)

FIG. 2. (Color online) (a)-(d) Pictures of the ion structure at 3 different times (roughly corresponding to the temperature graph below). (e) Temperatures of the different directions of motion for a simulated dynamics detailed in the text. The horizontal dashed line shows the Doppler limit temperature for calcium ions and the vertical dashed lines materialize first, when the quadrupole potential is switched on and second, when the static octupole potential is switched on.

Another signature of this position matching and of the interest of this new ion organization is the lack of rf-heating observed in the simulations when the cooling lasers are switched off, once the parallel lines are formed. Furthermore, tuning the amplitude V_4 and the static potential V_a accordingly, the ion strings can be moved along the Oy axis. This relative position tuning can be performed with very limited heating as long as the Coulomb repulsion between the two chains is negligible. When it is not the case, this repulsion has to be incorporated in the force compensation condition and a larger static voltage than the one given in Eq. 11 is required.

It is possible to generalize the concept introduced previously. We now assume a 2k-pole linear trap on which an rf potential V_{2k} is applied. An additional V_{2p} rf potential with identical frequency and phase is superimposed on 2p electrodes to generate a rf contribution with a p-order of rotational symmetry. Each rf contribution builds its own psp Ψ_{2k} and Ψ_{2p} (see Eq. 1) and the resulting psp can be written as:

$$\Psi = \Psi_{2k} + \Psi_{2p} + 2\sqrt{\Psi_{2k}\Psi_{2p}} \cos((k-p)\phi).$$

The extra psp minima created by cancellation of the rf electric fields are located where $\phi_n = (2n+1)\pi/(k-p)$ (for $\cos((k-p)\phi) = -1$) and $R = R_{0f}$ such that

$$\mathcal{R}^{k-p}_{0f} = pV_{2p}/kV_{2k}.$$

To compensate for the deconfining contribution of the axial confinement at the psp minima, an additional static potential with a $2\pi/((k-p))$ rotational symmetry is required to produce the same confining contribution along all the $\phi_n = (2n+1)\pi/(k-p)$ lines. Depending on the choice of k and p, this extra static potential may have a different order of symmetry but a cancellation condition equivalent to Eq. 11 can always be found. As an example, four parallel strings can be formed by the superimposition of an rf quadrupole potential to an rf dodecapole potential, their location match the rf-field nodes providing a static voltage with an octupole symmetry is applied (see figure 3 for different configurations). The order of symmetry s of the static potential V_{4a} must be a multiple of $(k-p)$. For the case introduced in the first part of this letter, we used $s = 2(k-p) = 4$. This choice has an influence on the characteristic frequencies of the motion of the ions in the extra minima. Indeed, a lowest order expansion of the total trapping potential around these positions results in frequency expressions which are generalizations of Eq. 11 and 12:

$$\omega_r^2 = 2(k-p)^2 \frac{\psi_{2p}}{m r_0^2} \mathcal{R}^{2p-4}_{0f} + (s-2) \frac{\omega_d^2}{2},$$

$$\omega_d^2 = 2(k-p)^2 \frac{\psi_{2p}}{m r_0^2} \mathcal{R}^{2p-4}_{0f} - s \frac{\omega_r^2}{2}.$$

The choice of an order s higher than strictly required by the rotational symmetry may then be justified by the need for high frequencies ω_r compared to ω_d, which can be used to control the morphology of the subsystems (string, zig-zag...) at the expense of the static voltage itself, which scales as $1/(s\mathcal{R}_0^{s+2})$.

Until now, we have assumed equations for the rf electric field and its psp which correspond to the ideal case of perfectly machined electrodes. Even if the trap design is as ideal as possible, it can not be ideal for both
the highest and the lowest order potential at the same time. To illustrate such an effect, let us go back to our first example of an extra quadrupole potential applied to the octupole trap electrodes and let’s assume the linear octupole trap has round electrodes designed to generate an rf electric field as close as possible as the ideal equation [16]. On the quadrupole point of view, these electrodes are too small to produce an ideal quadrupole field inside the trap [1] and most importantly, the four non-connected electrodes are equivalent to grounded rods which induce a large deviation from the ideal rf field. Using SIMION software [17], we have calculated the potential created by a quadrupole-like voltage connection on the octupole trap used for the previous m.d. simulations. Its relevant characteristics are an inner radius of \(r_0 = 0.2 \text{ mm} \) and an electrode radius of \(r_0/3 \), which corresponds to the optimisation of the octupole potential [16].

The calculation shows that the actual quadrupole potential deviates from the ideal one but keeps the quadrupole symmetry. In figure 4, is drawn the normalized difference of the actual quadrupole field component \(E_r \) with respect to the ideal one, \(E_{id} \), along the radial direction under the angle \(\phi_{\pm1} \). This value is constant in the central part of the trap \((r < r_0/5)\) where, providing an \(E_r \) amplitude 20\% higher, the fields can be considered identical. As an example, the ion ring in figure 2 fills a tenth of the actual trap dimensions. Figure 4 also shows that Eq. 1 becomes position-dependent for an extra quadrupole static voltage, and thus justifies the use of the optimized static octupole voltage if more distant positions were required.

The m.d. simulations using the calculated potential, fitted by a polynomial equation [18], show that the same procedure to create two strings, to bring them to the rf nodes and to laser cool them to the Doppler limit can be performed.

We have shown that a superimposed lower-order rf potential onto the main trapping one adds supplementary nodes in the rf field. An ensemble of ions can be separated in several sub-sets in a controlled manner and laser-cooled to the Doppler limit. Once cooled, they can be considered as in a 3D anisotropic harmonic potential and controlled like in a linear quadrupole trap. This opens the way to create parallel ion strings with a large choice of geometries. The distance between the potential minima can be continuously tuned to reach conditions where the Coulomb repulsion between the subsets implies a strong enough correlation to influence their relative equilibrium positions. The different patterns formed by neighboring ions seem specifically interesting for quantum simulations [19, 20], but may certainly find interesting applications in other domains.
