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Compressive Sensing for Cluster Structured

Sparse Signals: Variational Bayes Approach

Lei Yu, Jean-Pierre Barbot, Gang Zheng, and Hong Sun,

Abstract

Compressive Sensing (CS) provides a new paradigm of suliblygampling which can be considered as an
alternative to Nyquist sampling theorem. In particulagyiding that signals are with sparse representations iresom
known space (or domain), information can be perfectly preskeven with small amount of measurements captured
by random projections. Besides sparsity prior of signadig, inherent structure property underline some specific
signals is often exploited to enhance the reconstructi@uracy and promote the ability of recovery. In this paper,
we are aiming to take into account the cluster structure gntgpof sparse signals, of which the nonzero coefficients
appear in clustered blocks. By modeling simultaneousif Isparsity and cluster prior within a hierarchical statasti
Bayesian framework, a nonparametric algorithm can be wétaithrough variational Bayes approach to recover
original sparse signals. The proposed algorithm could ighty} considered as a generalization of Bayesian CS, but
with a consideration on cluster property. Consequently,prformance of the proposed algorithm is at least as good
as Bayesian CS, which is verified by the experimental results

Index Terms

Compressive Sensing, Cluster Structure, Variational Baye

I. INTRODUCTION

Compressive Sensing (CS) is recently developed [9], [1I(§],[and then attracts lots of researchers. It provides
a new paradigm of sub-Nyquist sampling which can be cons@tlas an alternative to Nyquist sampling theorem.
In particular, providing that signals are with sparse repr¢ations in some known space (or domain), information
can be perfectly preserved by random projection measuresmen

To reconstruct the original signals, sparse prior is gdlyeexploited into the deficient linear inverse problem,
which results in lots of algorithms, Basis Pursuit (BP) [18], Orthogonal Matching Pursuit (OMP) [26], CoSaMP
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TABLE |

COMPARISON BETWEEN DIFFERENTCSRECOVERY ALGORITHMS

Algorithms H Is for Cluster?| Num. of Clusters  Size of Clusters  Fixed Cluster Positions arSity
Greedy algorithms (CoSaMP, OMP, etg) No - - - v
Linear Programming (BP, etc) No - - - v
Iterative Thresholding (IHT, IST) No - X
Bayesian CS No - - - X
Block-CoSaMP [2], [16] Yes v v v v
Dynamical Programming [13] Yes v X X v
LaMP [12] Yes X X X v
Struct OMP [20] Yes v X X v
CluSS MCMC [27] Yes X X X X

1+ denotes necessary for the corresponding algorithm.
2X” denotes unnecessary for the corresponding algorithm.

3« means no consideration for this algorithm.

[23], Bayesian CS [22], Iterative Hard Threshold (IHT) aiftfom [7], etc. While besides sparse prior, inherent
structures underlying the sparse patterns have been wadgbhyoyed to improve the recovery accuracy and promote
the efficiency, [2], [6], [12], [13], [17], [18], [16].

In this paper, we focus on the cluster structured sparsealsigof which significant coefficients appear in clustered
blocks. This kind of sparse pattern is often exploited in ynaancrete applications, such as multi-band signals, gene
expression levels, source localization in sensor netwddMO channel equalization, magnetoencephalography
[2], [6], [16]. Existing algorithms designed for clusterwsttured sparse signals always require lots of pre-defined
information (Tab. 1), such as (a) number of clusters; (b 9% each clusters; (c) positions where clusters are; (d)
number of significant coefficients (Sparsity). Howeverstriors can never be known in real applications, and

thus a nonparametric recovery algorithm for cluster stmazt sparse signal is appealed in practical problems.

A. Motivation

1) From graphical Bayesian model to CS: Considering the process of CS measurement as a hierar8agasian
model, namely, a graphical model [11], it provides a new Baork for CS [25], [22], [1] and leads to a nonpara-
metric recovery algorithm. In this framework, the sparsestrint is injected through some sparse priors: a Gaussian
distribution together with an Inverse Gamma on the invaram Laplace distribution, etc. The interpretation of CS
with Bayesian model provides a systematic framework, wloere could conveniently consider other priors, such
as structures on sparse pattern [18], dependencies betwaltiple signals [21], and so on. Moreover, rather than
providing a point estimation for sparse signals, a full pdst density function is provided, which yields “error
bars” on the estimated sparse signals. These error barsecasel to give a sense of confidence of the recovered

sparse signals.



2) From latent variable model to structures. In a probabilistic, Bayesian approach, through Graphicad®s
(GMs) [11], [4], latent variables are often exploited to d#ise the dependencies (or joint probability distribuspn
between observations and parameters. This method is yadied latent variable model [5], and possibly, results
in some non-parametric approaches to Bayesian estim&pisposing geometrical relations underlying the sparse
pattern, structures of the sparse coefficients can be c@ntgndescribed by latent variable model [12], [18].

3) From MCMC to VB: In the last work [27], a Bayesian approach to reconstructcthster structured sparse
signals from compressed measurements has been propose@, arh MCMC re-sampling procedure is exploited
for Bayesian inference. It is well known that even though MCH4 capable to find the global solution via infinite
MCMC iterations, it cannot guarantee the convergence inefiiterations, which is not applicable all the time.
Consequently, we turn to modifying the Bayesian model to enidlconjugate and thus can lead to a deterministic
solution, through a variational Bayesian method [3], of eththe main idea is to optimize the lower bound of the

log marginal likelihood function, and simultaneously geenaximum of the posterior distribution.

B. Contribution of this paper

The main contribution of this paper is to exploit the statatgraphical model to describe the cluster structured
sparse signals and hence lead to a deterministic algorithough the variational Bayesian method. The idea of
this work is largely inspired by [19], where the resultedcaithm is dedicated to solve the tree structured sparse
inverse problems. Even though, it is different from the wofl{19]: the considered structures are different, where
the tree structure considered in [19] is a directional gieggdhmodel but cluster structure in this paper is more likely

an undirectional graphical model, and thus it results diffé models.

C. OQOuitline

The following sections will introduce the proposed aldumit in detail. In section Il, the Bayesian clustered
sparsity model is addressed, where both the sparse prioclastér prior are considered. Then using variational
Bayes method, the inference of the introduced Bayesian hi®d@plemented in section Ill. After that, in section
IV, some simulations are presented to show the performahe¢keoproposed algorithm. The paper ends with a

conclusion.

1. BAYESIAN CLUSTERED SPARSITY MODEL FORCS
In the framework of CS, the sampling process can be modeledvastory € R™, captured by a multiplication
of sensing matrix® € R™*™ and the original signal§ € R™, then plus an errok, as follows:

y=00+e 1)

Suppose that the perturbatiens white, i.e.e ~ N'(0,0¢I) and thusy ~ N (®60,0,I), with T an all one vector
with appropriate dimension. To infer the posterior of thésmovariances,, a Gamma prior is assigned on the

inverse of noise variancey, = o, ', i.e. ag ~ Gamma(c, d), conjugate to Gaussian distribution.



In order to introduce both the sparse and cluster prior efli¢ Bayesian model, we exploit a latent variable
to indicate whether the corresponding elemené @ nonzero, i.ef = w o z, whereo is point wise multiplication
andw ~ N(0,0). Meanwhile, Gamma prior is assigned on the inverse of weightancea = o~!, i.e. a; ~
Gamma(a,b), with «; the i-th element ofe, i € {1,...,n}. The overall prior onw with respect toa,b can be
evaluated analytically through the integration overand it corresponds to the Student-t distribution [25]. AVit
appropriate choice af, b, the Student-t distribution strongly peaked abaut= 0, and thus the overall prior ow
favors sparseness.

Meanwhile, we suppose that the latent variablés drawn from a Bernoulli distribution with probability,
i.e. for each element of, z; ~ Bernoulli(w;). To model thecluster prior over the coefficient®, relations

between the current componehtand its neighbors should be considered, calledcthster pattern of ¢;. Define

o 000 o0o
| Lo t
e o0 o0 o

Fig. 1. Three different cluster pattern for 1D signals. Rajtern 0; (b) Pattern 1; (c) Pattern 2.

the neighborhood of location over the coefficient®, U; = {j|D(i,j) = 1,5 # i} with D(i, ) the Euclidean
distance between andj. DenoteVy the set of all locations over the coefficieftsV,, = {1, ...,n}, then define
Ji £ U;NV,.. Hence we can denotg;, the set of components located in the neighbor ofithecoefficientd;. And
denotey; = Zjeji z; the number of nonzero neighbors for tita element);. Then we can use this counterto
categorize the relations into 3 differetiuister patterns, i.e. Pattern 0: “strongly eliminate”, wheny; = 0, namely,
theith element should have large probability of being elimidasee Fig. 1aPattern 1: “weakly eliminate”, when
v; = 1, namely, it takes small probability of being eliminatedc¢hese of sparsity), see Fig. 1Pattern 2: “strongly
plump”, wheny; = 2, namely, it should be plumped up with large probability, §&g 1c. Then according to the
cluster patterns, the mixing weight is chosen by the followingattern selection procedure:
7?, if Pattern 0
™ =4 =, if Pattern1 (2)

1
2 if Pattern 2

7

T

wherer?, 7} and7? are drawn from different Beta distributibn
7 ~ Betae?, f°)
7} ~ Betae!, f1) 3)

w7 ~ Betae?, f?)

1Since Beta distribution is a conjugate prior to Bernoultielihood with p the model parameters.



In order to clarify the dependance between the random \asgakhe distributions forr could be rewritten as

follows:
7Ti|e7f7zji ~p(7ri|e,f,z‘]i) (4)

wheree £ {0, et €2}, £ 2 {f9, f1, f2}.

Fig. 2. Graphic depiction for Bayesian clustered sparsiodeh.

Above all, the overall Bayesian clustered sparsity modaisigollows:

0=woz

w~N(0,a™")

a; ~ Gamma(a,b)

®)

2; ~ Bernoulli(m;)

y~N(@0,a,'T)
ag ~ Gammal(e, d)

wherer; is described by (2) and (3). Moreover, it could be depictedalyraphical model in Fig. 2.

IIl. VARIATIONAL BAYESIAN INFERENCE

In this section, we derive a variational Bayesian (VB) aition [3] to implement the inference for the Bayesian
clustered sparsity model. The main idea of VB is to optimizelower bound of the log marginal likelihood function,
and simultaneously give a maximum for the posterior digtiim. Based on the Bayesian clustered sparsity model

(5), the complete marginal likelihood can be written asdat:

plyM) = / 16d6p(6.y, O] M) (6)

with M = {a,b,¢,d, e, f} the hyperparameters arttl = {«, o, w} the unknown random variables.



In the following, we defing-), the expectation with respect to random variablesi the updated estimation

for random variablez, andy_;, = y — Z#k ziw; ¢, the contribution of thek-th element of sparse signal on the
measuremeny.

A. The VB-E Step

1) Update for w:

q(w) ~

exp (<Z 1np<wz-|ai>>ai> exp ((Inp(yfw. 2. 00)) 2 00)

The posterior ofw can be shown to be multivariate Gaussian distribution, witkan ¢ and variationX:, i.e.,
w ~ N(u,X), with

Y= (A+a(zeToz))?

. (7
n=:ao8Z0"y
where A = diag ) and Z = diag(z). And given the updated valug we can derive
(20"0Z) = (@7 ®) o (227 +diagz o (1 - 2))
Consequently, we can derive the updatedors follows:
w=p (8)
2) Update for z: For each element af, the posterior could be given as
q(z:) ~ exp((Inp(zi[m:)),) exp({In p(y _ [ 2i, wi; @0))w;,a0)
Thus the probability that; = 1 is proportional to
p(zi =1)
A )

~exp (nm)exp (- ()91 6, ~ 2Ty ) )

where(w?) = @w?+0;; with o;; thei-th element of diagonal entries &f The probability that; = 0 is proportional
to

p(zi = 0) ~exp((In(1 — m;))) (20)
where the update for; could be referred in (17) in following subsections.
Thus, the update fot can be easily obtained

=0z = 1) (11)

2Denote(-) if there is only one random variable inside the triangle keac



B. The VB-M Step
1) Update for a: For each element af;, the posterior could be given as

q(a;) ~ p(aila, b) exp((Inp(wilevi))w,)

(12)
~ Gamma (o;]a’, V)
with
I—a 1
a=atg,
2

where the conjugate property between Gamma prior and Gaudsgstribution is used. Thus, the update fqgris
obtained:
di = a'/b' (13)
2) Update for ap:

q(ao) ~ p(aole, d) exp ({(Inp(y|w, 2, ap))w z)

(14)
~ Gamma(ag|c',d")
with
d=c+2
2
gy 0w )P s

2
where the conjugate property between Gamma prior and Gaudsstribution is used. And given the updated value

of w, z, the expectation could be derived:

(ly = @(wo 2)|*)w.2

=y y —2woz) 0Ty + I"[(227) o (ww”) o (8T )1 -
where (zzT) = 227 + diagz o (1 — 2)) and (ww”) = ww” + .
Thus the update fotvy could be obtained:
aog=c/d (16)

3) Update for «r: For each of ther;, given the updated value fof, then we can easily calculate portion of

sparsity pattern effecting om;:
p(Pattern 0 = (1 —2;-1)(1 — Zi41)
p(Pattern 1 =2, 1(1—Z41)+ (1 — Z-1)Zit1
p(Pattern 2 =2, 12,41
Thus the posterior ofrj with j denoting the sparsity pattern, could be written as:
a(rd) ~ p(xl|e?, f7) exp({Inp(zilr))..,)

~ Beta(x!|e!, f)



where
¢’ = ¢’ + p(Patternj)z;
f7 = f7 4 p(Patternj)(1 — ;)
thus
(Inwl) = w(ef) — (el + f7)
(In(1 =) = w(f7) — (el + 1)

where(z) = 2L InT'(z) is a digamma function, and then the updatefprcould be obtained:

(Inm) = p(Patternj)(In )

7 (17)
(In(1 —m;)) = Zp(Pattemj)anu — 7))

C. Summary of the algorithm and acceleration

Given observationy and sensing matri¥, the algorithm could be summarized as Algorithm 1.

Algorithm 1 CS for Cluster Structured Sparse Signals via VB
Initialization The hyperparametets! = {a,b,c,d, e, f}, the pre-estimateay(0) = 'y, 2(0) = L,
criterionC.

a stop

1: repeat

2:  Update unknown parameters via equations (13), (16) and (17)

0 ={a, a7}
3:  Update latent parameters via equations (8) and (11):
z={w,z}

4: until C

At the iterationt, define the residual as

Regt) = [y — 20(t)|
thus
C £ Reit) < \/%O’()

whereoy is the invariance of noise.



1) Comparison to BCS: In the framework of BCS, the inverse problem (reconstrumtis solved by a Sparse
Bayesian Learning (SBL) [24], which has been proven to belkgpto find the unique sparse solution (Theorem
2 and 3 in [24]).

On the other hand, by setting = 1, the proposed model would degenerate into BCS model, i.thowd
consideration on clusters. Roughly, BCS model could beidensd as a special case of Bayesian clustered sparsity
model, where the prior on clusters provides a guidance ofteagsign the priority of choosing bases: “considering
first your neighbors”. While, in BCS model, this priority do@ot exist. Consequently, the performance of the
proposed algorithm is at least as good as that of BCS and thst wase is when all significant entries of sparse
signal are distributed isolated.

2) Acceleration: In the current form, the algorithm requires an inverse probto update the value af, which
is ann x n matrix, and thus requires af(n®) operations. This can be problematic since in cases of |amygtth

of signals,n might be quit large. To alleviate this problem, we computeXhas follows:
= (A+a0(z07®2))""
= (A+ayZd"®Z +diagzo (1 —2)) o (dT®))! (18)
= (B +a®"o)!
where® = ®Z and B = A + diag(z o (1 — %)) o (®7®) which is a diagonal matrix, thus its inverse can be
easily computed by directly inverse the elements locateteatliagonal D = B~'. Then using the inverse identity

property, it has
Y =D - Do (ag'I + ®DPT)" 10D (19)

where matrixa, ' I + ®D®” is with dimension ofin x m, which reduces the operations @(m?), with m < n.

IV. EXPERIMENTS

To distinguish the algorithm proposed in this paper fromftirener CluSS algorithm in [27], for simplicity, we
denote the proposed algorithm as CluSS-VB. All the hypenp&ters are fixed for every experiments as follows:
a=b=c=d=1e—6, (e°, f9) = (1/3,2/3), (e!, 1) = (1/3,1/3) and (2, f?) = (2/3,1/3). The following
experiments are organized as follows. A first glance on thibpeance of CluSS-VB on synthetic cluster structured
sparse signals is given. Afterwards, with respect to thesarapling rate, defined as/s, we compare the recovery
accuracy between CluSS-VB and other state-of-the-art @8rihms, respectively, BP [14], CoSaMP [23], and
Baysian Compressive Sensing (BCS) [22]. Then in order tafyéne performance for mismatched models, we
compare the reconstructions by each of the algorithms withmeenting number of clusters. Meanwhile, the robust
to measurement noises is considered and an applicationabmuresical signal is given.

In the following experiments, all sensing matrix are comstied through Gaussian ensemble with normalized
row vectors. Moreover, if without clarifying, the measursms are corrupted by a white noise with variance

oo = 0.01. Note that the accuracy of reconstruction is evaluatedufitdSNR between original sparse sigAaand
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its reconstructiord:

19l
SNR= 20log,; ——=— (20)
16— 6

A. General view

First, we shall give a glance on the performance of the pregpatgorithm and show the basis selection procedure
during iterations. The original sparse signal is generatitd lengthn = 256, sparsitys = 30 and clusters: = 2,
where cluster information on sizes, locations and numbgrshiosen totally randomly and thus is unknéwn
Moreover, the spikes are randomly generated by Gaussigibdion which coincides with the sparsity model and
only m = 2s = 60 measurements are obtained by random projections.

In Fig. 3, the inference ot andw are shown along with the iterations. Apparently, the reshtiws that basis
choosing priority is considering the neighbors first. Thalfiresult is shown in Fig. 4, where the convergence
evolution for Reét) is also shown. Moreover, the inference for measuremenerini@riances, = 0.0077, which
coincides with the original set, = 0.01.

Meanwhile, we also exploit the other state-of-the-art atgms (BP, CoSaMP, BCS) respectively to reconstruct
the same sparse signal, shown in Fig. 5. From the comparsaept for CluSS-VB, all other algorithms cannot
be able to reconstruct this sparse signal with only= 60 measurements. On the other hand, like BCS, CluSS-VB
can also provide “error bars” for the final reconstructiorhiehh can be used to evaluate the confidence for the

estimation.

1
0.5 0
o -2
0 100 200 0 100 200
1 2 ,ﬂ
05 “ 0 A
0 -2
0 100 200 0 100 200
1
0.5 0 M T A
0 -2
0 100 200 0 100 200
1 7 2 ﬂ
ol JUILJ > ~*,
0 -2
0 100 200 0 100 200
1 - . 2
- I'y
0 = -2
0 100 200 0 100 200

Fig. 3. Inference ok (left column) andw(right column) along with iterations: (from top to bottom) B0, 20, 40, 60 iterations.

3For Block-CoSaMP proposed in [2], it is impossible to regatis kind of cluster structured signals successfully, tng we did not make

comparison with Block-CoSaMP.
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(a) Inference of z
1 T T T T T

0 e AW S i
0 50 100 150 200 250
(b) Recovery of signal

W fr——

50 100 150 200 250

o (c) Convergence of Res(t)
.5 T T T T T

S

0 20 40 60 80 100 120

)

Fig. 4. Performance of CluSS-VB. (a) Inference of latentalde z; (b) Recovery of sparse signal; (c) Convergence of Res(t).

(a) Original Signal

oF T ﬂ n T T =
0 UM /W
oL . . . . o
50 100 150 200 250
(b) Reconstruction with BP
oF T ﬂ W T T T ™
0 ey /W\w‘
2 . . . . .
50 100 150 200 250

(c) Reconstruction with CoSaMP
o
0 AR [/l

-2 . . . . .
50 100 150 200 250

=

(d) Reconstruction with BCS
oF T T T _ﬂ T —
o= =y SRS ?Fﬁ T —
ok L L L . L
0 50 100 150 200 250

(e) Reconstruction with CluSS-VB

Fig. 5. General view of performance of CluSS-VB. (a) Ori¢iSanal, with lengthn = 256, sparsitys = 30 and clusterg: = 2. (b) Recovery
via BP and itsSN R = 7.0449dB; (c) Recovery via CoSaMP and iSN R = 2.8955dB; (d) Recovery via BCS and itSN R = 7.2022dB;
(e) Recovery via CluSS-VB and itSN R = 30.5702dB.

B. Performance with respect to oversampling rate m/s

In order to deeply verify the performance of CluSS-VB, wellsteke into account the oversampling rate/ s,
which determines how many measurements are enough to feaeshiccessful reconstruction. The cluster structured
sparse signals are randomly generated with lemgth 256 and sparsitys = 30, and their nonzero entries drawn
from a Gaussian distribution with zero mean and unit vagafespectively, sparse signals wittcluster and2
clusters are both considered. In each case, for fixed clestastured sparse signal, the number of measurements is

ranging from50 to 150 with step10, and for each step, we run the prograé times with different sensing matrix.
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Fig. 6 shows the corresponding results, where (a) islfatuster case and (b) is f& clusters case. The results
show that CluSS-VB improves both the accuracy and the plofiteconstruction: even with very low oversampling

rate, it can obtain desirable reconstructions.

[ = N N w w
o a =] a S a
T T T T T

SNR between 0 and 0 (dB)

o

—#%— BP
—<— CoSaMP |4
BCS
—&— CluSS-VB||
N ;

=)

2 25 3 35 4 45 5
Oversampling rate m/s

(a) Sparse signal with length = 256, sparsitys = 30, andk = 1 clusters.

1 W ]

N

a
T
N

N
=]
T

SNR between 0 and 0 (dB)
b
5 &

o

—#%— BP
—<— CoSaMP |4
BCS
——=— CIuSS-VB||
N \

. |
35 4 45 5
Oversampling rate m/s

(b) Sparse signal with length = 256, sparsitys = 30, andk = 2 clusters.

Fig. 6. Performance comparison with respect to oversampkite.

C. Robustness to noise

This experiment is to testify the robustness of the perforreaof CluSS-VB to noise (perturbations). Similarly,
considering the sparse signals with length= 256, sparsitys = 30 and clusters: = 2 and with nonzero elements
drawn from Gaussian with zero mean and unit variance, weirobtay m = 100 measurements, corrupted by a
white noise. Let the variance of noise range fregn= 0.01 to og = 0.09, and for each noise level, repeat the
experimentsl 00 times with same sparse signal and sensing matrix, thendeherrecovery SNR. The results are
shown in Fig. 7, and show that the SNR of CluSS-VB is propasdldo the noise bound. Meanwhile, it is shown
that with consideration of cluster structures, CluSS-VBastively improves the recovery accuracy comparing to

other algorithms.
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w
S
N\

N}
o
A\

SNR for recovery: 20 log(|6]]/]|1d — 6]}) (dB)
5
\

%,/
150 %
i #
10F I/ ! —%— BP
e T —<— CoSaMP
3 l BCS
5 1‘ —=— Cluss-vB

14 16 18 20 22 24 26 28 30
SNR for observation: 20 log([ly]|/|lell) (dB)

Fig. 7. Robustness to different level of measurement noise.

D. Effects of clusters. mismatch models

In this section, we will investigate the effects of clustersthe performance of CluSS-VB. Consider the sparse
signals with lengthn = 256 and sparsitys = 30 and with nonzero elements drawn from Gaussian. Let the
number of clusters: range from1 to sparsitys, then for different oversampling rate, namely, measurdémen
m € {60,80,100}, we repeat the experiment§0 times for each number of clusters and each of oversampling
rates. The results are shown in Fig. 8, where it shows thdlt the number of clusters ascending, (1) the SNR of
recovery by CluSS-VB is decreasing, (2) the variance ofvegoby CluSS-VB is increasing, (3) while the SNR
of recovery by other algorithms almost does not change. Bveungh the performance of CluSS-VB is decreasing,
it still outperforms the other algorithms. This result aisplies the robustness to mismatch models for CluSS-VB.
And more interestingly, when the number of clustkrgoes to the sparsity, the performance of CluSS-VB tends

to converge to the performance of BCS, which coincides withdiscussion in section IIl.

E. Experiments on real musical signals

In the last experiment, we apply the proposed algorithm @h meusical signals, which have the property of
cluster structured sparsity if considering signals in ttegjfiency domaih as shown in Fig. 9, where the significant
spectrums are almost clustered together. We choose a clipusic of Mozart played by flute as the test example.
The CS procedure is carried out piecewise with length 256 for each of the pieces. Then varying the number of
measurements obtained by random projections, from |n/2| to [n/5], corrupted by white noises with variance
oo = 0.01, respectively, we use the different algorithms to recoter driginal musical signals piecewise from the
compressed measurements and then concatenate the recpiesres. As shown in Fig. 10, with ontyp = [n/5]
measurements, the spectrograms of recovered signalsvare fgir each algorithm. It is shown that CluSS-VB can

desirably preserve the clusters of the original sparsitiferduppress the isolated spikes, and hence can give better

40ther transforms are not considered since it is not the itapbissue in this experiment.
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Fig. 8. Effects of clusters on the performance.

reconstructions with high recovery SNR. Meanwhile, we rddbe SNR for each of the algorithms with different
level of oversampling rate, shown in Tab. Il. The resultsvgliwat CluSS-VB gives better reconstructions, especially

with lower oversampling rate.
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TABLE Il
RECOVERY SNRFORDIFFERENTNUMBER OF MEASUREMENTS (DB)

Measurements|| [n/2] [n/3] [n/4] [n/5]
BP 12.6384 9.8339 7.3692 5.8631
CoSaMP 10.5388 7.9345 4.8592 4.4899
BCS 13.1023 9.688 7.0389 5.4191
Cluss-vB 12.7616 11.1035 | 9.2251 | 7.5384

L9 50
Wit g A A A
g

LA e 7 A
4000 5000

00
Frequency (Hz)

Fig. 9. Spectrogram of a musical signal.

Frequency (Hz)

Fig. 10. Spectrogram of reconstructions of musical sign&sCIluSS-VB (left-top), BCS (right-top), BP (left-bottgnand CoSaMP (right-
bottom).

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed an algorithm, namely, CluSS-\éBsdive the cluster structured sparse signals from

compressed measurements. Besides sparse prior, clusteopisparsity patterns are considered. Using a stafistica
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Bayesian graphical model, both priors are injected intostesyatical Bayesian framework, where conjugate priors
are exploited and results in an analytical solution from Waeiational Bayesian approach. Unlike the MCMC
re-sampling inference, the global convergence (meansyalwéh energy descending for cost function) of CluSS-
VB is guaranteed. Moreover, roughly, the cluster sparsibdeh could be considered as a generalization of BCS,
and hence CluSS-VB will converge to BCS with mismatched rsdee. spikes of sparse signals are randomly
distributed (without cluster prior).

On the other hand, the theoretical guarantee for the spahson with CluSS-VB is not considered in this paper
and thus still an open problem. Moreover, even though therilfgn is accelerated by reducing the dimension of
the matrix involved into the inverse, an x m inverse problem still need®(m?) operations. Consequently, the

acceleration of the algorithm needs to be considered inuhed works.
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