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Abstract 13 

Mycotoxins in agricultural commodities are a hazard to human and animal health. Their 14 

heterogeneous spatial distribution in bulk storage or transport makes it particularly difficult to 15 

design effective and efficient sampling plans. There has been considerable emphasis on 16 

identifying the different sources of uncertainty associated with mycotoxin concentration 17 

estimations, but much less on identifying the effect of the spatial location of the sampling 18 

points. This study used a two-dimensional statistical modelling approach to produce detailed 19 

information on appropriate sampling strategies for surveillance of mycotoxins in raw food 20 

commodities. The emphasis was on deoxynivalenol (DON) and ochratoxin A (OTA) in large 21 

lots of grain in storage or bulk transport. The aim was to simulate a range of plausible 22 

distributions of mycotoxins in grain from a set of parameters characterising the distributions. 23 

For this purpose, a model was developed to generate data sets which were repeatedly sampled 24 

to investigate the effect that sampling strategy and the number of incremental samples has on 25 

determining the statistical properties of mycotoxin concentration. Results showed that for 26 

most sample sizes, a regular grid proved to be more consistent and accurate in the estimation 27 

of the mean concentration of DON, which suggests that regular sampling strategies should be 28 

preferred to random sampling, where possible. For both strategies, the accuracy of the 29 

estimation of the mean concentration increased significantly up to sample sizes of 40–60 30 

(depending on the simulation). The effect of sample size was small when it exceeded 60 31 

points, which suggests that the maximum sample size required is of this order. Similar 32 
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conclusions about the sample size apply to OTA, although the difference between regular and 33 

random sampling was small and probably negligible for most sample sizes. 34 

 35 

Keywords:- Geostatistical modelling; deoxynivalenol; ochratoxin A; bulk; cereals; sample 36 

size; sampling strategy. 37 

 38 

Introduction 39 

   For consumer health to be effectively protected it is important that consumer exposure to 40 

natural toxic contaminants in food, such as mycotoxins, is minimised. The ability to obtain a 41 

representative sample for analysis, from a raw material or processed product, is critical as 42 

part of a prevention strategy. Previous studies have proved that designing sampling plans for 43 

mycotoxins is particularly problematical because of the heterogeneous distribution of these 44 

contaminants in bulk lots of different commodities (Stroka et al., 2004, Schatzki, 1995a and 45 

1995b and Jewers et al., 1988). Because mycotoxin sampling is time-consuming and 46 

expensive, a limited number of samples are taken to obtain an estimate of the mean 47 

concentration. Normal practice is to take several small quantities of the commodity, known as 48 

incremental samples, from different locations (European Commission, 2005). These are 49 

mixed together to form the aggregate sample, from which a portion is extracted for analysis. 50 

In this paper, the process of collecting several incremental samples is referred to as sampling, 51 

the set of discrete incremental samples is called the sample, and the number of incremental 52 

samples is the sample size.  53 

   Previous studies have looked at the complexities associated with the estimation of the mean 54 

mycotoxin concentration in bulk commodities. For example, Johansson et al. (2006) looked 55 

at the distribution of fumonisin and aflatoxin concentration in maize. They divided test maize 56 

samples into damaged kernels, whole kernels and other materials and found that toxins were 57 

concentrated in the poor quality components. As a result, they suggested that analyses in 58 

smaller samples of poor quality components of the sample provided a better prediction of the 59 

level of these mycotoxins in the bulk lot. Whitaker (2003) investigated the sources of error in 60 

the mycotoxin test procedure for aflatoxin in raw shelled peanuts and described it as the 61 

combination of number of errors including at sampling, sample preparation method, and 62 

analytical method stages. In his study, the sampling step was identified as the largest source 63 

of error. Other studies have looked at the coefficients of variation in relation to sampling, 64 

sample preparation and analysis for different aflatoxins (Whitaker, 2004, Whitaker 2006 and 65 

Whitaker and Wiser, 1969) and proved that the type of commodity affects the variation in 66 
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percentage error at the sampling stage. Coker et al. (1995) reviewed the complexities 67 

associated with the design of sampling plans for different commodity types, sample 68 

composition, sample preparation method, analytical sample and batch acceptance level. Their 69 

review concluded that approximately 100 incremental samples are required to obtain a 10 kg 70 

representative aggregate sample in commodities composed of large particles. For oilseed 71 

cakes and meal, fifty incremental samples are sufficient to obtain a representative 5 kg 72 

aggregate sample. Miraglia et al. (2005) identified another source of error associated with the 73 

sampling steps. They divided the sampling procedure into primary and secondary sampling. 74 

The primary sampling focuses on determining where, why and when to take samples along 75 

the food chain. The secondary sampling aims at determining and establishing how samples 76 

should actually be collected, and more importantly how many samples to take to obtain a 77 

representative sample. Other studies have identified the difficulties of sampling the spatial 78 

aggregation of plant disease and have proposed different methodologies to address this 79 

limitation (Maanen and Xu, 2003). Macarthur et al. (2006) identified the need to design 80 

adequate sampling programmes that take into account the heterogeneity in the spatial 81 

distribution of mycotoxins so that decisions on acceptance/rejection of contaminated lots are 82 

more accurate. Whitaker (2006) discussed methods to reduce sampling error and stated that 83 

these methods should focus on defining the number of samples required to obtain a specific 84 

level of confidence on the mean mycotoxin concentration and on determining the location of 85 

the samples to be taken so the likelihood of detecting the mycotoxins is maximised. 86 

There has been considerable emphasis on identifying the different sources of 87 

uncertainty associated with mycotoxin concentration estimations, but much less on 88 

developing the statistical basis for robust sampling plans that account for the spatial 89 

distribution of the mycotoxins in bulk commodities. Recent studies (Rivas Casado et al., 90 

2009 and Parsons et al., 2007) have looked at the potential of geostatistics to characterise the 91 

spatial distribution of deoxynivalenol (DON) and ochratoxin A (OTA). Results showed that 92 

while no spatial structure could be identified for OTA due to its random occurrence, 93 

geostatistics was a useful tool to describe the spatial distribution of DON. Some studies have 94 

successfully looked at the application of geostatistics to characterise the spatial structure of 95 

Apergillus flavus in soil (Orum et al., 1999), fusarium crown and root rot in tomatoes (Rekah 96 

et al., 1999), plant pathogens in diseased plants (Chellemi et al., 1988), the downy mildew 97 

pathogen (Peronospora parasitica) in cabbage (Stein et al., 1994) and citrus tristeza virus 98 

(Gottwald et al. 1996). 99 
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This study used a two-dimensional statistical modelling approach to produce detailed 100 

information on sampling strategies for surveillance of mycotoxins in raw food commodities. 101 

The emphasis was on DON and OTA in large lots of grain.  102 

 103 

Materials and Methods 104 

   The model was developed using the R statistical programming language (R Development 105 

Core Team, 2007) to investigate the effect that sample size and strategy have on determining 106 

the mean concentration of DON and OTA in bulk commodities. The method was divided in 107 

four sequential steps: generation of mycotoxin concentration data, spatial distribution of the 108 

generated data, repeated generation of samples and assessment of the performance of each 109 

sample size and strategy combination. The model was then run for a range of scenarios.  110 

 111 

Data generation 112 

Rivas Casado et al. (2009) analysed the spatial structure of DON and OTA in a 26 t 113 

truck of wheat with a total of 100 sampled points, from a data set collected by Biselli et al. 114 

(2005). The results showed that the distribution of DON was best described by a log-normal 115 

distribution of mean 1342 µg kg
-1 

and standard deviation 340, and presented spatial structure. 116 

In contrast, OTA was best described by an exponential distribution with mean 0.57 µg kg
-1

 117 

and standard deviation 1.13, and was randomly distributed in space. Rivas Casado et al. 118 

(2009) used geostatistical techniques to investigate the spatial distribution of DON in the 119 

truck in more detail. 120 

Geostatistics analyses the spatial structure of a variable (in this case mycotoxin 121 

concentration) using the variogram, a graph that relates the distance between any two points, 122 

known as the lag distance, with their semivariance (Figure 1). Generally, points close 123 

together have more similar values than those farther apart, giving low semivariance, or 124 

conversely high autocorrelation, at short lag distances. Each variogram can be described by a 125 

set of parameters: the sill, the range and the nugget. The sill is the a priori variance, σ2
, of the 126 

process and is generally assumed to be equal to the variance of the population (Barnes, 1991). 127 

The range is the point at which the semivariance approaches the sill, so the autocorrelation 128 

between pairs of points becomes 0, marking the limit of spatial dependence: points farther 129 

apart than this lag distance are spatially independent. The nugget is the semivariance at a lag 130 

distance of 0, and identifies the measurement error and the variations that occur over lag 131 

distances less than the shortest sampling interval (Webster and Oliver, 2000). Geostatistical 132 
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analysis is more effective when the variable has a normal (Gaussian) distribution. For this 133 

purpose, the data were log transformed (natural log) to meet the normality requirement. The 134 

results showed that the spatial structure of DON could be described by a variogram with 135 

range 4.35 m, sill 0.07 and nugget 0.013. The spatial structure defined by these parameters 136 

was assumed to be representative of DON in bulk commodities, in the absence of other data, 137 

and was therefore used as a reference condition for data generation. 138 

Two different procedures for data generation were used based on the findings 139 

described by Rivas Casado et al. (2009): classical statistics for OTA and geostatistics for 140 

generation of DON concentration. The classical statistics procedure allowed the generation of 141 

random deviates of an exponential distribution with a density function: 142 

 143 

 




<

≥
=

−

0,0

0,
);(

x

xe
xf

xλλ
λ  (1) 144 

 145 

where x is the concentration of the mycotoxin and λ (λ > 0) is the rate parameter estimated 146 

through maximum likelihood (Equation 2) 147 

 148 

 x

1
=λ  (2) 149 

 150 

where x  is the sample mean concentration. This only required the mean concentration of the 151 

mycotoxin as an input parameter for the generation of data.  152 

The geostatistical procedure generated simulations of normal random fields for the 153 

given variogram parameters. This was implemented using the geoR and RandomFields 154 

packages from the R programming language (R Development Core Team, 2007). This 155 

procedure required values for the sill, the range and the mean of the DON population to be 156 

generated. It was assumed that the data represented values that had been transformed to give 157 

a normal distribution, for example by a log transform, so the mean and sill should be those of 158 

the transformed data. The results were transformed back to the original units for 159 

interpretation. The procedure could not fully control the properties of the simulated 160 

population due to processes for random generation of values, so several were generated for 161 

each set of parameters, then the variogram for each was displayed and compared to the target 162 

variogram to select the one that best represented the target spatial distribution. 163 
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 164 

Spatial distribution 165 

The sampled area was always represented by a 1 unit x 1 unit square, which could be 166 

scaled to the required dimensions. The data values were generated on a regular grid of 2500 167 

points (50 x 50) in this area according to the chosen spatial distribution. For OTA, the 168 

generated values were randomly assigned to the grid points. For DON, the values were 169 

distributed in the space according to the specified sill and range values. The grf function from 170 

the RandomFields package in R was used for this purpose. This function generates 171 

simulations of normal random fields and distributes them in a unit square accordingly to a 172 

given a set of variogram parameters. The generated data set was treated as the true 173 

representation of DON or OTA concentration in a bulk commodity from which samples were 174 

to be taken. 175 

For each set of parameters for either the geostatistical or classical method, M data sets 176 

were generated, where M was usually set at 30. The variability of the realisations generated 177 

was derived from these M simulations (Figure 2). 178 

 179 

Repeated generation of samples 180 

The simulated distribution was sampled using different sample sizes and two 181 

sampling strategies, regular square grid and random, to derive statistics to allow them to be 182 

compared. Each sample size between 4 and 100 was then selected R times per simulation, 183 

where R was fixed at 30. For random sampling, the required number of values was drawn 184 

from randomly selected points, so all sample sizes between 4 and 100 were possible, and 185 

repetition used new random samples. For regular grids, the only sample sizes considered 186 

were those that formed squares, that is the nine regular grids with 2–10 points in each 187 

direction giving 4, 9, 16, 25, 36, 49, 64, 81 and 100 points. In this case, repeated samples 188 

from the same distribution were taken by changing the origin of the grid. There were thus a 189 

total of 87300 (30 x 97 x 30) and 8100 (30 x 9 x 30) automated results for the random and 190 

regular grid sampling strategies respectively (Figure 2).  191 

 192 

Assessment of the performance of sample size-strategy combinations 193 

Two statistics must be considered for the quantification of sample and population 194 

differences: accuracy and precision. Accuracy is measured by the bias b, which is the 195 

difference between the sample mean concentration µ̂  and the population mean concentration 196 
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µ. (Equation 3). If the mean of the sample is equal to the mean of the population, then µ̂  is 197 

said to be unbiased, otherwise it is said to be biased 198 

 199 

µµ −= ˆb  (3) 200 

 201 

Precision is the degree of mutual agreement between all the points in the sample and 202 

is estimated by the standard deviation of the sample σ̂ : 203 

 204 

1
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ˆ
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−

−
=
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n
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σ

n

i

i

 (4) 205 

 206 

The performance of each of the combinations of sample size and sampling strategy 207 

was assessed using the Root Mean Squared Error (Equation 5). This statistic combines 208 

accuracy and precision. The smaller the RMSE, the better the estimation of the sample mean. 209 

The RMSE has the advantage of having the same units as the variable under study (µg kg
-1

). 210 

 211 

22ˆ bRMSE += σ  (5) 212 

 213 

A set of RMSEinr where i is the simulation number (1 ≤ i ≤ 30), n is the sample size 214 

(4 ≤ n ≤ 100) and r is the repetition (1 ≤ r ≤ 30) was obtained by repeatedly calculating 215 

RMSE values for a specific sample size. The distribution of RMSE values is approximately 216 

normal when more than 30 repetitions are calculated (Cochran, 1953) and therefore, 217 

confidence intervals can be calculated. The size of the confidence interval for each sample 218 

size and strategy was calculated by multiplying the standard error of the 30 RMSE values by 219 

the standard normal value c for a specified probability level. To model the effect that the 220 

sample size had on the RMSE, a locally weighted regression smoothing (LOESS) function 221 

(Higgins, 2004) was fitted to the RMSE confidence interval with the sample size as the 222 

independent variable.  223 

 224 

Level of contamination 225 

The analysis was repeated using three different means, for both DON and OTA, to 226 

have a representative result for a range of concentrations. The selected concentrations were 227 
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below, close and above the maximum level of DON (1250 µg kg
-1

) and OTA (5 µg kg
-1

)
 
set 228 

by the European Commission (European Commission, 2006). For DON the model was run 229 

with log-normal DON data sets with mean 6.43, 7.14 and 7.82, that is loge625 µg kg
-1

, 230 

loge1261 µg kg
-1

 and loge2490 µg kg
-1

, respectively. For OTA, the model was run with 231 

concentrations 0.6 µg kg
-1

 (found in the data from Biselli et al. 2005), 5 µg kg
-1

 and 232 

10 µg kg
-1

. The spatial structure parameters found in the data from Biselli et al. were used as 233 

reference values to generate DON data for any of the three mean concentrations considered. 234 

The variogram parameters used were sill 0.07, range 4 m, and nugget 0.  235 

A total of 30 simulations (M=30) of log-normal DON data sets with mean 7.14 and 30 236 

simulations of exponential OTA data sets with mean 0.6 µg kg
-1

 were generated to assess the 237 

reliability of the methods for data generation. The results showed that there was little 238 

variation between simulation, so subsequently only one was run for each set of parameters. 239 

 240 

Results 241 

 242 

For DON, the results for the assessment of the reliability of the geostatistical method 243 

for data generation showed that the approximations to the requested population mean and 244 

standard deviation were close to the target values: for the 30 simulations the average of the 245 

population mean was 7.15, which was close to the 7.14 target mean. The maximum and 246 

minimum population mean obtained were 7.26 and 7.00, respectively. The standard deviation 247 

(σ = 0.27) obtained was also very close to the target value (σ = 0.23), this being determined 248 

by the sill of the spatial structure.  249 

The simulated DON spatial structure showed that the nugget and the sill were close to 250 

the required values. The mean sill was 0.069 with a standard deviation of 0.0068 which was 251 

very close to the 0.07 target. This was consistent with the results obtained for the standard 252 

deviation of the population. The mean nugget was 0.0010 with a standard deviation of 0.0037 253 

which was also very close to the 0 target nugget.  The values of the range did not accurately 254 

adjust to the target value. The mean range obtained for the 30 repetitions was 0.165 units with 255 

a standard deviation of 0.056, which differed considerably from the target value of 0.4 units.  256 

For OTA and a target mean of 0.6 µg kg
-1

, the thirty simulations  had a mean value of 257 

0.602 µg kg
-1

 and a standard deviation of 0.012. This showed that there was little variation 258 

between generated data sets for the same target value.  259 
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For both cases, the statistics derived by repeated sampling from different simulations 260 

with the same parameters differed little between simulations. As noted above, it was 261 

concluded that it was sufficient to generate one simulated population for each set of 262 

parameters. 263 

The RMSE changed in proportion to the mean concentration. For example, for the 264 

simulation of DON with mean concentration of 625 µg kg
-1

 and for different samples, the 265 

RMSE was 90–300 µg kg
-1

 (14–48% of the mean) and for the simulation with mean 266 

concentration of 2490 µg kg
-1

 it was 300–1100 µg kg
-1

 (12–44%). Similar results were seen 267 

for OTA. 268 

The general pattern observed for the majority of the LOESS equations fitted showed a 269 

decrease in the slope of the curve at 40–60 samples (Figure 3), beyond which the RMSE did 270 

not decrease as significantly for each increment in the sample size. The RMSE is made up of 271 

the sample standard deviation and the bias. The bias should tend to 0 when increasing the 272 

sample size and therefore the main contribution to the RMSE for large samples is the 273 

standard deviation of the sample. For sample sizes close to the population size, the RMSE 274 

would be very close to the standard deviation of the population and no further gain in 275 

accuracy could be obtained. This point was reached at 40–60 samples.  276 

For DON, the graphs of RMSE + 95% confidence interval (Figure 4a) showed that the 277 

results of regular grid sampling were more consistent than random sampling. For a given 278 

sample size, the RMSE for random sampling was sometimes as low as or lower than that for 279 

regular grid sampling, but in most cases it was higher. This is probably the result of bias 280 

introduced by clusters of relatively closely spaced, and therefore correlated, points. This 281 

suggests that it is better to use regular grid sampling strategies when spatial structure is 282 

expected for the mycotoxin concentration. For OTA (Figure 4b), the difference between the 283 

strategies was small. The scatter-plots for the RMSE + 95% confidence interval showed 284 

overlapping results for the two methods. In general, for the OTA data sets the difference 285 

between the two sampling strategies was negligible. 286 

 287 

Discussion 288 

 289 

The assumptions made in the model and its limitations, particularly the distributions 290 

used, must be considered when interpreting the results and should be verified in practice.  291 
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The model was reliable at generating data sets with the target DON and OTA mean 292 

concentration. However, in some cases the model failed to reproduce the target spatial 293 

structure for DON. When the maximum range value generated was below the target range, a 294 

less smooth spatial distribution than intended was generated. In general this would be 295 

expected to reduce the differences between random and regular sampling, and to increase the 296 

bias. Despite this, clear differences were found between the two sampling methods. If the 297 

intention in future was to simulate a particular observed distribution, this could be done by 298 

increasing the target value of the range until the result from the simulated data matched the 299 

observation. In this case the aim was to examine a range of possible distributions. Consistent 300 

results were obtained across all mean concentrations, and contrasts were found between 301 

random and regular sampling. 302 

For both strategies and both mycotoxins, the accuracy of the estimation of the mean 303 

concentration increased significantly up to sample sizes of 40–60 (depending on the 304 

simulation). The effect of sample size was small when it exceeded 60 points, which suggests 305 

that the maximum sample size required is of this order. European Commission regulations 306 

specify 60 incremental samples from grain lots of 10–20 t and 100 incremental samples from 307 

lots over 20 t (European Commission, 2005). The model results show that these would be 308 

adequate in the cases simulated. On this basis, there is no evidence to recommend either a 309 

reduction or an increase in the number of incremental samples. These results are also 310 

consistent with the findings of Coker et al. (1995) that 50–100 samples are required for 311 

different aggregate sample masses. 312 

The model was designed to simulate lots of the order of 10–100 t. There is no 313 

evidence on the spatial structure at smaller or larger scales so the results should not be 314 

extended at these scales without further data collection and analysis. 315 

The samples used in the simulation are idealised: each is the exact value at a single 316 

point, and the mean is calculated precisely. In practice each incremental sample takes a small 317 

mass of grain, these are mixed and the concentration is measured in a subsample. Thus there 318 

are two additional sources of error: the difference between finite incremental samples and 319 

point measurements, and the difference between the mean of the idealised samples and the 320 

concentration measured from the aggregated sample. The effects of mixing and subsampling 321 

have been investigated by Whitaker (2004, 2006), and should be considered when examining 322 

the total uncertainty. The mass of an incremental sample is normally 0.1–1.0 kg, which 323 

implies that the dimensions are of the order of 0.1 m. This is small compared to the scale at 324 
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which the model is intended to operate. It is therefore reasonable to treat the incremental 325 

samples as point measurements. 326 

The random sampling method in the model is truly random: all points are equally 327 

likely to be sampled, independent of which others have been selected. In practice, when 328 

someone samples from a bed of grain, they are unlikely to take two samples very close 329 

together, so real sampling behaviour is likely to be intermediate between random sampling 330 

and regular grid sampling. 331 

The model was based on a single set of data for DON and OTA. Further research 332 

would be needed before drawing more general conclusions. 333 

The model does not consider the variation in mycotoxin concentration with depth, but 334 

only in two horizontal dimensions, because no data were available. Indeed, sampling using a 335 

conventional sample spear aggregates over the depth from one point on the surface. The data 336 

used to develop the model came from this type of sampling, so it is intended to be an 337 

empirically based representation of normal practice. Recent works on geostatistical science 338 

provide a methodology to develop 3D geostatistical models (Culshaw, 2005 and 339 

Stavropoulou et al., 2007) and could be applied to mycotoxin concentration, if suitable data 340 

sets were collected.  341 

 342 

Conclusions 343 

 344 

The model focused on the effect that the sampling protocol has on determining the 345 

statistical properties of mycotoxin concentration. The conclusions drawn in this study must 346 

be understood as preliminary outcomes of the model. The assumptions made in the 347 

development of the model and its limitations must be considered when interpreting the 348 

conclusions. 349 

This study showed that the accuracy of the estimation of the mean concentration 350 

increased significantly up to sample sizes of 40–60, which is consistent with the number of 351 

incremental samples taken from bulk lots under EU regulations. This applied to both spatially 352 

structured and randomly distributed data across the range of mean concentrations used. 353 

A regular grid proved to be more consistent and accurate in the estimation of the 354 

mean concentration where there was spatial structure (DON). The difference between the two 355 

sampling strategies was negligible for randomly distributed data (OTA). This suggests that 356 

regular sampling strategies should be preferred to random sampling, where possible. 357 

 358 
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Figure 1. Example of a variogram function showing the sill, range and nugget parameters. 

 

Figure 2. The iterative process followed by the model. 

 

Figure 3. Example of the changes in the value of RMSE (µg kg
-1

) from sample size 4–100 

observed for DON for random (a) and regular (b) sampling strategies. The model was run to 

simulate a bulk commodity with mean DON concentration 7.14 (loge1260 µg kg
-1

) and a 

spatial distribution described by a variogram with range 4 m, sill 0.07 and nugget 0. The final 

simulated values were mean 6.5, range 3.66, sill 0.067 and nugget 0.0091.  

 

Figure 4. Example of the changes in the value of the RMSE plus the upper 95% confidence 

interval (µg kg
-1

) from sample size 4–100 obtained for the random and regular grid sampling 

strategies. The model was run to simulate a bulk commodity with (a) a mean DON 

concentration of 7.14 (loge1260 µg kg
-1

) and a spatial distribution described by a variogram 

with range 4 m, sill 0.07 and nugget 0; and (b) a mean OTA concentration of 0.6 µg kg
-1

 and 

random spatial distribution. The final simulated values were mean 6.5, range 3.66, sill 0.067 

and nugget 0.0091 for DON and mean 0.577 for OTA.  
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