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Abstract

Simple games are a powerful tool to analyze decision-madimjcoalition formation in social and
political life. In this paper, we present relation-algabraodels of simple games and develop re-
lational specifications for solving some basic problemshein. In particular, we test certain fun-
damental properties of simple games and compute specifyjenslaand coalitions. We also apply
relation algebra to determine power indices. This leadslagion-algebraic specifications, which can
be evaluated with the help of the BDD-based toel\Rew after a simple translation into the tool’s
programming language. In order to demonstrate the visatadiz facilities of RLViEw we consider
an example of the Catalonian Parliament after the 2003 efecti

Keywords: Relation algebra, RViEw, simple game, winning coalition, swinger, dominant player
central player, power index

1. Introduction

A simple games a cooperative game in which only two types of coalitions ba formedwin-
ning coalitions andosing ones. A winning coalition takes it all while a losing coaliti receives
nothing. Since winning seems to be the essence of politioyle games are extremely suitable
for analyzing political situations. Important conceptstie theory of simple games are swingers,
veto-players, dictators and dummies.s@ingerof a winning coalition is a member of the coalition
whose removal makes it losing. Veto-playeris a player who is in every minimal (wrt. set inclusion)
winning coalition. Under the monotonicity assumption nald@mn can win without a veto-player. If
one player forms the only minimal winning coalition, themsiadictator. Consequently, a dictator is
always a veto-player. There is obviously an essentté¢dince between a veto-player and a dictator.
A dictator can enforce any decision without help of the otblayers. In contrast, a veto-player is
needed to win, but cannot win on his own. ddmmyis a player who is a member of no minimal
winning coalition, i.e., powerless. An important class iofigle games areveighted majority games
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where a weight is assigned to each player indicating itsygasirength in that game. A coalition is
winning if and only if the sum of the weights of its membersa smaller than a certain quota. Con-
sider a voting body consisting of three partieB andC, each having 4, 2 and 1 seats, respectively.
The quota is 4 seats. Winning coalitions are the ones cantpparty A - the only swinger of each
winning coalition. SincgA} is the only minimal winning coalitionA is a dictator, and andC are
dummies. Suppose now that pafyas 3 seats. The total number of seats is 6 and the quota emain
4. There are two minimal winning coalition#, B} and{A, C}, and hence\ is a veto-player, but it

is not a dictator anymore. There are no dummies. Each menfilaemmimal winning coalition is a
swinger, andA is the only swinger ofA, B, C}.

When studying coalition formation, one of the most importesues is to identify some key
players. Besides dictators and veto players several otlcérspecific players exist in the literature.
In Peleg (1981, [33]) a theory of coalition formation in silmgames with dominant players has been
developed. Roughly speaking,d@aminant playeiis a player who holds a strict majority within a
winning coalition. A dominant player wants to be a member @fianing coalition, in which he is
dominating. For that reason he is calledfice seeking’, not or hardly interested in policy. Such
players neither must exist nor must be unique. Another kayaplis thecentral playerintroduced in
Einy (1985, [18]). A central player can form a winning coalit both with the players to the ‘left’ of
it and with the players to the ‘right’ of it. Such a player Wbk ‘policy oriented’. There exists at most
one central player in a simple game. In order to find it, thggiamust be ordered on a relevant policy
dimension, and the particular position of the central plagakes him very powerful. An empirical
analysis of the importance anffect of dominant and central parties on cabinets in Westeftipartty
democracies has been examined e.g., in van Roozendaal (19924, 1993, 1997, [37, 38, 39, 40]).
In van Roozendaal (1997, [40]) the author argues that thereeatain theoretical reasons by which
governments including dominant parties should be mordestaan governments without dominant
parties and shows, by analyzing government survival in 1thtrees between 1945 and 1989, that
such an #ect indeed exists in real politics.

One of the most important elements of simple games, thateapplied to all kinds of organiza-
tions (e.g., political bodies, international economicammgations and business settings), is to measure
the power of players. To this end, power indices have begnosex, e.g., the Shapley-Shubik index
(Shapley and Shubik 1954, [43]), the Banzhaf index (Banzh&61f2]), the Deegan-Packel index
(Deegan and Packel 1978, [14]), the Johnston index (Jomd&é8, [25]) and the Holler-Packel in-
dex (Holler 1982, [22]; Holler and Packel 1983, [23]). Theg Aased on dierent models for power
and, therefore, their use and informative value depend @wcdhtext in which they are applied. Ax-
iomatic characterizations, as, e.g., presented in Dub@g5(116]), Dubey and Shapley (1979, [17]),
Lehrer (1988, [28]), Laruelle and Valenciano (2001, [2TJprenzo-Freire et al. (2007, [30]) and
Alonso-Meijide et al. (2008, [1]), are helpful for the apsa of their applicability.

Even simple problems on simple games (like the computafiah dummy players) are in practice
frequently too complicated to be solved by hand. Therefibige useful to have supporting computer
programs available. One usually does not immediately thfrgcograms based on relation-algebraic
formulations of the concepts in question. But experiencé véatated problems, viz. the formation of
alliances and coalitions in Berghammer et al. (2007, 200®])8&nd the computation of the strength
of agents in social networks in Berghammer et al. (2010, [18}) to the idea to apply relation al-
gebra and a tool for its mechanization also to computatiprablems on simple games. In the just
cited papers we combine relational algebra amdiR:w, a computer system for the visualization
and manipulation of relations and for relational prototypand programming. In Berghammer et
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al. (2007, [8]) the relation-algebraic approach is apptieed model of stable governments, where a
stable government is by definition not dominated by any oglogernment. We formulate the notions
of feasibility, dominance, and stability in relation-albgaic terms, which enables us to usa. Riew
to compute the set of all feasible stable governments. Ustithte the power of the approach, we
analyze the real structure of the Polish government afee2001 elections. It may happen that all
governments are dominated. In Berghammer et al. (2009, [8]Heal with this case by combin-
ing notions from relational algebra, graph theory and datiaice theory to choose a government
that is as close as possible to being un-dominated. The ¢guoeean be executed usingiN1Ew
which allows to deal with graph sizes that ardfient for practical applications. In Berghammer
et al. (2010, [10]) we use relation algebra andYRew to measure power, success, and influence of
an agent in a social network and to determine followers ofaitton and the kernel of an influence
function. As an example the Dutch parliament is considef@dong the advantages okRView are,
for instance, short and concise programs which frequewihgist of only a few lines expressing the
relation-algebraic specification of the notions in quastidhe above idea was fortified by the fact
that since a long time relation algebra and YRew are successfully combined for solving problems
on many discrete structures; see e.g., Berghammer et ab,([59 Berghammer et al. (2003, [11]),
Berghammer and Milanese (2006, [7]), Berghammer and Frord§,4@]), Berghammer (2009, [3]).
One of the aims of this paper is to apply relation algebra &kiy concepts of simple games.
Taking into account that all these concepts are importatfit foom a theoretical and a practical point
of view, the application of relation algebra, on the one haashg a mathematical formal approach
and on the other hand giving an immediate access to th¥1Bv implementation, is very useful.
Because R.View has a very fficient BDD (Binary Decision Diagram) implementation of redeis
(see Leoniuk (2001, [29]), Berghammer et al. (2002, [6]) anthiese (2003, [31])), it is able to
deal with non-trivial simple games that appear, e.qg., icfeal political life. In addition, the tool has
visualization facilities which are not easily found in otls®ftware tools and which are most helpful
for fully comprehending diicult concepts and for understanding and testing the pragrdmthis
paper we apply relation algebra to specify relations whicimediately lead to power indices. Hence,
our approach is particularly useful, because it allows f@yaReLViEw to compute power indices.
The remainder of the paper is structured as follows. In 8e@ithe game-theoretic concepts
that we deal with in the paper are presented. Section 3 intexirelation algebra and the relation-
algebraic constructions which are used later. The coreeoptper is Section 4. We start with two
relation-algebraic models of simple games, show how theybeatransformed into each other and
present relation-algebraic specifications of basic ptoggeof simple games. Thereby, the visualiza-
tion facilities of ReLViEw are demonstrated in the case of the parliament of Catalot@atak 2003
election. Next, we give the relation-algebraic specifaadifor the sets of minimal winning coalitions
and vulnerable winning coalitions, respectively, and this ©f dummies, vetoers, dictators and null
players. Again, these notions are illustrated in the caskeo€Catalonian parliament usingf¥/ew.
Thirdly, we specify relation-algebraically the centrahpér and the notions around the dominant
player. Here, the RView tool enables us to illustrate the decisive relations uryitegldominance
for the Catalonian parliament. At the end of the section wei§péhe Banzhaf, the Holler-Packel
and the Deegan-Packel power indices in terms of relatiogbaégand again demonstrate the ability of
ReLViEw to compute these indices by means of our running example e®omcluding remarks are
presented in Section 5. In particular, we recapitulate #reebts of our approach, describe important
insights we have obtained from it concerning tiffeceent algorithmic solution of some game-theoretic
problems and sketch their present realization.
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2. Game-theoretic Preliminaries

In this section we present the basic concepts of the theogyngble games that we refer to in
the paper. More extensive treatments of simple games caaupel f e.g., in Shapley (1962, [42]),
Felsenthal and Machover (1998, [19]) and Peleg and 8iteth(2003, [34]).

2.1. Simple Games

Following Peleg and Sudititer (2003, [34]), a simple game is a paW, (W), whereN = {1,2,...,n}
denotes the set of players afitd is a subset of the powerséetl.2Any element of 2 is called acoali-
tion. A coalition S with S € ‘W is calledwinning while those withS ¢ W are calledosing A
simple gameN, ‘W) is calledmonotondf W is an up-set in the order ¥20), i.e., for allS, T € 2N
fromS € W andS c T it follows T € W. A voting games a monotone simple gamél (W)
with W # 0 and@ ¢ ‘W. The latter two axioms exclude trivial games. A simple gasyroper if
the complement of a winning coalition is always losing, atdngif the complement of any losing
coalition is winning. A simple game idecisiveif it is both proper and strong. In the context of
voting games, for instance, being proper is interestingesihis equivalent to the fact that any pair
of winning coalitions has a player in common and being strgrigteresting since here riocking
coalitionscan occur, i.e., coalitionS such thatS and its complemen§ are losing.

An important class of games aneeighted majority gameg hey are omnipresent, in particular, if
groups (commissions, boards, ...) have to come to decisiodishe members have unequal power.
Usually, a weighted majority game withplayers is represented byna+ 1-tuple [q; wi, Wo, ..., Wy],
whereq € N denotes the quota needed for a coalition to win, ap& N is the weight assigned to
playerk € N. By w(S) = Y\ .s Wk We define theveightof a coalitionS. A coalitionS is then winning
if its weight is at least as large gsthat is,S € W if and only if w(S) > q.

2.2. Minimal Winning Coalitions and Related Notions

Von Neumann and Morgenstern (1944, [32]) introduced theephof aminimal winning coali-
tion of a simple gameN, ‘W), that is a coalitiorS € ‘W such thatl ¢ ‘W for all coalitionsT c S.
Less restrictive is the notion of\aulnerable winning coalition S Here, besideS$ € W, it is de-
manded that there exists a plaker S such thafl ¢ W forall T C S\ {k}. In the case of a monotone
game the latter property is equivalent to the existende®® such thatS \ {k} ¢ ‘W. Such a player
k € S is called aswinger(or critical player) of S. These concepts are, e.g., of importance when
measuring th@owerof players.

Apart from swingers, one can distinguish other specific @layn a simple game, depending on
their relation to minimal winning coalitions. LeN(‘W) be a simple game ande N. Thenk is
called adummyif it does not belong to a minimal winning coalitionyatoerif it is a member of each
minimal winning coalition and dictator if {k} is the only minimal winning coalition. Finally is a
null playerif for each coalitionS € 2N it holdsS U {k} € W if and only if S € W.

2.3. Central and Dominant Players

As already mentioned in the introduction, the concept oéatral playerhas been introduced in
Einy (1985, [18]). Here it is assumed that the players of theg under consideration are ordered
with respect to their policy positions. In political scienene usually uses a left-to-right spectrum and
the most important case is that the parties are ordereddingdpo their stands in social and economic
matters.



Given a simple game\, ‘W) and apolicy orderof the players in the form of a linear strict order
<onN?, playerk € N is said to becentralif the connected coalitiofj € N : j < k} to the ‘left’ of k
as well as the connected coalitippe N : k < j} to the ‘right’ of k are not winning, but both can be
turned into winning coalitions whekjoins them.

Based on two desirability-relationships between coal#jon Peleg (1981, [33]) the concept of
dominance andominant playerss developed. LetN, ‘W) be a simple gamé&, T € 2\ be coalitions
andk € N be a player. TheS is calledat least as desirablasT, written asS >, T, if forall U € 2N
fromUNS=0,UNT=0andUuUT e Witfollows U US e W. Sis said to banore desirable
thanT, written asS >p T, if S >p T but notT >p S. Finally, k dominates Swritten ask > S, if
k e Sand{k} >p S\ {k}, andk is dominantif there exists & € ‘W such thak > S. If k dominates
S, thenk can form a winning coalition with players outside ®fwhile S \ {k} is not able to do this.
The dominant players are the most powerful players of theeg&@uch players neither must exist nor
must be unigue. However, Peleg proved that in weak simpleegaand weighted majority games at
most one dominant player may occur. Games with dominanepdagre called dominated.

2.4. Power Indices

In this section we recapitulate power indices that we detll imithe paper. One of the main power
indices that can be found in the literature is Benzhaf indexBanzhaf, 1965, [2]). Let a monotone
simple game N, W) and a playek € N be given. Then the absolute Banzhaf ind&gxk) of k and
the normalized Banzhaf indeé3(k) of k are defined as follows, wheres the number of players:

Ba(K)
2 jen Ba(l)

Another well-known power index that we study in the papeheHoller-Packel indexof Holler
(1982, [22]) and Holler and Packel (1983, [23]). Since a maliwinning coalitionS coincides with
the set of its swingers, the absolute Holler-Packel indgk) of k can be specified in a way very
similar to the definition oB,(K) in (1). Compared with the definition d&,(k), only in the numerator
the setW is to be replaced by the s&¥,,;, of minimal winning coalitions and the denominator is to
be changed toWyin|. The definition of the normalized Holler-Packel index ekacbrresponds to
the definition ofB via B, in (1). Hence, we have:

{S € W | kswinger ofS}|

2n-1 (1)

Bu(K) = | B(K) :=

S € Whin | k swinger ofS}| H(K) = Ha(k)
|(Wmin| . ZjeN Ha(j)

A power index that is related to minimal winning coalitiorssalso theDeegan-Packel indeaf
Deegan and Packel (1978, [14]). Given a monotone simple daii®’) with set Wi, of minimal
winning coalitions, the Deegan-Packel inde¢k) assigns to each playkre N the following number:

1 1
D(k) := — 3
M= Z(k) S| )
SeW

min

Ha(K) = ! @)

In (3) WY _denotes the set of all minimal winning coalitions of the gamféch contairk.

min

1That is, a strict order for whiclh < k or k < j for all different playerg, k.
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3. Relation-algebraic Preliminaries

All the concepts recapitulated in the last section will beafied again in Section 4, but then in
terms of relation algebra. Before it will be done, we preskatrtecessary relation-algebraic notions.
For more details on relations and relation algebra, see, apmidt and Sthlein (1993, [41]) or
Brink et al. (1997, [13]).

3.1. Relation Algebra

If X andY are sets, then a subgeof the Cartesian produetx Y is called a (binary) relation with
domain Xandrange Y. We denote the set (in this context also called type) of &tiens with domain
X and rangeY by [X & Y] and writeR : X & Y instead oR € [X < Y]. If X andY are finite sets of
sizem andn, respectively, then we may consider a relation X < Y as a Boolean matrix witim
rows andn columns. The Boolean matrix interpretation of relations &lwuited for many purposes
and also used as one of the graphical representations bbrsavithin the RLVieEw tool. Therefore,
in this paper we often use Boolean matrix terminology andtimtaln particular, we speak of rows,
columns and entries of relations and wilRg, instead ok x, y) € Ror x Ryto express that andy are
related viaR.

In the present paper we use the following basic operationslafion algebraR" (transpositior),

R (complement RU S (union), RN S (intersection andRS (compositiof. As special relations we
useO (empty relatiof, L (universal relation andl (identity relation. If Ris included inS we write

R € S and equality oR andS is denoted a®k = S. We assume the reader to be familiar with the
component-wise descriptions of these notions, e.g., fa#nR: X< Y, x € X andy € Y, it holds
R;y if and only if R, x and ﬁx,y if and only if =R .

3.2. Modelling of Sets

Relation algebrafters some simple and elegant ways to model subsets of a gitven seuiv-
alently, predicates on this set. In this paper we will useansg is-element relations and injective
mappings for this task.

A vector vis a relationv with v = vL. For a vector the range is irrelevant. Therefore, we comside
in the following mostly vectors : X < 1 with a specific singleton sdt:= {1} as range and omit in
such cases the second subscript, i.e., wgitmstead ofv, ;. Analogously to linear algebra we will
use lower-case letters to denote vectors. A veetoX < 1 can be considered as a Boolean matrix
with exactly one column, i.e., as a Boolean column vector,raptesentgor: is a representation of)
the subsetx € X | vy} of X. A non-empty vectov is apointif w' C |, i.e., itisinjective This means
that it represents a singleton subset of its domain or anegiefrom it if we identify a setx} with the
elementx. In the matrix model, hence, a pomt X < 1is a Boolean column vector in which exactly
one entry is 1.

Giveny € Y, with RY we denote thg-column of the relatiorR : X < Y. That is,RY has type
[X & 1] and for allx € X, RY) andR,y are equivalent. To compare the columns of two relatRasd
S with the same domaiX and possible dierent range¥ andY’, we use the symmetric quotient

T

sygRS):=R'SN R'S (4)

of them. The type of sydg, S) is [Y < Y’], and transforming (4) into a component-wise notation we
have for ally € Y andy’ € Y’ that sygR, S), if and only if RY = SV, i.e., if and only if for all

x € X the relationship&,, andS,, are equivalent.
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As a second way to deal with sets we will apply the relatiorelequivalents of the set-theoretic
symbole, that is,is-element relationg€ : X < 2X betweenX and its powerset’2 These specific
relations are defined by demanding for all elemergsX and sety € 2X thatE,y ifand only if x € Y.

A simple Boolean matrix implementation of is-element relasi requires an exponential number of
bits. However, in Leoniuk (2001, [29]) an ingenious impleraion of E : X « 2% using reduced
ordered binary decision diagrams (ROBDDS) is developedrevtiee number of BDD-vertices is
linear in the size of the base s¢t This implementation is part ofliRViEw.

Finally, we will use injective mappings for modeling setsvéh an injective function : Y — X
in the usual mathematical sense, we may consydes a subset oK by identifying it with its image
under:. If Y is actually a subset of and: is given as a relation of type/[« X] such thaty if and
only if y = xfor ally € Y andx € X, then the vector'L : X < 1 representy as a subset oK
in the sense above. Clearly, the transition in the other tiimeds also possible, i.e., the generation
of a relation inj{) : Y < X from the vector representation: X < 1 of the subset of X such that
forally € Y andx € X we have inj¢), if and only ify = x. We obtain inj¢) by removing from
| : X+ Xall rows which correspond to a 0-entryunThe relation injg) is an injective mapping in the
relation-algebraic sense; see, e.g., Section 4.2 of S¢landiStdhlein (1993, [41]). A combination
of such relations with is-element relations allows@umn-wise representatioof sets of subsets.
More specifically, if the vectow : 2¥ < 1 represents a subsétof 2% in the sense above, i.eS,
equals the sdty € 2% | w}, then for allx € X andY € S we get the equivalence o {nj(v)").y and
X € Y. This means that the elements®fare represented precisely by the columns of the relation
M := Einj(v)T : X & Ssince forallY € SitholdsY = {x € X | M{"}. An illustration is given in
Example 4.1.1 by Figures 1 and 2, since the relation of FiguequalsE inj(v)" with the relationE
and the vectov (in the transposed form) given in Figure 2.

3.3. Cartesian Products and Applications

Given a Cartesian produix Y of two setsX andY, there are the two canonical projection func-
tions which decompose a pairn = (uy, Uy) into its first componenti, and its second componeunt.
For a relation-algebraic approach it is useful to considsteiad of these functions the corresponding
projection relationsr : XxY <& X andp : XxXY < Y such thatforalu e X x VY, xe Xandy € Y we
haver, if and only if u; = X andp,, if and only if u, = y. Projection relations enable us to specify
the well-known pairing operation of functional programupirelation-algebraically as follows: For
relationsR : Z« X andS : Z « Y we define theipairing (frequently also calledork or tupling)
[R,S]: Z e XXY by

[RS]:=Rt'NnSp". (5)

Using (5), for allz € Z andu € X x Y a simple reflection shows thaR[S],, if and only if R,,,, and
S.u,- As a consequence, in the case- Y theexchange relation
X :=[p,n] = pr’ Nmp’ (6)

of type [XxX & XxX] exchanges the components of a pair. This means that foralX x X and
v e X x X the relationshigX,, holds if and only ifu; = v, andu, = v;.
By a combination of the constructions introduced so far, afdahe well-known operations and

2In the present paper we always denote the first componentaif & p X x Y by u; and the second component iy
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predicates on sets can be specified as relations. In thenpyesgeer, we need the following:

M := syq([E, E], E) R := syq([l, E], E) C:=syqE, E)

7
J:=syq([E, E],E) A:=syq(l, E],E) S:= ETE @

The relationgvl andJ have type [2x2X « 2X] and relation-algebraically specify set intersection and
set union, respectively, since for &5, T) € 2Xx2X andU e 2% it holds M(styy if and only if
SNT =UandJsny ifand only if SUT = U. The type ofR andA is [Xx2X « 2], and these
relations specify the removal and addition of elementsgpaetively. The latter means that for all
(X, Ty € Xx2* andU € 2% it holds Ry if and only if T \ {x} = U and Ay if and only if

T U {x} = U. Finally, C andS have type [2 < 2%] and for allS, T € 2% it holdsCs if and only if
T=S andSsy ifand only if S € T. Hence C specifies set complementati&n— S :=X\Sand

S specifies the subset order. To demonstrate how the relalg@braic specifications of (7) formally
can be developed, we consider the most complicated cas¢ wfise. AssumeS, T) € 2*x2X and

U € 2X. Then we have

SuT=U YXxeX:(xeSvxeT)e xelU
¥YXeX:=(X¢SAX¢T)eo xelU

YXxeX: [E,E] X(ST) € EX,U
Syq([ E s E] s E)(S,T),U’

and the definition of the relatiahin (7) shows the desired result.

We end this section with the following two functions (in theual mathematical sense) which
establish a Boolean lattice isomorphism between the two Bodldtices K « Y] and [XxY < 1]. In
the following equationa : XxY < X andp : XxY < Y are the projection relations of the underlying
Cartesian product aridis a universal vector of type([< 1].

11l

vecR) = (TRN p)L rel(v) = 7" (o NvL") (8)

The function vec defines the vector vBrorresponding to the relatid and the inverse function
rel defines the relation ref( corresponding to the vecter Using a component-wise notation, these
definitions say that for alk € X andy € Y we haveR,, if and only if vecR)y, andvyy, if and only

if rel(v)yy.

4. Investigating Simple Games with Relation Algebra

In this section, first we introduce two relation-algebraiodals of simple games and show how
each of them can be transformed into the other one. Based oretter model, we then demon-
strate how to specify important notions of simple games & l#nguage of relation algebra. All
specifications can be seen as algorithms since they are sth@#on-algebraic expressions or inclu-
sions respectively equations between such expressiomeettihey can be evaluated with the help of
ReLViEw after a simple translation into the programming languag#isftool.



4.1. Relation-Algebraic Models of Simple Games

A first possibility to model a simple gam&l(‘W) with relation-algebraic means is to use a vector
v : 2V « 1 that represents the st/ as subset of"2in the sense of Section 3.2. Frequenthis
called the characteristic vector of the game; in our contextall it thevector model Given such
a modelv, from Section 3.2 we already know that then the colu®,S e ‘W, of the relation
M = Einj(V)" : N & W precisely represent all winning coalitions. Hence, the @y ‘W) can also
be modeled by the relatiokl. SinceM specifies membership of players in winning coalitions, i.e.
Mys ifand only ifk € S, for allk e N andS € ‘W, we call it themembership modeThe definition
of M shows how to transform the vector model into the membersloigein We formulate this once
again as the first part of the following theorem, wheres the is-element relation between players
and coalitions. In the second part of the theorem we show babtain the vector model back from
the membership model.

Theorem 4.1.1. Let (N, W) be a simple game. If v 2N« 1 is the game’s vector model, then
Einj(v)T : N W is its membership model. Conversely, if MN < W is the game’s member-
ship model, thesyqE, M)L : 2N < 1 (with L : ‘W < 1) is its vector model.

Proof: Due to the above remark, we only have to show thawliis the membership model then
Syq(E, M) is the vector model. For a8 € 2" we get

(SY9E.M)L)s & 3T € W :syqE M)st ALy
— HTE(W:VKEN:EKSHMKT
— AT eW:¥YkeN:keS o keT
— IATeW:S=T
— SeW.

This property shows that the vector sggM)L representsW as subset of®2 as required for the
vector model of the game. O

Choosing one of the two relation-algebraic models to specifgme-theoretic notion usually depends
on the analyzed concept. Since the columns of the memberstuiel M of (N, ‘W) enumerate the
winning coalitions and since it can hardly be seen from thetoremodelv which coalitions are
winning, the relatiorM is more appropriate if one wantsR/1ew to compute the winning coalitions.
However, as experience has shown, the great advantageddtor model is that it enables in many
cases much more elegant relation-algebraic specificatt@msthe membership model. This holds in
particular if a task requires to treat coalitions which ase-winning. ForS € 2V in the vector model
the propertyS ¢ W is simply expressed by s, whereas in the membership model, for instance,
it may require to consider the vector representasonN < 1 of S and to verify sygil,s) = O.
Specifications that are based on the vector model are frédg@en more &icient than membership-
based ones. This is especially the case if a high percenfaggabitions is winning, since then in
the membership model a lot of columns occur. That almost dfathe coalitions are winning is
typical in practice. E.g., using data from van Deemen (198%}), van Roozendaal (1990, [36]) and
Berghammer et al. (2010, [10]), with the help ofiRiew we obtained for Dutch parliaments that
from the 8192 possible coalitions of the 13-parties pariatrafter the 1972 election 3999 (48.8%)
are winning, from the 1024 possible coalitions of the pred@aparties parliament 505 (49.3%) are
winning and from the 64 possible coalitions of the 6-pani@diament after the 1986 election even 32



(50%) are winning. Apart from the visualization of input amatput, in the remainder of the paper we
restrict ourselves to the vector model. In the next theoremgme first examples for relation-algebraic
specifications of game-theoretic notions that are baseldeowvetctor model. InitS : 2V « 2N denotes
the subset order as introduced in (7).

Theorem 4.1.2. Assume v 2N « 1 to be the vector model of a simple gatheW). Then(N, W) is
monotone if and only iV € V and is a voting game if and only if in additiona/O and vC ETL.

Proof: ThatSVv C Vv specifies monotonicity follows from

SVCV e VSe2V:(SV)s— Vs
= VSEZN:(BTGZN:SS,TA\_/T)—)\_/S
— VS Te2N:SCTAT¢W >S¢W
& VS TeN:SCTASeW >TeW.

The equivalence of # O andW # 0 is trivial and the remaining claim is shown by

VCE'L & VSe2':vs—3keN:Ef AL
— VSe2N:SeW —->3JkeN:keS
— VSe2N:SeW ->S=+0. [l

In the next theorem we specify relation-algebraically theperties of a simple game of being proper
and strong. Her€ : 2N « 2N is the relation for set complementation; cf. (7).

Theorem 4.1.3. Given v: 2V « 1 as the vector model of a simple gaiine ‘W), the game is proper
if and only if v€ CV and the game is strong if and onlyufC Cv.

Proof: Starting with a formal logical specification of being a progame, the first claim is shown by

VSe2N:SeW >SS ¢W e VY¥SeN:SeW AT eN:T=SAT¢W
— VSEZN:V5—>E|T€2N:CS’T/\\_/T
— VCCV.

In the same way the second specification can be calculated. O

SinceC is a mapping in the relation-algebraic sense, we get duettmiit and Stidhlein (1993, [41])
thatv C Cvifand onlyif Cv = Cv C v. Hence, the simple game is decisive (i.e., proper and sfrong
ifand only ifv=CV ifand only if v = Cv.

Also for weighted majority games a vector model 2V < 1 can be computed within relation
algebra. To this end, the players are interpreted as theepat a parliament and the weights are
interpreted as the number of the parliament seats the paldg h.e., in the very same way as in real
political life. Then the only requirement to obtairns that, givenX as set of seats, there is a mapping
(in the relation-algebraic sensB): X < N at hand that describes the distribution of the seats, i.e.,
fulfills for all x € X andk € N thatDy if and only if seatx is owned by partk. Since the concrete
procedure is irrelevant for the remainder of the paper, waatogo into details here and refer the
interested reader to Berghammer et al. (2010, [10]), whexedmputation of from D formally is
developed.

10



[ S

Figure 1: Membership model of the Catalonian game

In general, the number of winning coalitions of a simple gaawe grow rapidly with the number
of players. For example, if the game is proper and strongrarglthe number of players, then
the number of winning coalitions is™2, i.e., 50% of all coalitions are winning. Therefore, in the
following example that shall demonstrate the visualizafaxilities of RiLView we deal with a rather
small game, taken from Lorenzo-Freire et al. (2007, [30]).

Example4.1.1. We consider the following weighted majority game with five pkaybat is a repre-
sentation of the parliament of Catalonia, one of the 17 Sgaaigonomous communities, after the
November 2003 election.

[68;46 42 23, 15,9]

The players are, from left to right, labeled with the numbErg, 3, 4 and5; they correspond (in the
same order) to the five Catalonian parties CIU, PSC-CPC, ERC, PP @NdHA. In the picture of
Figure 1 the membership model MN « ‘W of this game is shown as depicted Ry.View in the
relation-window of its user interface. In this<16 Boolean matrix a black square means a 1-entry and
a white square means a 0-entry. So, for example, the winningiooaepresented by the first column
of M consists of the three parties PSC-CPC, ERC and ICV-EA. If wmsfioam the membership model
M into the vector model, we obtain a vector 2" « 1 in which exactly 16 entries are 1. The two
pictures of Figure 2 show the is-element relat®n N « 2N and, below it, the transpose of the vector
v (that is, the row vector'v: 1< 2V). The 32 columns of the is-element relatmepresent the 32
coalitions. A comparison of the pictures (here the row vempresentation of the game is of great
advantage) shows that the 1-entries of the vector model vgaigaesignate those columnstothat
belong to the membership model M.

As a weighted majority gam@\, ‘W) is monotone. We have also tested whether it is proper and
strong using thé&ReLViEw-versions

proper(E,v) = incl(v,Compl (E)*-v) strong(E,v) = incl(-v,Compl(E)*v)

of the relation-algebraic specifications of Theorem 4.WwBere the pre-defineReLVieEw-operation
1ncl tests inclusion of relations and thieLViEw-function

Compl(E) = syq(-E,-E)

[=)] — NN < VOIS0
— NN FWVOIS00N — — =~~~ — S s s s Es EsSEs KK

DA W =

Figure 2: Vector model of the Catalonian game
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computes from the is-element relatiéin N < 2N the relationS : 2N < 2N for set complementation.
In both cases we obtained the answer ‘yes’. O

4.2. Computing Minimal Coalitions and Related Notions

Computing minimal winning coalitions with relation-algelir means is easy. Itis well-known, cf.
Schmidt and Strhlein (1993, [41]) that, given a strict order relati@n X & X and avectow : X < 1
that represents a subséof X, the vectow N R'w : X « 1 represents the set of minimal elements
of Y as a subset ok. Hence, if we takav as vector modeV : 2V « 1 of a simple gameN, ‘W) and
R as the irreflexive part of the subset order 2N « 2V, we get immediately the following result.

Theorem 4.2.1. If v: 2N & 1is the vector model of the simple gaiihe W), then the vector

minwin(v) ;= vn (SN 1)'v

of type[2N « 1] represents the s&/i» of minimal winning coalitions. O

Next, we specify relation-algebraically the is-swingdaten and the vector of vulnerable winning
coalitions. To simplify the calculations, we only consigeonotone games. With regard to practical
applications this is no serious restrictibnRecall from Section 3, thaR is the relation-algebraic
specification of element-removal and the function rel \8dlal a vector that represents a subset of a
Cartesian product in the sense of Section 3.2 the correspgfhioper’ relation.

Theorem 4.2.2. Letv: 2N < 1 be the vector model of a monotone simple gésel). If we define
the is-swinger relatiorswingersy) : N < 2V and the vectowulwin(v) : 2N < 1 by

Swingersy) := ENLV' nrel(RV) vulwin(v) := Swingersy)'L

(with L : N < 1), then for all ke N and Se 2V it holds Swingersy)y s if and only if k is a swinger of
S andvulwin(v)s if and only if S is a vulnerable winning coalition.

Proof: For allk € N andS € 2N we have

Swingers{ks < (EnLV Nnrel(RV))s

Exs A (LVT)is A rel(RV)ys

Exs A (LV)is A (RV)es)

Ek,S A (LVT)k’S AIT e2V: R(KS),T AVt
Ek’s/\Vs/\BTEZN:S\{k}:T/\ Vr
Eks AVs A Ve
keSASeWAS\ (k¢ W.

1000101

3In the political science literature typically one only cifes's monotone simple games as, e.g., in Peleg (1981, [33]),
or even demands a simple game to be monotone by definitiongasyan Deemen (1989, [15]) and van Roozendaal
(2990, [36]) do.
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Since (\, ‘W) is monotone, the last formula specifleas a swinger 0. This is the first result. Using
it, the second one is shown by

vulwin(v)s &  (Swingers{)'L)s
& 3Jke N:Swingers()s, A Lk
— dkeN:keSASeWAS\{k¢gW
— SeWAdkeN:keSAS\{k ¢ W. O

So far, we have considered swingers and specific coalitibmghe remainder of the section, we
turn towards specific players with more or less power such dsnamy a vetoer a dictator and a
null player. The next theorem shows how the sets of these specific plegiarBe specified relation-
algebraically as vectors. It uses the relatfoaf (7) for the addition of an element.

Theorem 4.2.3. Based on the vector model:v2N < 1 of a simple game and m= minwin(v) as
vector representation of the s&Y,,;, of minimal winning coalitions, we consider the following four
vectors of typdN « 1] (where[N < N] is the type of thé in syq(, E) and[2" < 2] is the type of
thelin I1m):

Em

syq(relav)’, v)

dummyfn) := Em vetoerm) :
dictator(m) :

syql, EY(mn 1m) null(v) :

Thendummym) (vetoer), dictatorfn) andnull(v), respectively) represents the set of dummies (ve-
toers, dictators and null players, respectively).

Proof: We only verify the specifications for dictators and null @es. Assumé € N. Then the first
case follows from

dictatorf), —  (syq(, E)(mN Tm))x

— 3Se2V:syql,E)s AMs A Img

— ASeN:(VjeN:ljx o Es)AmA-AT e W lstAmy
e IASeN:(VjeN:j=keo jeS) AMAYT e W : mr -S=T
& 3ASeN:S={KASe W nAYT e Wyin:S=T

and the second case follows from

null(v)y, = syq(rel@Av)", v),
& VSeN:relAV)§, © Vs
= VSe2:(AVks) © Vs
— VSe2N:@ATe2V:Axs T AVr) & Vs
e VSeN:@ATeN:Sulkl=TATeW)SeW
= VSeN:SulkleW o SeWw,

since in both cases the last formula of the derivation isdheél logical specification of the property
under consideration. OJ
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Figure 3: Vulnerable and minimal winning coalitions of that@onian game

Let us consider what thedViEw-programs corresponding to the above specifications yreltie
case of our running example. Since the is-swinger relasatecisive for computing power indices,
we postpone its picture until Section 4.4 that is devotedi®topic.

Example4.2.1. If the ReLView-programs we have obtained from the relation-algebraic Spec
tions vulwin(v) and minwin(v) of Theorem 4.2.2 and Theorem 4.2.1 are applied to the veabdem
of Example 4.1.1, then the tool yields two vectors which, ageiransposed form to save space, are
shown in the two pictures of Figure 3. The row vector on the tgigihates the 13 vulnerable winning
coalitions of the parliament of Catalonia after the 2003 #él@t, and that under it designates the five
minimal winning coalitions. From these results we could abtaie ‘concrete’ form of the coalitions
by a comparison with the columns of the is-element relaionN < 2V as remarked in Example
4.1.1. The much more easier way is, however, to use the teehfagthe column-wise enumeration
of sets presented in Section 3.2, i.e., to evaluate the twessipnsE vulwin(v)" and E minwin(v)".
Doing so, we obtain the left-most and right-most of the tHReeView-matrices of Figure 4, from
which each vulnerable winning coalition and each minimal wagncoalition, respectively, can im-
mediately be obtained as a column. TRe.View-matrix in the middle column-wisely enumerates the
sets of swingers of the vulnerable winning coalitions. It isagted by removing from the is-swinger
relation all columns corresponding to a 0-entry in the vectpresentation of the vulnerable winning
coalitions. Relation-algebraically this reads 8svingersy) inj(vulwin(v))'.

To explain the thre®eLViEw-matrices of Figure 4 a bit more, we compare the first columns of
the two5 x 13 matrices. Since they are identical, that means, each paryswinger, the represented
coalition { PSC-CPC, ERC, ICV-EAis a minimal winning one. This agrees with the column-wise
enumeration of these coalitions in which the coalition appg#oo. Next, we compare the third
columns of the two matrices. From the first matrix we {J@¢6C-CPC, ERC, PP, ICV-BAas vulner-
able winning coalition and from the second ofeSC-CPC, ERCas the set of its swingers. Hence,
this coalition is not minimal winning. Again this agrees wiltetright-most matrix, since now the
coalition does not occur as a column.

To demonstratdreLView's visualization potential a bit more, thReLView-graph of Figure 5
shows the Hasse-diagram of the inclusion orSeof the 32 coalitions of our example. In this picture
the inclusion relationships between the 16 winning coalgiare highlightened by boldface arcs; from
this it becomes immediately clear that the game is monotbime five minimal winning coalitions are
drawn as white squares and the 11 non-minimal winning coabktime drawn as black circles.

For our running example we also have computed the vectorsfeggbm Theorem 4.2.3. Here all

results delivered by thReLViEw tool were empty. O
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

Figure 4: Column-wise enumeration of the vulnerable andmahwinning coalitions
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Figure 5: The ordered coalitions of the Catalonian game

4.3. Computing Central and Dominant Players

In this section we deliver relation-algebraic specificasiof the sets of central and dominant
players. Let us start with the concept of a central playerteNbat since there exists at most one
central player in a simple game, the vector given in the falhg theorem either is empty or is a point
in the sense of Section 3.2. Since the vector is specifiedasorealgebraic expression, we use the
letter P for the policy order and not the infix-symbalas in Section 2.3.

Theorem 4.3.1. Let a simple gam@\, ‘W) with a linear strict policy order P. N & N be given and
assume that v2\ « 1 is the game’s vector model. Then the vector

centraly, P) := syq®, E)v N sygPT,E)v NnsyqP U I,E)vnsyqP’ U I, E)v
of type[N « 1] (wherel : N « N) represents the set of central players.

Proof: Letk € N be a player. Then we have

(sYQP.E)V)x &= -3Se2":syqP E)s A Vs
VSGZN:(VJ-EN:PLK(—)ELS)—)\_/S
VSGZN:(VJ.EN:PLK(—)]‘GS)—) Vs
VSe2N:S={jeN:Pu—S¢W
{JeN:PylgWw

1777
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and a replacement &f by its transpose in this calculation shows
SYqP™.E)v < {je N: Py} ¢ W.
Next, we deal with the third expression of the intersectiod get

(syqPULENV) «— 3Se2V:syqPUl,E)xs A Vs
& 3JSe2N: (VJ eN: (Pj,kVIj,k)HEj,S)/\VS
& 3JASe2N:(VjeN:(Pikvi=K e jeS)Avs
— 3JSe2V:S={jeN:PluU{kiASeW
= {] EN:Pj’k}U{k}E(W.

Again by a replacement &t by P" we find for the fourth expression
(syqP" ULE)WK & {jeN:Pj}uUikieW.

If we readPjy asj < k, the conjunction of the right-hand sides of the derived emjances precisely
means thak is a central player. O

Next, let us study the concept of a dominant player. In thieohg, we show how two desirability
concepts introduced in Peleg (1981, [33]) can be specifiatioa-algebraically. We do it again in
such a way that this leads t®R/iEw-programs after a simple translation step.

In the decisive first part of the following theorem it is shomow the concept ‘at-least-as-desirable’
can be specified relation-algebraically by means of a vegtbra Cartesian product as domain. The —
again vector-based — specifications of ‘more-desirabld*dominance’ then are easy consequences
of the theorem’s first part. Recall from Section 3, thaindR are the relation-algebraic specification
of set union and element-removal, respectiviys the relation for exchanging the components of
pairs, the function rel transforms vector representatiotos’'proper’ relations and the function vec is
the inverse of rel.

Theorem 4.3.2. Letv: 2V « 1 be the vector model of a simple gaiiNe W). Then the vector

alades() := L((ETE, ETE] n[rel(3V), rel(3v)])

of type[2NVx2N « 1] (whereL : 1« 2V) represents the at-least-as-desirable relaties as subset of
2Vx 2N, For the more-desirable relatiosp the same is obtained by the vector

mdesy) := alades¢) N X aladesy)
of type[2Vx2N « 1]. Withz : Nx2N < N as first projection of N2V, finally, the vector
dom{) := vecE) n [rsyq(, E), Rl mdesy)

of type[Nx2\ « 1] represents the dominance relatisnas subset of M2N.
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Proof: To prove the first claim, let a paiiS, T) € 2"x2\ be given. Then we have the following
equivalence:

alades() sty < L(ETE, ETE] n[reldV),rel@V)]) st
e -AUe2N:L, y A[ETE, ETE]usn A [rel(3V), rel@v)lus
& -JUe2V: ETEysA ETEyr AreldV)us A rel@v)yr
& -AUe2V: EEysA ETEyr A (@V)wus A (V)um
e VYUe2V:EEysA ETEur A (M)t = ~(V)us

Now, we consider the four relationships of the body of thengifiaation. We calculate
ﬁu,s = —|3jeN:EL’j/\ELS & -djeN:jeUAjeS < UNS=0

for the first one. In the same way we get the equivalence ofelaionshipETE g+ andU N T = 0.
For the third relationship we obtain

(JV)<U7T> — 1V e 2N :J(U,T),V A Wy
— AVeN:UuT=VAVeWw
— UUTeWwW.

A similar calculation shows thad{) s, if and only if U U S ¢ W. Summing up, we have shown
the equivalence

alades{)sty &= YU e2V:UNS=0AUNT=0AUUTeW ->UUSeW,

the right-hand side of which is the formal logical specificatof the relationshis >p T and, thus,
concludes the proof of the first claim.

To verify the second claim we assume again a (i) € 2¥x2N to be given. Then the desired
result is shown by the following derivation, since the lase lof it is the formal logical specification
of S>p T:

mdesy)isTy < (alades¢) n Xalades{) )s)
— alades()st, A Xalades() st
— S>pTA-AU,V)e 2N 2N - X(S,T>,(U,V> VAN alades%)w’V)
— S>TA-AU,V)e Nx2N:S=VAT=UA alades«)w,V)
& S>p T A -alades{)r s
& S>pTA=(T>YS)

Finally, the last claim is shown by the following calculatifor all pairs¢k,S) € Nx2N, which
uses the equivalence of sydf)x+ and{k} = T and ends with the logical formula that specifies the
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Figure 6: The more-desirable relation of the Catalonianggam

relationshipk > S:

dom(\/)<k’s> —

100101

(vecE) N [ syq(, E), Rl mdes{))s)

vecE)ws) A ([7syql, E), Rlmdes{))«s)

Ek,S A3 <T, U> e 2Ny 2N - [7T Syqq, E), R](k,S),(T,U) N mdeS(/)(r’U)

ke SAT(T,U) e 2Vx2V : (syq(, E)xkt ARksyu AT >p U
kKeSAF(T,Uye2Nx2N: (k=T AS\{(kk=UAT>p U

ke SA{k} >p S\ {k} [

If we apply the function rel of (8) to the three vectors of Thera 4.3.2, then we obtain again relation-
algebraic specifications rel(aladeg( rel(mdesy)) and rel(domy)) for the relations>p, >p and>,
respectively, but now as ‘proper’ relations of typ& g2 2V] in the first two cases and\[<> 2V] in the
latter case. The RView-versions of rel(aladeg)) and rel(mdes()) allow to visualize the at-least-as-
desirable and the more-desirable relation of a simple gan@() with vector model : 2N « 1 not
only as Boolean matrices but also as directed graphs. As wedieeady demonstrated, in the latter
case additionally features are provided which allow to dgaaphs nicely and to highlight selected
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Figure 7: The dominance relation of the Catalonian game

portions. The specification rel(dom)] at once leads to a#RViEw-program for determining the
game’s dominant players. Recall that the dominant playerthase which are related to an element of
W via the dominance relatias. Takingv as vector representation®f and rel(domy)) as relation-
algebraic specification o, this immediately yields rel(dona))v : N « 1 as vector representation of
the set of dominant players of the game.

Example 4.3.1. For our running example now we demonstrate sV iew can be used to treat the
concepts of ‘desirability’ and ‘dominance’. In tHiReLViEw-picture of Figure 6 we show the Hasse-
diagram of the more-desirable relatiael(mdesy)) of the parliament of Catalonia after the 2003
election. The directed graph is drawn using the level-oedrgraph-drawing algorithm of Gansner
et al. (1993, [21]). The meaning of the arrow is that one ctiati is more desirable than another
one. From the level at the top we get that half of the coalitisnsiaximal with respect to ‘more-
desirability’ and these coalitions coincide with the winnimiges (since the row vector representation
of the winning coalitions of Example 4.1.1 says that pregise¢ columns oE with labels 14-16
or labels 20-32 represent winning coalitions). In the cas¢hef dominance-relationel(dom§)) :

N < 2V, the ReLView tool delivers theb x 32 Boolean matrix of Figure 7. It shows that party CIU
(row number 1 in the matrix) is the only dominant player of galiament because it dominates
the three winning coalitions with column labels 20, 21 and 2Bcdl from theReLVieEw-picture of
the vector model in Example 4.1.1 that the coalitions withugol labels 17-19 and the coalitions
dominated by the other parties are not winning. O

4.4. Computing Power Indices

In this section we apply relation algebra to some power eglicMore precisely, we present
relation-algebraic specifications that immediately leadhie Banzhaf, Holler-Packel and Deegan-
Packel indices. There is a very close relationship betwherrélation Swingers] : N« 2V of
Theorem 4.2.2 and the power indices introduced in (1) anthé)also is the key for their computation
using the RLView tool. This relationship is presented in the next theoremefloance readability,
for X andY being finite,R : X < Y andx € X, we denote the number of 1-entriesRby |R and the
number of 1-entries of the-row of R by |R|x. Hence R equals the cardinality dR (as set of pairs)
and|Rlx equals the cardinality of the subsétof Y that is represented by the transpose ofxthhew
in the sense of Section 3.2.

Theorem 4.4.1. Assume a monotone simple gathe W) with n players and its vector model:v
2V « 1. Furthermore, let a player k N be given. Then we have for the Banzhaf index that

. _ |Swingers)|x .. _ |Swingers()|k
() Bl == (@ BRI =g oo
and for the Holler-Packel index that
(i) Ha(K) = |Swingers(minwing))|x (V) H(K) = |Swingers(minwing))|x

Iminwin(v)| |ISwingers(minwing))| -
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Figure 8: The is-swinger relation of the Catalonian game

Proof: Equation (i) is trivial since the transpose of tkeow of Swingers{) represents the s¢b ¢
W | k swinger ofS}. Combining it with the definition oB(k), we get

B(k) = Bak) _ malSwingersQlk  |Swingers)l
YienBall) 5k XjenISwingersg)l;  ISwingersy))
which is (ii). Equation (iii) is again trivial and (iv) is sk analogously to (ii). O

If the ReLVIEw tool depicts a relatiofR as Boolean matrix in the relation-window, then in the win-
dow’s status bar the number of 1-entriesRois shown. Furthermore, it is able to mark its rows and
columns for explanatory purposes. So far, we have only sthtbenpossibility to attach consecutive
row andor column numbers. But also the numbers of 1-entries can dehattl as labels. In combina-
tion with Theorem 4.4.1 this immediately allows to computeBaaf and Holler-Packel indices. We
demonstrate this by means of our running example.

Example4.4.1. If we useReLViEw to compute the is-swinger relatidBwingersy) for the vector
model v of our running Catalonia parliament example and adddlly instruct the tool to attach
consecutive row and column numbers, and for each row alsatingber of itsl-entries as second
label (after the sign/’), we get the picture of Figure 8. From the second row lald€s5, 6, 2, 2 and
the fact that there are exactB6 l-entries, we immediately obtain the following normalized Beai
indices of the parties:

ClU: L psc-CPC:{ ERC:& PP:Z ICV-EA:Z

If in these fractions the denominata2$ are changed t@>! = 16, then the results are the parties’
absolute Banzhaf indices (in the same ordgr) 2, =, 2 and Z. Next, we evaluate the expression
Swingers(minwing)). ThenReLView depicts the labeled Boolean matrix of Figure 9 on its screen.

Hence, the normalized Holler-Packel indices of the Catalarparties are as follows:
.3 .3 . 3 .2 .2
ClU: & PSC-CPCE ERC:Z PP:Z ICV-EA: 3

In Example 4.2.1 we have shown that there are five minimal wircoagtions. As a consequence, a
change of the denominatoi8 to 5 yields the absolute Holler-Packel indices of the partiegiashe

same order}, 2, 3, £ and 2. O

— o
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Figure 9: The is-swinger relation wrt. the minimal winninggaditions
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1/3
2/2
3/2
1/3
2/3
3/2
1/3
2/3
3/2
1/3
2/3
1/3
2/3

1/3 1/1 1/1 171 1/1
2/1 2/3 2/2 2/1 2/1
3/1 3/2 3/3 3/1 3/1
4/1 4/1 4/1 4/2 4/1
5/1 5/1 5/1 5/1 5/2

Figure 10: Relations for determining the Deegan-Packetexd

The Shapley-Shubik index, the Deegan-Packel index andotimesfon index are three further promi-
nent power indices for measuring power in simple games. htrast with the Banzhaf and Holler-
Packel indices, their definitions use more arithmetic apama than (1) and (2). As we will show in
the next example by means of the Deegan-Packel index, inipi@relation algebra anddrView can
also be applied here. But the example also shows the limiteofisle of RLViEw in respect thereof.

Example 4.4.2. To compute the Deegan-Packel indegk[of player ke N using relation algebra and
the ReLViEw tool, we assume the vector representation=mminwin(v) of the setW,i, of minimal
winning coalitions to be at hand and the playeek\ to be represented by a point:iN < 1 in the
sense of Section 3.2. B : N « 2V is the is-element relation, then a little reflection shows tha
vectorE™p : 2V « 1 represents the set of all coalitions&S2N such that ke S, and hence the relation

Deegan(n, p) := Einj(mN E"p)" (9)
of type[N & WY ] column-wisely represents the sit® used in (3) to define (). Based on m
and (9), now k) can be determined by performing one after another the fotigwhree steps:
1. Compute for each column Deeganin, p) the reciprocal value of the number of itsentries.

2. Add all numbers obtained by the first step.
3. Divide the result of the second step by the numbéreaitries of m.

In the case of our Catalonian parliament example, BReView tool delivered the five relations
Deegani, p) which are depicted in Figure 10, where the point p represemten(fleft to right) the
five parties CIU, PSC-CPC, ERC, PP and ICV-EA. If we apply the aboweegdtoe, then we obtain
from the second column labels of these matrices that D(G1 + 1 + 1) = 2, D(PSC-CPC)=

gm(g+g+g) - L D(ERC)=(1+1+3)= L D(PP)=1(+2) = & and D(ICV-EA) L(E+1) = 2.

It is obvious that the calculations of Example 4.4.2 can lyab@ done by hand if the number of
minimal winning coalitions is large. For instance, the aiton becomes a good deal worse in the
case of the present 10-parties Dutch parliament, sincedterady 42 of the 505 winning coalitions
are minimal winning. To overcome theflilculties caused by the restrictive programming language of
ReLViEw* the Kure library has been developed; see Milanese (2003, [31]), @mgki (2003, [44]). It
comprises the core functionality otR/1iew and opens the possibility to integrate relation-algebraic
computations into C- and Java-programs. Particularly wethard to the above example, a use of
Kure allows to perform all the arithmetic computations we havaelby hand automatically by the
superordinate C or Java-program.

4Caused by the specific application domain of the tool, retetiare the only pre-defined datatype of this language and
all further datatypes have to be modeled via them. In pdaicteal numbers and their base operations do not exist and
it seems to be very flicult to model the reals in the same elegant affidient way as, e.g., sets and a lot of structures of
discrete mathematics and computer science.
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5. Concluding Remarks

In this paper we have presented two relation-algebraic maofesimple games. For the vec-
tor model, we have developed relation-algebraic spediicatfor testing fundamental properties of
simple games and for computing specific players and coadifiand some relations which are im-
portant for determining dominance and power indices. Adlcsiications are algorithmic and can be
evaluated by the BDD-based tootif¥ 1ew after a straightforward translation into the tool’s pragra
ming language. To demonstrate the visualization facilibEReLViEw, we have used the Catalonian
Parliament after the 2003 election as example.

The correctness of all relation-algebraic specificatioedwave presented and, hence, also of the
corresponding R.\View-programs is guaranteed by the extremely formal calcuiatibat drastically
reduce the danger of making errors. In fact, we have obtdinedesults by developing formally
the relation-algebraic expressions and formulas from tiggnal predicate-logic specifications. The
formulation in the prevalent mathematical theorem-prstyfe has only been chosen to emphasize
the results and to enhance readability. We regard this goahted development of programs from
formal specifications that are correct by construction asfitist advantage of our approach. As the
second advantage of our approach we regard its computpodugy means of an appropriate tool. All
relation-algebraic specifications we have developed greesged by extremely short and concise-R
View-programs. Consequently, these are easy to alter in the €atighdly changed specifications,
e.g., if winning coalitions additionally have to be conregt(i.e., to form intervals w.r.t. a given policy
order) as in Einy (1985, [18]) or to be feasible w.r.t. a sepalicies in the sense of Berghammer et
al. (2007, [8]) or if, as in van Deemen (1989, [15]), in the digon of S >p T only for all non-empty
Ue2NfromUNS=0,UnT =0andUuUT € W it has to follow thatU US € ‘W. Combining this
feature of RLVIEw with its possibilities for visualization and stepwise extan of programs allows
the user to experiment and play with established as wellaxpacepts while avoiding unnecessary
expenditure of work. This makes the tool very useful for stifee research. Nowadays, systematic
experiments are accepted as a way for obtaining new insigittscientific results, and tools for this
purpose become increasingly important as one proceedgdstigations. The veryticient ReLViEw
implementation of relations via BDDs was of immense help lierproblems we have treated in this
paper. Due to it, without any problems we have been able ttyapp algorithms to a lot of simple
games originating from real political life. Such simple gzsrare presented, e.g., in Peleg (1981,
[33]), van Deemen (1989, [15]), van Roozendaal (1990, [364) Breixas and Molinero (2009, [20]).

Many problems appearing in connection with simple game&m@aog/n to be intractable in terms
of complexity theory, for instance, #P-compfetar NP-hard. See e.g., Prasad and Kelly (1990,
[35]) for more details. There are special algorithms taitbfor such hard problems, like tig¥n - 22)
algorithm for the Banzhaf index and tB§n?-22) algorithm for the Shapley-Shubik index of weighted
majority games presented in Klinz and Woeginger (2005,)[26}d the multilinear-extension-based
algorithms mentioned in Alonso-Meijide et al. (2008, [1l}daLorenzo-Freire et al. (2007, [30]). In
spite of the fact that RView implements relations venyiciently, frequently it cannot compete with
these special algorithms. To give an example, with the progrresulting from the present paper we
have not been able to tackle the United States Federal Sygstera with 537 players that is described
in Freixas and Molinero (2009, [20]).

SThis complexity class was introduced in Vailant (1979, J4&) characterize the number of solutions to an NP-
complete decision problem.

22



It is impossible to estimate the largestor which ReLView can reasonably perform calculations
for simple games, because this very much depends on thé@retate wants to evaluate, on the
number of minimal winning coalitions and other things. BetRiew has dealt with many examples
from real life with up till 20 players in a veryfgcient way.

In ReLVIEw it iS possible to indicate for a relatidRof its workspace the number of vertices of the
BDD implementingR. By the experiments performed with the tool we have noticadlithalmost all
cases the numbers of vertices of the BDDs for the vector of wgnooalitions are relatively small and
the same is true for the BDDs of the results of the computati&ng., the BDD of the vector model
of the 13-parties Dutch parliament after the 1972 electmmststs of 13 vertices only and 17 BDD-
vertices stfice to implement the is-swinger relation of this game. If peafs appeared in the form
of very large BDDs, then those typically implemented intedirage results during the computations
and were then caused by modifications of BDDs for which the tifeeaelation-algebraic operations
proved to be unnecessarily complicated. As a consequercegnve to the insight that BDDs seem to
be an excellent means for solving game-theoretic problefitsently if they are manipulable in full
generality and not only via the relation-algebraic operati(the programming language aofi 1iew,
respectively). In the following, we briefly sketch our preseork in this regard.

Due to RaView’s particular implementation of relations using BDDs, relaal vectors with 2
rows as introduced in Section 3.2 correspond exactly to Bwofenctions withn input variables
that are implemented by BDDs (see Leoniuk (2001, [29]) and IBsrgner et al. (2002, [6]). So,
if we represent the set of winning coalitiorid’ of a simple game witm players by a relational
vector in ReView (or the Kure library mentioned above), it internally uses a BDD wiitlvariables
to implement the characteristic function ®. This representation of the set of winning coalitions
of a simple game using a BDD is the starting point of Bolus (2Q1@]). In this paper, besides
the representation size of (vector-)weighted majority garalso the computation of the minimal
winning coalitions and the computation of some common pangices is investigated. Due to the
relationship between relational vectors and BDDs, the tesuk directly transferable and usable in
the context of RtViEw. For instance, a BDD — and thus a vector model in our sense — eighted
majority game with quotg andn players can be built in expected worst-case running titre- q)
and the resulting BDD has size at mogt] + 1). Provided constant time arithmetic on integer and
rational numbers, Banzhaf and Holler-Packel indices oflallgrs can be computed in expected worst
case running timé&(n - ) and the Shapley-Shubik and Deegan-Packel indices ofajeps can be
computed in expected worst case running tix{a® - g), if the players are ordered by non-increasing
weights. In Bolus (2010, [12]) results for vector-weightedres and the general case are presented
for most of the four power indices. In the BDDs framework one akso apply, e.g., the upper bound
of O(2?) to the size of the BDD of any weighted majority game; see Hasslal. (1994, [24]).

But, in contrast to the purely relation-algebraic approatcthe present paper, the development
of game-theoretic algorithms based on BDDs requires mucle retort, the implementation has
to be much more elaborated, and it often requires furthewledge of more technical issues such
as complementary edges. Moreover, the correctness proofsach more complicated and much
less formal than ours — with all negative consequences. tidadilly, using relation algebra as “in-
termediate language” does not produce lgEgient algorithms in general. To the contrary, many
algorithms are usable in practice and are reasonably fakey are not adequate for the problem do-
main, the implementation of relations often allows to clepgrspective and to utilize BDDs directly
without friction as seen here. This waysiRiEw can be seen as a platform which incorporates not
only relation algebra, but also BDDs, which are known to bdiagble to a lot of computationally
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hard problems. The current direction in the development¥VRw is to make it more extensible
by expanding its interface in such a way that it is possibleutsource program logic into small
problem-specific modules, so-called plug-ins. By specifibgdheoretic plug-ins that are based on
Bolus (2010, [12]), in the meantime we are able to deal alsb large problems that cannot be solved
with the original RLView tool, such as the above mentioned United States FederarBgstime with
537 players. To give an impression of concrete running tjfieeghis example the algorithm of Bolus
(2010, [12]) computes a BDD for the set of winning coalitiomatthas about 67000 vertices and, from
it, then the Banzhaf indices of all players — altogether iis lsin 1 second. But it is most important
that the experiments with#rView led to this new BDD-approach to game-theoretic problems. It
should additionally be remarked that the experiments #atjy even gave the decisive hints how the
algorithms have to work.

In Bolus (2010, [12]) only a portion of the problems we haversedlin this paper is investigated.
For the future, we plan to extend this approach also to thair@nyg problems, i.e., to implement cor-
responding plug-ins for RView. First experiments in respect thereof led to the impresiantest-
ing fundamental properties and determining key playeesctly by means of the BDD-representation
of W should not be very dicult. But we fear that computing the relations decisive fomdwance
from this BDD remains as flicult as in the case of the relation-algebraic approach.
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