
HAL Id: hal-00574003
https://hal.science/hal-00574003

Submitted on 7 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-throughput Sequencing of a 4.1 Mb Linkage
Interval Reveals FLVCR2 Deletions and Mutations in

Lethal Cerebral Vasculopathy
Sophie Thomas, Ferechte Encha-Razavi, Louise Devisme, Heather C

Etchevers, Bettina Bessieres-Grattagliano, Geraldine Goudefroye, Nadia
Elkhartoufi, Emilie Pateau, Amale Ichkou, Maryse Bonniere, et al.

To cite this version:
Sophie Thomas, Ferechte Encha-Razavi, Louise Devisme, Heather C Etchevers, Bettina Bessieres-
Grattagliano, et al.. High-throughput Sequencing of a 4.1 Mb Linkage Interval Reveals FLVCR2
Deletions and Mutations in Lethal Cerebral Vasculopathy. Human Mutation, 2010, 31 (10), pp.1134.
�10.1002/humu.21329�. �hal-00574003�

https://hal.science/hal-00574003
https://hal.archives-ouvertes.fr


For Peer Review

 
 
 

 
 

 
 

High-throughput Sequencing of a 4.1 Mb Linkage Interval 
Reveals FLVCR2 Deletions and Mutations in Lethal Cerebral 

Vasculopathy 
 
 

Journal: Human Mutation 

Manuscript ID: humu-2010-0234.R1 

Wiley - Manuscript type: Research Article 

Date Submitted by the 
Author: 

18-Jun-2010 

Complete List of Authors: THOMAS, Sophie; INSERM U781, Genetics; Université René 
Descartes 
ENCHA-RAZAVI, Ferechte; INSERM U781, Genetics; Université René 
Descartes 
DEVISME, Louise; CHRU de Lille, Pôle de Pathologie, Centre de 
Biologie Pathologie 
Etchevers, Heather; INSERM U-781, Genetics; Université René 
Descartes 
Bessieres-Grattagliano, Bettina; ADHMI Institut de Puériculture et 
de Périnatalogie, Anatomo-foeto-pathologie 
GOUDEFROYE, Geraldine; Hôpital Necker-Enfants Malades, APHP, 
Genetics 
ELKHARTOUFI, Nadia; Hôpital Necker-Enfants Malades, APHP, 
Genetics 
Pateau, Emilie; CEA, DSV, Institut de Génomique, Genoscope, 
Centre National de Séquençage 
ICHKOU, Amale; Hôpital Necker-Enfants Malades, APHP, Genetics 
Bonniere, Maryse; APHP Necker, Embryologie; Laboratoire Nord 
Pathologie 
Marcorelles, Pascale; CHRU Hôpital Morvan, Anatomopathologie 
Pathologique 
PARENT, Philippe; CHRU Hôpital Morvan, Département de pédiatrie 
et génétique médicale 
Manouvrier, Sylvie; CHRU de Lille, Hôpital Jeanne de Flandre, 
Service de Génétique Clinique et Université Lille 2 
HOLDER, Muriel; CHRU de Lille, Hôpital Jeanne de Flandre, Service 
de Génétique Clinique et Université Lille 2 
Laquerriere, Annie; CHU Rouen, Anatomie pathologique 
Loeuillet, Laurence; CHI Poissy, Service d’Anatomie et de Cytologie 
Pathologiques 
ROUME, Joelle; CHI Poissy, Génétique Médicale 
MARTINOVIC, Jéléna; Assistance Publique - Hôpitaux de Paris, 
APHP, Genetics; Hôpital Necker-Enfants Malades, APHP, Genetics 

John Wiley & Sons, Inc.

Human Mutation



For Peer Review

MOUGOU-ZERELLI, Soumaya; Université René Descartes; INSERM 
U781, Genetics; Hôpital Farhat Hached, Génétique moléculaire et 
Biologie de la reproduction 
Gonzales, Marie; APHP, Armand Trousseau, Université Pierre et 
Marie Curie, Paris 6, Génétique et Embryologie Médicales 
MEYER, Vencent; CEA, DSV, Institut de Génomique, Genoscope, 
Centre National de Séquençage 
Wessner, Marc; CEA, DSV, Institut de Génomique, Genoscope, 
Centre National de Séquençage 
Bole Feysot, Christine; Fondation IMAGINE, Plateforme de 
génomique, 
Nitschke, Patrick; Université Paris - Descartes, Service de 
Bioinformatique 
Leticee, Nadia; Hopital Necker-Enfants Malades, APHP, Service de 
Gynécologie Obstétrique 
Munnich, Arnold; Hôpital Necker-Enfants Malades, APHP, Genetics; 
Université René Descartes; INSERM U781, Genetics 
LYONNET, Stanislas; Hôpital Necker-Enfants Malades, APHP, 
Genetics; Université René Descartes; INSERM U781, Genetics 
Wookey, Peter; University of Melbourne, Department of Medicine 
Gyapay, Gabor; CEA, DSV, Institut de Génomique, Genoscope, 
Centre National de Séquençage 
Folliguet, Bernard; Maternite de Nancy, Laboratoire de Biologie de 
la Reproduction et du Développement 
VEKEMANS, Michel; Hôpital Necker-Enfants Malades, APHP, 
Genetics; Université René Descartes; INSERM U781, Genetics 
ATTIE-BITACH, Tania; INSERM U-781, Genetics; Hôpital Necker-
Enfants Malades, Département de Génétique; Université René 
Descartes 

Key Words: 
Fowler syndrome, cerebral proliferative vasculopathy, 
<i>FLVCR2</i>, Hydranencephaly, Fetal lethality, Arthrogryposis 

  
 
 

 

Page 1 of 31

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 1 

High-throughput Sequencing of a 4.1 Mb Linkage Interval Reveals FLVCR2 Deletions 

and Mutations in Lethal Cerebral Vasculopathy  

Sophie Thomas
1,2

, Ferechté Encha-Razavi
1,2,3

, Louise Devisme
4
, Heather Etchevers

1,2
, 

Bettina Bessieres-Grattagliano
5
, Géraldine Goudefroye

3
, Nadia Elkhartoufi

3
, Emilie 

Pateau
6
, Amale Ichkou

3
, Maryse Bonnière

3,7
, Pascale Marcorelle

8
, Philippe Parent

9
, 

Sylvie Manouvrier
10

, Muriel Holder
10

, Annie Laquerrière
11

, Laurence Loeuillet
12

, Joelle 

Roume
13

, Jelena Martinovic
3
, Soumaya Mougou-Zerelli

1,2,14
, Marie Gonzales

15
, Vincent 

Meyer
6
, Marc Wessner

6
, Christine Bole Feysot

16
, Patrick Nitschke

17
, Nadia Leticee

18
, 

Arnold Munnich
1,2,4

, Stanislas Lyonnet
1,2,4

, Peter Wookey
19

, Gabor Gyapay
6
, Bernard 

Foliguet
20

, Michel Vekemans
1,2,4

, Tania Attié-Bitach
1,2,4

  

1- INSERM U-781, Hôpital Necker-Enfants Malades, Paris, France  

2- Université René Descartes, Paris 5, France  

3- Département de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France  

4- Pôle de Pathologie, Centre de Biologie Pathologie, CHRU Lille, France  

5- Laboratoire d’Anatomo-Foeto-Pathologie, Institut de Puériculture et de Périnatalogie, 

Paris, France  

6- CEA, DSV, Institut de Génomique, Genoscope, Evry, France 

7- Laboratoire Nord Pathologie, Lille, France  

8 - Laboratoire d’anatomopathologie, CHRU Hôpital Morvan, Brest, France  

9 - Département de pédiatrie et génétique médicale, CHRU Hôpital Morvan, Brest, 

France  

10- Service de Génétique Clinique et Université Lille 2, CHRU de Lille, Hôpital Jeanne 

de Flandre, Lille, France 

11- Laboratoire d’Anatomie Pathologique, Hôpital de Rouen, Rouen, France  

12- Service d’Anatomie et de Cytologie Pathologiques,CHI Poissy, Saint Germain en 

Laye, France  

13 - Génétique Médicale, CHI Poissy, Saint Germain en Laye, France  

14 - Service de Cytogénétique, Génétique moléculaire et Biologie de la reproduction, 

Hôpital Farhat Hached, Sousse, Tunisie  

Page 2 of 31

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 2 

15- Service de Génétique et d'Embryologie Médicales, Hôpital Armand Trousseau, AP-

HP, et Université Pierre et Marie Curie, Paris 6, France  

16- Plateforme de génomique, Fondation IMAGINE  

17- Service de Bioinformatique, Université Paris - Descartes  

18- Service de Gynécologie Obstétrique, Hôpital Necker Enfants Malades, Paris, France  

19- Department of Medicine, University of Melbourne, Australia 

20- Laboratoire de Biologie de la Reproduction et du Développement, Maternité de 

Nancy, France  

  

 Corresponding author:      

Tania ATTIE-BITACH  

Département de Génétique et Unité INSERM U-781  

Hôpital Necker-Enfants Malades, Paris, France  

Tel: 33 (0) 1 44 49 51 44  

Fax: 33 (0) 1 44 49 51 50  

Email: tania.attie@inserm.fr  

   

  

Page 3 of 31

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:tania.attie@inserm.fr


For Peer Review

 3 

ABSTRACT:  

Rare lethal disease gene identification remains a challenging issue, but it is amenable to 

new techniques in high-throughput sequencing (HTS). Cerebral proliferative glomeruloid 

vasculopathy (PGV), or Fowler syndrome, is a severe autosomal recessive disorder of 

brain angiogenesis, resulting in abnormally thickened and aberrant perforating vessels 

leading to hydranencephaly. In 3 multiplex consanguineous families, genome-wide SNP 

analysis identified a locus of 14 Mb on chromosome 14. In addition, 280 consecutive 

SNPs were identical in two Turkish families unknown to be related, suggesting a founder 

mutation reducing the interval to 4,1Mb. To identify the causative gene, we then 

specifically enriched for this region with sequence capture and performed HTS in a 

proband of 7 families. Due to technical constraints related to the disease, the average 

coverage was only 7X. Nonetheless, iterative bioinformatic analyses of the sequence data 

identified mutations and a large deletion in the FLVCR2 gene, encoding a twelve 

transmembrane domain-containing putative transporter. A striking absence of alpha-

smooth muscle actin immunostaining in abnormal vessels in fetal PGV brains, suggests a 

deficit in pericytes, cells essential for capillary stabilisation and remodelling during brain 

angiogenesis. This is the first lethal disease-causing gene to be identified by 

comprehensive HTS of an entire linkage interval.   

  

Key words Fowler syndrome, cerebral proliferative vasculopathy, FLVCR2, 

hydranencephaly, fetal lethality, arthrogryposis 
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INTRODUCTION  

Cerebral proliferative glomeruloid vasculopathy (PGV) is a severe autosomal recessive 

disorder of brain angiogenesis, resulting in abnormally thickened and aberrant perforating 

vessels, forming glomeruloids with inclusion-bearing endothelial cells. This peculiar 

vascular malformation was delineated by Fowler in 1972 in relation to a stereotyped, 

lethal fetal phenotype (OMIM 225790), associating hydranencephaly and hydrocephaly 

with limb deformities (Fowler, et al., 1972). PGV disrupts the developing central nervous 

system (CNS) but the reason for which abnormal angiogenesis is restricted to the CNS 

parenchyme remains unknown. Arthryogryposis, when present, appears to be a secondary 

result of CNS motoneuron degeneration, itself one potential outcome of perfusion failure. 

Since its earliest description, 42 PGV cases from 26 families have been reported on the 

basis of histological criteria (Bessieres-Grattagliano, et al., 2009; Williams, et al. 2010).  

 Identification of a causative gene for a very rare lethal syndrome is a challenge at many 

levels. The first issue is to find a family that allows the identification of a linkage 

interval. Such an interval may contain too many genes to make the classical subsequent 

strategy practical, consisting in designing primers that will permit sequencing of each 

exon of all the genes of the region. The second difficulty is that sequencing of all the 

exons is sometimes vain in light of the growing number of non-coding regions identified 

as pathogenic alleles (Benko, et al., 2009; Kleinjan and van Heyningen, 2005; Lettice, et 

al., 2003). Finally, for prenatally lethal syndromes such as PGV, technical constraints 

such as poor quality genomic DNA samples are added. Recent advances in biotechnology 

permit the sequencing of all the DNA, including the non-coding regions, in most genomic 
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intervals. After homozygosity mapping of a 4.1 Mb region, we applied targeted genome 

capture by using a NimbleGen array and high-throughput Roche 454 GS FLX sequencing 

to the genomic DNA of the proband of 6 families. Bioinformatic analysis of the data 

allowed us to identify FLVCR2 (MIM 610865) as the gene responsible for Fowler 

syndrome (FS). High-throughput sequencing (HTS) generated false positive and false 

negative results, in part due to insufficient sequencing coverage, and unless care is taken, 

these can engender the risk of missing mutations during the analysis.  

  

MATERIALS AND METHODS  

Patients : The 7 families analysed have been previously reported (Families I to VII 

(Bessieres-Grattagliano, et al., 2009)). Genomic DNA was extracted from frozen tissue or 

cultured amniocyte cells in fetal cases and from peripheral blood samples for parents and 

unaffected siblings. 

Genome linkage screening and linkage analysis: Genome-wide homozygosity mapping 

was performed using 250K Affymetrix SNP arrays in 5 affected and 3 unaffected 

individuals of two Turkish and one French multiplex, consanguineous families. Data 

were evaluated by calculating multipoint lod scores across the whole genome using 

MERLIN software, assuming recessive inheritance with complete penetrance.  

NimbleGen Sequence capture and high-throughput sequencing: A custom sequence 

capture array was designed and manufactured by Roche NimbleGen (Madison, WI, 

USA). 21 micrograms of genomic DNA was used for sequence-capture in accordance 
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with the manufacturer’s instructions (Roche NimbleGen) and a final amount of 3 

micrograms of amplified enriched DNA was used as input for generating a ssDNA 

library for HTS; 25% lane of a Roche 454 GS FLX sequencer with Titanium reagents) 

yielding 135 Mb of sequence data per sample.  

Capillary sequencing of FLVCR2 : Primers were designed in introns flanking the 10 

exons using the “Primer 3” program (http://fokker.wi.mit.edu/primer3/input.htm) and are 

listed in Supp. Table S2. PCR were all performed in the same conditions, with a 

touchdown protocol consisting of denaturation for 30s at 96°C, annealing for 30s at a 

temperature ranging from 64°C to 50°C (decreasing 1° during 14 cycles, then 20 cycles at 

50°) and extension at 72°C for 30s. PCR products were treated with Exo-SAP IT (AP 

Biotech), and both strands were sequenced with the appropriate primer and the “BigDye” 

terminator cycle sequencing kit (Applied Biosystems Inc.) and analyzed on ABI3130 

automated sequencers. Mutation numbering is based on cDNA reference sequence 

NM_017791.  

Immunohistochemistry : Immunohistochemistry was carried out on six micrometer 

selected sections using antisera directed against smooth muscle actin (diluted 1:800). 

Immunohistochemical procedures included a classical microwave pre-treatment protocol 

in citrate buffer to aid antigen retrieval. Incubations were performed for one hour at room 

temperature, using the TECHMATE system (DAKOPATTS-Trappes-France). After 

incubation, histological slides were processed using the LSAB detection kit 

(DAKOPPATTS-Trappes-France). Peroxidase was visualized by means of either 3-3' 

diaminobenzidine or amino-ethyl carbazole. 
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RESULTS  

We have collected DNA from fetuses of 7 families reported earlier (Families I to VII 

(Bessieres-Grattagliano, et al., 2009)). All 14 fetal cases bore the brain-specific 

angiogenic anomalies characteristic of PGV, resulting in thickened and aberrant 

perforating vessels and glomeruloids, as exemplified in Figure 1A. Endothelial cells 

(ECs) were positive for CD34 in both control fetal brains (Figure 1B) and in the tortuous 

glomerular capillaries (Figure 1C). VEGF-A, while not normally expressed by small 

brain capillaries (Figure 1D), was strikingly found in the glomerular ECs of PGV fetuses 

(Figure 1E arrowhead). Like normal Ecs though, PGV ECs expressed VEGFR2 and, 

weakly, Glut-1 (not shown). CD68, characteristic of macrophages, was completely absent 

(data not shown). Numerous GFAP-positive astrocytes were observed throughout the 

cerebral mantle, with immunoreactive endfeet justaposed to glomeruloids (Figure 1F). An 

antibody to alpha-smooth muscle actin (aSMA) stained vessels within the outer 

leptomeninges and the walls of perforating vessels in normal fetal brains (Figure 1G). In 

contrast, although PGV meningeal vessels had similar aSMA expression, the dysplastic 

intraparenchymous vessels were irregularly stained, if at all (Figure 1H), while most 

glomeruloid vessels were negative for aSMA (Figure 1I).  

To find the molecular basis for this phenotype, we first undertook a genome-wide SNP 

analysis using an Affymetrix 250K SNP chip with 5 affected and 3 unaffected members 

of two Turkish and one French multiplex, consanguineous families. Informed consent 

was obtained from all patients and their relatives; clinical data of all families have 

previously been reported (Bessieres-Grattagliano, et al., 2009). Genome-wide linkage 
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analysis conducted with the MERLIN program revealed a 13 Mb genomic region on 

chromosome 14 from rs10151019 to rs12897284, with a lodscore of 5.4. Moreover, four 

affected sibs from the two Turkish families shared the same alleles for 280 consecutive 

SNPs, suggesting a founder effect and reducing the interval to 4.1 MB, from rs2803958 

to rs11159220. These two families originated from villages 12 km apart in 

Khramanmaraps (central Turkey). Microsatellite marker analysis further confirmed the 

same disease allele in both families, and showed linkage in 3 additional families (Figure 

2).   

To identify the causative gene, we applied array-based sequence capture of the complete 

4.1 MB region followed by high-throughput sequencing. DNA from one proband of 6 

families, the heterozygous mother from family I, and a healthy brother not carrying the 

at-risk allele were selected (Figure 2). Coverage varied from 2X to 12X in individuals 

depending on the integrity of their DNA (Table 1), with an average coverage depth of 

7X; 60% (851,147) of the enriched reads were located on the targeted regions. Only 25% 

of the targeted regions reached 10X coverage depth.  

The number of the detected variations was too large to handle them manually. To 

facilitate the analysis of these variations a specific genome browser was set up to 

visualise the locations of variations on the genome, and at the same time an analysis tool 

has been developed. This analysis tool applied a series of filters to the identified 

variations. These filters were based on the following criteria: 1) the quality of the 

sequence variant measured as the number of reads that detected the variant 2) the 

presence or absence of variants in public databases such as dbSNP and HapMap. 3) the 
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presence or absence of the variants among the studied samples 4) annotation of the 

sequence variants based on their location (intron, exon, etc ...) and the characteristics of 

the resulting change such as synonymous, non-synonymous or stop mutation. Filtered 

results were visualised in an interactive table permitting us to sort and analyse the results. 

Thus, initial analysis of the sequence data that met an arbitrary threshold of at least three 

reads, of which at least one was required to be in the opposing orientation, detected a 

total of 23,262 variations, 17,031 of which were on chromosome 14 (73%, Table S1). Of 

these, 3,457 variants were found to not correspond to known SNPs, and were absent from 

the normal control individual (E). After initial exclusion of non-exonic and synonymous 

variants, 42 variants in 29 candidate genes remained. In 20 of these genes, a single 

variation was found in one individual, while two and three variations were found in six 

and two genes, respectively (Figure 3).  

  

FLVCR2 was the only gene with variations identified in four out of seven individuals. In 

addition, careful examination of the FLVCR2 locus in the proband of family II revealed a 

homozygous deletion of exons 2 to 10, as the absence of both nucleotide variations and 

reads over a 46.8 KB genomic region (Figure 4A). The deletion was confirmed to 

segregate in families I and II, and cloning of the breakpoints revealed the inclusion of the 

last two exons of the neighbouring C14orf1 gene, with no repeated DNA sequences at the 

boundaries. It is noteworthy that this deletion was not detected by Affymetrix 250K SNP 

chip. Indeed, only one SNP was located in the non-deleted portion of intron 1. Direct 

sequencing of the 10 exons of FLVCR2 (Supp. Table S1), identified mutations in two 

additional families (Table 1), such that mutant FLVCR2 alleles were identified in each of 
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the 7 families studied (5 homozygotes and 2 compound heterozygotes; Table 1 and 

Figure 4B).  

Reasons for false-negative results using HTS approaches are summarized in Table 1, and 

emphasize the need for complementary confirmation. In particular, in family IV, a second 

heterozygous mutation was found by direct resequencing, although it had an apparently 

homozygous mutation as indicated by the HTS analysis. In family III, the homozygous 

mutation found with Sanger sequencing had only been read 2 times in the HTS and had 

thus been excluded by the stringency of the filter. As a third example, the second 

heterozygous mutation in family VII had been read 4 times but was excluded for 

unidirectionality. Interestingly, in family VI, not known to be consanguineous, the 

identical nonsense mutation was found in the 3 affected sibs (homozygous in fetuses and 

heterozygous in parents), suggesting more distant consanguinity or a founder effect.  

FLVCR2 is a member of the major facilitator superfamily (MFS) of transporter proteins, 

that shuttle small molecules in response to ion gradients (Pao, et al., 1991). Like other 

MFS members, FLVCR2 is predicted to contain 12 membrane-spanning segments and six 

extracellular loops. As shown in figure 5A, the 3 homozygous mutations are predicted to 

alter an amino-acid localized to one transmembrane domain (TM) : TM2 in family VI, 

TM8 in family III and TM10 in family V. In family IV, one of the 2 mutations alters an 

amino-acid predicted to be localized in TM8 and the other in the intracellular loop 5.  

Amino acid sequence alignment for FLVCR2 from 10 different species showed that T430 

and G412 have been conserved since our common ancestor with C. elegans, whereas R84 

has been conserved in common with D. melanogaster (Figure 5B). T352R and L398V 
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alter residues less evolutionary conserved, especially L398V. However, those mutations 

are absent from both the dbSNP and the 1000 Genome database not yet integrated in 

dbSNP. While the L398V mutation was predicted to be benign by the Polyphen algorithm 

(http://genetics.bwh.harvard.edu/pph/), the T352R mutation as well as the other missense 

mutations identified in this study were predicted to be damaging to protein function. 

Thus, the pathogenicity of these two last mutations is likely but not totally proven. In 

total, eight different mutations including one nonsense mutation (homozygous in family 

VI), six missense mutations, and one homozygous deletion in two families (I and II) have 

been found in FLVCR2. 

 

DISCUSSION   

PGV is a very rare and lethal genetic condition. Since its first description, 42 cases from 

26 families have been reported on the basis of histological criteria of PGV (Bessieres-

Grattagliano, et al., 2009; Williams, et al., 2010). In the 16 fetuses of our series born to 

eight unrelated families, neuropathological analysis defined a diffuse form of 

encephaloclastic prolifrative vasculopathy (EPV), affecting the entire CNS and resulting 

in classical PGV with pterygia and a severe fetal akinesia deformation sequence in 14 

cases. In contrast, two cases from the single family IV presented a more focal form of 

EPV, without spinal cord involvement and subsequent arthrogryposis/pterygia. 

Identification of FLVCR2 mutations in this family suggests that the anteroposterior extent 

of CNS degeneration can be variable, and that PGV may be an extreme phenotype of a 

broader spectrum of proliferative vasculopathies. Stabilization of newly formed capillary 
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sprouts during angiogenesis requires interactions of endothelial cells with mural support 

cells, known as pericytes. The regionally restricted distribution of PGV in family IV 

might be linked to the embryonic lineage of the telencephalic pericytes, of a distinct 

neural crest cell origin from those of the spinal cord (Etchevers, et al., 2001). 

Interestingly, immunostaining for alpha smooth muscle actin (aSMA, a marker for 

mature pericytes) in fetal PGV brains was drastically reduced in the PGV within the CNS 

while normal aSMA expression was found in the leptomeninges (Figure 1I). Further 

studies should elucidate whether this observed effect on pericytes is the primary cause or 

an effect of this disease.  

Recently, FLVCR2 mutations were also reported in 5 families with Fowler syndrome 

(Meyer, et al., 2010), with the same homozygous Thr430Arg mutation in three families, 

and 2 compound heterozygous cases. Interestingely, Thr430Arg is associated with both 

forms of the disease, namely with or without spinal cord involvement, suggesting no 

genotype phenotype correlations. It is noteworthy that the mutation concerned the same 

codon (Thr430) as in our family IV, the only one of our series without spinal cord 

involvement. More recently, Lalonde et al. also reported four FLVCR2 compound 

mutations in 2 FS families with spinal cord involvement ((Lalonde, et al., 2010). 

Interestingly, the only missense mutation predicted to be “benign” in our study (L398V) 

was identified by two distinct approaches in a common case reported by both Lalonde et 

al. and Meyer et al., adding to the likely pathogenicity of this variation. To sum up, 15 

different FLVCR2 mutations (including those described in our study) have now been 

reported in 13 cases: one large deletion, two nonsense mutations, one splice site mutation, 

one insertion/deletion change and 10 missense variations. 
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The FLVCR2 gene encodes a transmembrane protein that belongs to the major facilitator 

superfamily (MFS) of secondary carriers that transport small solutes such as calcium 

(Pao, et al., 1991). It is closely related in both sequence and topology to the better-known 

FLVCR1, sharing 60% amino acid identity (Lipovich, et al., 2002). FLVCR1 has been 

identified as the receptor for a feline leukemia virus (FeLV-C), and like FLVCR2 and 

other MFS members, is predicted to contain 12 membrane-spanning segments and six 

extracellular loops. A single mutation in the sixth extracellular loop is sufficient to confer 

FeLV-C receptor activity on FLVCR2, which does not otherwise bind the native 

virus (Brown, et al., 2006). However, FLVCR2 functions as a receptor for the FeLV-C 

variant FY981 (Shalev, et al., 2009). FLVCR1 is found only in hematopoietic tissues, the 

pancreas and kidney (Tailor, et al., 1999), but rodent Flvcr2 is widely expressed during 

embryonic development, in particular within the CNS and in the vessels of the maturing 

retina, and human FLVCR2, within the fetal pituitary (Brasier, et al., 2004). FLVCR1 has 

been shown to function as a heme exporter, essential for erythropoiesis (Quigley, et al., 

2004). Interestingly, the five glutamate residues in the C-terminal putative coiled-coiled 

domain of FLVCR2, not present in FLVCR1, may serve an analogous function to the 

same ferric ion-binding glutamate sequence in glycine-extended gastrin, by stimulating 

cell proliferation (He, et al., 2004). Based on the cell types in which it is expressed and 

MFS transport of chelated complexes of divalent metal ions, the FLVCR2 transporter 

was postulated to be a gatekeeper for the controlled entry of calcium into target cell types 

(Brasier, et al., 2004). Calcium signalling is involved in virtually all cellular processes 

and its homeostasis is tightly regulated. Angiogenic factors such as VEGF-A and FGF2 

induce a transient increase of endothelial cell intracellular calcium concentrations , which 
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acts as a second messenger to induce proliferation, among other effects (Tomatis, et al., 

2007). Blood vessels are susceptible to responding to angiogenic signals and undergoing 

calcification when their pericytic coverage has been disrupted (Collett and Canfield, 

2005), both of which signs we have observed in PGV patient brain sections.  

HTS of the entire exome has been used so far to identify disease-causing genes in the rare 

Miller and Bartter syndromes, respectively (Choi, et al., 2009; Ng, et al., 2010). Recently, 

targeted exon-specific sequencing within a restricted 40 MB linkage interval allowed the 

identification of an additional gene for Familial Exudative 

Vitreoretinopathy (Nikopoulos, et al., 2010). Our study underlines the use of HTS for the 

coverage of an entire linkage interval with no compelling candidate genes and no 

justification for the exclusion of non-coding regions. Our nested analysis approach led 

rapidly to the identification of a disease-causing gene. While it further demonstrates the 

power of this new technology, it also highlights other potential risks of missing mutations 

during data analyses. The number of patients, diagnostic accuracy and genetic 

homogeneity allowed us to compensate for low capture efficiency due to suboptimal 

DNA quality, and in the future, as the technology develops, furthering the depth of 

coverage should ensure a better distinction of background from true mutations. Finally, 

identification of the gene for Fowler syndrome will permit accurate genetic counselling 

for PGV and prenatal diagnosis, in particular for the late-onset forms of the disease 

without spinal cord involvement.  
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LEGENDS TO TABLE AND FIGURES  

 

Figure 1: Marker analysis in Fowler syndrome fetal brain 

(A) Cortical plate of Fowler syndrome (FS) fetal brain (family IV) showing abnormal perforating 

vessels. Note the characteristic thickened vessels (asterisks), ending in glomeruloid formations 

(arrowheads), often devoid of recognizable lumina. CD34 capillary staining in (B) on a brain 

from a control, stage matched fetus and (C) from a FS fetus (family I) (C). VEGF 

immunostaining arround (D) a brain parenchymal capillary from a control fetus in which it is 

essentially absent, and (E) from a FS fetus in which it appears markedly increased. (F) GFAP 

astroglial immunostaining on a FS fetal brain. Alpha SMA immunostaining of pericytes on (G) a 

brain section from a control fetus versus (H and I) from two FS fetuses.  

Figure 2 : Pedigree and linkage analysis results 

Pedigrees of families included in this study. Arrows indicate individuals for whom DNA was 

available, and arrowheads indicate the samples sequenced by HTS. Homozygosity or linkage was 

analysed by microsatellite markers analysis and confirmed a founder effect by haplotype identity 

in 2 Turkish families (I and II) that were later discovered to carry the same FLVCR2 exon 2 to 10 

deletion. 

Figure 3 : Summary of HTS data analysis 

This diagram illustrates the flowchart of HTS data analysis. After elimination of variants found 

outside of the mapping region (27% of total variants) and those corresponding to known SNPs 

(29% of on-target variants) or shared with the control individual E (50% of on-target variants), 
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HTS identified 54 variants in coding sequences, eight of which were synonymous. The remaining 

46 variants were located in 29 candidate genes, 20 of which were excluded because only one 

variant was identified. Finally, only one gene, FLVCR2 presented 4 variants.  

Figure 4 : FLVCR2 deletion and mutations 

(A) Genome browser view centered on the FLVCR2 locus (ENSG00000119686) showing all 

variations (red dots) and reads coverage (light blue) in individuals A (fetus, family II) and B 

(fetus, family V). Note the absence of variations and reads in individual A, suggesting a 

homozygous deletion of exons 2 to 10, as well as the 2 final exons of the adjacent c14orf1 

transcript (ENSG00000133935). (B) Chromatograms of FLVCR2 homozygous (upper panel) and 

compound heterozygous mutations (lower panel).  

Figure 5: Localisation of mutations in FLVCR2 and conservation of mutated FLVCR2 amino 

acids. 

(A) Localization of mutations on a secondary structure prediction of the FLVCR2 transporter. 

The three homozygous mutations are predicted to alter an amino acid localized in one of the 12 

transmenbrane (TM) domains: p.Y134X is located in TM2, p.L359P in TM8, and p.G412R in 

TM10. Compound heterozygous mutations in family VI alter amino acids at the N-terminal 

cytoplasmic end and in the extracellular loop 5 (blue asterisk). Compound heterozygous 

mutations in family IV alter an amino acid predicted to be localized in TM8 and in the 

intracellular loop 5 (green asterisk).  

(B) Alignment and conservation of mutated FLVCR2 amino acids. Sequences for FLVCR2 from 

10 different species have been aligned using the Multialin tool ("Multiple sequence alignment 
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with hierarchical clustering" (Corpet, 1988). Highly conserved amino acids are represented in 

red, moderately conserved amino acids are in blue and non-conserved ones are in black. Mutated 

amino acids are boxed.  

Table 1 : Analysis of variations by individual and FLVCR2 variations identified by high-

throughput or capillary sequencing.  

E is a healthy brother in family V not carrying the disease allele by haplotyping, and taken as 

healthy control. Mutation numbering is based on cDNA sequence with a ‘c.’ symbol before the 

number, where +1 corresponds to the A of ATG translation codon (codon 1) of the cDNA 

reference sequences (NM_017791). Mutation names were checked by the Mutalyzer program 

(Wildeman, et al., 2008). 

 

Supplementary Table S1: Analysis of total number of variations detected by high-throughput 

sequencing 

 

Supplementary Table S2: Primers and PCR conditions 
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Individual  A (F am II) B  (F am VI) C  (F am VII) D  (F am IV) F  (F am V) G  (F am I) H (F am III) Total

O rigin T urkish F rench F rench F rench Maroccan T urkis h F rench

C overage 8,8X  4X 8,6X  2,3X  11,8X  11,6X  6,6X  7X  

All 2852 1804 2639 823 3067 3841 2005 17 031 

Number of 

Variations

Variations  in E  

removed
1379 790 1154 282 1527 2075 1182

(total) S NP  removed 565 380 608 112 695 872 821

Variations  in E  and 

S NP s  removed
546 300 465 80 569 750 747

Number of 

variations  
T otal 100 74 105 41 87 139 58

on mR NA
Variations  in E  and 

S NP  removed
23 14 17 6 20 26 29

T otal 41 22 44 13 42 60 25

Number of

Variations  in E  and 

S NP  removed 
8 2 4 2 11 12 15

variations  on 

C DS
non synonymous 22 8 23 9 23 28 13

non synonymous  

and S NP  removed
8 2 4 2 9 8 9 42

Next generation 

sequencing

Del E x 2-10 

hmz

c.402C >G , 

p.T yr134S top 

hmz

c.251G >A, p.Arg84His  

htz

c.1056C >G , 

p.T hr352Arg hmz

c.1234G >C , 

p.G ly412Arg 

hmz

(mother) -

F L VC R 2 

variations

C apillary 

sequencing

Del  E x 2-10 

hmz

c.402C >G , 

p.T yr134S top   

hmz

c.251G >A, p.Arg84His  

htz c.1192C >G , 

p.L eu398Val htz 

c.1056C >G , 

p.T hr352Arg htz  

c.1289C >T , 

p.T hr430Met htz 

c.1234G >C , 

p.G ly412Arg 

hmz  

Del  E x 2-10 htz  

in mother

c.1076T >C , 

p.L eu359P ro hmz

C omparis on and 

reas on for 

dis crepancy

confirmation confirmation Arg84His : confirmation 

L eu398Val: 7 reads , 4 

with the mutation, but 

excluded for 

unidirectionality

T 352R : 4 reads  of 

only the mutated 

allele, T 430M:  no 

reads

confirmation D eletion 

confirmed in 

foetuses  (hmz), 

htz in parents

2 reads  of only 

the mutated allele

 

Table 1 : Analysis of variations by individual and FLVCR2 variations identified by next generation or capillary sequencing.   

Mutation numbering is based on cDNA sequence with a ‘c.’ symbol before the number, where +1 corresponds to the A of ATG translation 

codon (codon 1) of the cDNA reference sequences (NM_017791). Mutation names were checked by the Mutalyzer program (Wildeman, et al., 

2008). 
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Heterozygous and homozygous variations ( 20-100% of total reads) All 

variations 

variations 

on chr 14 

% 

on 

Chr 

14 

A + B + C + D + F + G + H 23 262 17 031 73% 

A + B + C + D + F + G + H – E (control) 12 942 8 389 65% 

A + B + C + D + F + G + H – E –HapMap 10 177 5 763 57% 

A + B + C + D + F + G + H – E –dbSNP 6 553 3 457 52% 

A + B + C + D + F + G + H – E –hapMap – dbSNP 6 552 3 457 52% 

A + B + C + D + F + G + H – E –hapMap – dbSNP : mRNA (UTR et CDS) 179 135 75% 

A + B + C + D + F + G + H – E –hapMap – dbSNP : CDS 63 54 85% 

A + B + C + D + F + G + H – E –hapMap – dbSNP : CDS, non synonymous 49 42 85% 

 

Supplementary Table 1 

Analysis of Total Number of variations 
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Primers Sequence PCR size 

FLVCR2-1AF GCCTCTAGTCTCTGTTTCTTCTGG 527 

FLVCR2-1AR TCAGCATGTAGCACATGGAC  

FLVCR2-1BF TGTGCAACTCCTTTCAGTGG 527 

FLVCR2-1BR CAATCACTGCCTGTCACACC  

FLVCR2-2F TCTCTGGTGTTTTGAGGTGAGA 397 

FLVCR2-2R CATGGTATTTCAGGGCATGTT  

FLVCR2-3F TTCACTCAGCCTCAAACAATG  

FLVCR2-3R TAGCTGGGTCCTCTGGATTG  

FLVCR2-4F TGTGTGGCTAAGGGAAGGTT 464 

FLVCR2-4R GGTTGAGATCTAGGGCCATCT  

FLVCR2-5F TCTCCTAGGCCATCTTGTCC 363 

FLVCR2-5R CTTGGCCACTAGGATCTCCA  

FLVCR2-6F GGCAACAGAGCAAGACACTG 382 

FLVCR2-6R TCAGTTAGAAGGCAGCAAAGG  

FLVCR2-7F CCCAGATCATTAGAGGGCCTA 596 

FLVCR2-8R CCAACAAACCCTTCCATCTG  

FLVCR2-9F CCTGTGACCCTTAGGAAATGA 292 

FLVCR2-9R TGCCATGTGTAAGGGATGAA  

FLVCR2-10F TTTCTTGGCTCTCTGGGATG 486 

FLVCR2-10R TATTCTCTGCCACCCTGTCC  

Primers used for cloning the deletion breakpoints of 

families I and II 

FLVCR1-i1 CAGGATAAGCTCCATCATCCTTAC  

C14orf1-3Fex  CTCGGACCTTTGGGATCTG  

 

Supplementary Table 2 

Primers and PCR conditions 
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