
HAL Id: hal-00573591
https://hal.science/hal-00573591

Submitted on 4 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Dynamic Speed Scaling
Susanne Albers

To cite this version:
Susanne Albers. Algorithms for Dynamic Speed Scaling. Symposium on Theoretical Aspects of
Computer Science (STACS2011), Mar 2011, Dortmund, Germany. pp.1-11. �hal-00573591�

https://hal.science/hal-00573591
https://hal.archives-ouvertes.fr

Algorithms for Dynamic Speed Scaling ∗

Susanne Albers
1

1 Humboldt-Universität zu Berlin

Department of Computer Science

Unter den Linden 6, 10099 Berlin, Germany

albers@informatik.hu-berlin.de

http://www2.informatik.hu-berlin.de/˜albers/

Abstract

Many modern microprocessors allow the speed/frequency to be set dynamically. The general

goal is to execute a sequence of jobs on a variable-speed processor so as to minimize energy

consumption. This paper surveys algorithmic results on dynamic speed scaling. We address

settings where (1) jobs have strict deadlines and (2) job flow times are to be minimized.

2010 Mathematics Subject Classification 68Q25, 68W27, 68W40, 90B35

Keywords and phrases Competitive analysis, energy-efficiency, flow time, job deadline, offline

algorithm, online algorithm, response time, scheduling, variable-speed processor.

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.1

1 Introduction

Energy has become a scarce and expensive resource. There is a growing awareness in society

that energy conservation and an efficient energy use are important issues. Power dissipa-

tion is also critical in computer systems. Electricity costs impose a substantial strain on

the budget of data and computing centers. Google representatives report that if power

consumption continues to grow, power costs can easily overtake hardware costs by a large

margin [11]. In this context engineers are interested in low power rather than speed [30].

Moreover, energy-efficiency is a concern in portable and battery-operated devices that have

proliferated in recent years. An effective energy use can considerably prolong the lifetime of

a battery and hence the availability of a system.

A relatively new and very promising technique to save energy in computer systems is

dynamic speed scaling. Chip manufacturers such as Intel, AMD and IBM produce mi-

croprocessors that can run at variable speed. Examples are the Intel SpeedStep and the

AMD PowerNow. High speeds result in high performance but also high energy consump-

tion. Lower speeds save energy but performance degrades. In dynamic speed scaling the

processor speed is adjusted based on demand and performance constraints. The goal is to

minimize energy consumption, while still providing a desired quality of service. The past

years have witnessed considerable research interest in dynamic speed scaling. In this paper

we survey results that have been developed in the algorithms community.

The well-known cube-root rule for CMOS devices states that the speed s of a device is

proportional to the cube-root of the power or, equivalently, that power is proportional to s3.

The algorithms literature considers a generalization of this rule. If a processor runs at speed

s, then the required power is P (s) = sα, where α > 1 is a constant. Most algorithms papers

∗ Work supported by a Gottfried Wilhelm Leibniz Award of the German Research Foundation.

© Susanne Albers;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 1–11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Algorithms for Dynamic Speed Scaling

consider this power function P (s); some even work with more generalized convex functions.

Obviously, energy consumption is power integrated over time.

Dynamic speed scaling leads to many challenging scheduling problems. The general

goal is to execute a sequence of jobs on a variable-speed processor so as to optimize energy

consumption and, possibly, a second objective. However, problems in speed scaling are more

complex than those in standard scheduling: At any time a scheduler has to decide not only

which job to execute but also which speed to use.

There has recently been considerable research interest in the design and analysis of

dynamic speed scaling algorithms. The algorithms literature so far focuses mostly on two

scenarios. In a first scenario jobs have strict deadlines and a scheduler has to construct

feasible schedules minimizing energy consumption. We review important results for this

setting in Section 2. In a second scenario jobs have no deadlines but their response times

or flow times are to be minimized, measuring the responsiveness of a system. Here one has

to combine energy minimization and flow time minimization. We present results for this

scenario in Section 3.

For the various scenarios, two problem settings are of interest. In the offline setting all

jobs to be processed are known in advance. Here one is interested in complexity results

and fast polynomial time algorithms for computing optimal or nearly optimal schedules.

In the online setting jobs arrive over time and an algorithm, at any time, has to make

scheduling decisions without knowledge of any future jobs. Online strategies are evaluated

using competitive analysis [33]. An online algorithm ALG is called c-competitive if for

every input, i.e. for any job sequence, the objective function value (typically the energy

consumption) of ALG is within c times the value of an optimal solution for that input.

2 Scheduling with deadlines

In a seminal paper, initiating the algorithmic study of speed scaling, Yao, Demers and

Shenker [34] investigated a scheduling problem with strict job deadlines. It is by far the

most extensively studied speed scaling problem.

Consider n jobs J1, . . . Jn that have to be processed on a variable-speed processor. Each

job Ji is specified by a release time ri, a deadline di and a processing volume wi. The

release time and the deadline specify the time interval [ri, di] during which the job must be

executed. The job may not be started before ri and must be finished until di. The processing

volume wi is the amount of work that must be completed to finish the job. Intuitively wi

can be viewed as the total number of CPU cycles required by the job. The processing time

of the job depends on the processor speed. If Ji is executed at speed s, then it takes wi/s

time units to finish the task. Preemption of jobs is allowed, i.e. the processing of a job may

be stopped and resumed later. The goal is to construct a feasible schedule minimizing the

total energy consumption

Yao, Demers and Shenker [34] make two simplifying assumptions. (1) There is no upper

bound on the allowed processor speed. Hence a feasible schedule always exists. (2) The

processor has a continuous spectrum of speeds. In the following we will present algorithms

for this enhanced model. Then we will discuss how to relax the assumptions.

2.1 Basic algorithms

Yao et al. [34] developed elegant online and offline algorithms. We first present the offline

strategy, which knows all the jobs along with their characteristics in advance. The algorithm

is known as YDS , referring to the initials of the authors. Algorithm YDS computes a

Susanne Albers 3

minimum energy schedule for a given job set in a series of rounds. In each round the

algorithm identifies an interval of maximum density and computes a corresponding partial

schedule for that interval. The density ∆I of a time interval I = [t, t′] is the total processing

volume to be completed in I divided by the length of I. More formally, let SI be the set of

jobs Ji that must be processed in I, i.e. that satisfy [ri, di] ⊆ I. Then

∆I =
1

|I|
∑

Ji∈SI

wi.

Intuitively, ∆I is the minimum average speed necessary to complete all jobs that must be

scheduled in I.

In each round, YDS determines the interval I of maximum density. In I the algorithm

schedules the jobs of SI at speed ∆I according to Earliest Deadline First (EDF). The EDF

policy always processes the job having the earliest deadline among the available unfinished

jobs. Then YDS removes the set SI as well as the time interval I from the problem instance.

More specifically, for any unscheduled job Ji with di ∈ I, the new deadline is set to di := t.

For any unscheduled Ji with ri ∈ I, the new release time is ri := t′. Time interval I is

discarded. A summary of YDS in pseudo-code is given below.

Algorithm YDS: Initially J := {J1, . . . , Jn}. While J 6= ∅, execute the following two

steps. (1) Determine the interval I of maximum density. In I process the jobs of SI at

speed ∆I according to EDF . (2) Set J := J \ SI . Remove I from the time horizon and

update the release times and deadlines of unscheduled jobs accordingly.

The algorithm computes optimal schedules.

◮ Theorem 2.1. [34] For any job instance, YDS computes an optimal schedule minimizing

the total energy consumption.

Obviously, the running time of YDS is polynomial. When identifying intervals of max-

imum density, the algorithm only has to consider intervals whose boundaries are equal to

the release times and deadlines of the jobs. Hence, a straightforward implementation of the

algorithm has a running time of O(n3). Li et al. [29] showed that the time can be reduced

to O(n2 log n). Further improvements are possible if the job execution intervals form a tree

structure [27].

In the online version of the problem, the jobs J1, . . . , Jn arrive over time. A job Ji

becomes known only at its arrival time ri. At that time the deadline di and the processing

volume wi are also revealed. Recall that an online algorithm ALG is c-competitive if, for

any job sequence, the total energy consumption of ALG is at most c times that of an optimal

offline algorithm OPT .

Yao et al. [34] devised two online algorithms, called Average Rate and Optimal Available.

For any incoming job Ji, Average Rate considers the density δi = wi/(di − ri), which is the

minimum average speed necessary to complete the job in time if no other jobs were present.

At any time t the speed s(t) is set to the accumulated density of jobs active at time t. A

job Ji is active at time t if t ∈ [ri, di]. Available jobs are scheduled according to the EDF

policy.

Algorithm Average Rate: At any time t the processor uses a speed of s(t) =
∑

Ji:t∈[ri,di] δi.

Available unfinished jobs are scheduled using EDF .

Yao et al. [34] proved an upper bound on the competitiveness.

◮ Theorem 2.2. [34] The competitive ratio of Average Rate is at most 2α−1αα, for any

α ≥ 2.

STACS’11

4 Algorithms for Dynamic Speed Scaling

Bansal et al. [3] demonstrated that the analysis is essentially tight by giving a nearly

matching lower bound.

◮ Theorem 2.3. [3] The competitive ratio of Average Rate is at least ((2 − δ)α)α/2, where

δ is a function of α that approaches zero as α tends to infinity.

The second strategy Optimal Available is computationally more expensive than Average

Rate. It always computes an optimal schedule for the currently available work load. This

can be done using YDS .

Algorithm Optimal Available: Whenever a new job arrives, compute an optimal schedule

for the currently available unfinished jobs.

Bansal, Kimbrel and Pruhs [7] analyzed the above algorithm and proved the following

result.

◮ Theorem 2.4. [7] The competitive ratio of Optimal Available is exactly αα.

The above theorem implies that in terms of competitiveness, Optimal Available is better

than Average Rate. Bansal et al. [7] also developed a new online algorithm, called BKP

according to the initials of the authors, that approximates the optimal speeds of YDS by

considering interval densities. For times t, t1 and t2 with t1 < t ≤ t2, let w(t, t1, t2) be the

total processing volume of jobs that are active at time t, have a release time of at least t1

and a deadline of at most t2.

Algorithm BKP: At any time t use a speed of

s(t) = max
t′>t

w(t, et − (e − 1)t′, t′)

t′ − t
.

Available unfinished jobs are processed using EDF .

◮ Theorem 2.5. [7] Algorithm BKP achieves a competitive ratio of 2(α
α−1)αeα.

For large values of α, the competitiveness of BKP is better than that of Optimal Available.

Bansal et al. [6] gave an algorithm that achieves further improved bounds for small values

of α, i.e. α = 2 and α = 3.

All the above online algorithms attain constant competitive ratios that depend on α but

no other problem parameter. The dependence on α is exponential. For small values of α,

which occur in practice, the competitive ratios are reasonably small. Moreover, results by

Bansal et al. [6, 7] imply that the exponential dependence on α is inherent to the problem.

◮ Theorem 2.6. [6] Any deterministic online algorithm has a competitiveness of at least

eα−1/α.

Even randomized online algorithms have a competitive ratio of Ω((4/3)α), see [7]. An

interesting open problem is to determine the best competitiveness that can be achieved by

online algorithms.

2.2 Speed-bounded processors

The algorithms presented in the last section are designed for processors having available a

continuous, unbounded spectrum of speeds. However, in practice a processor is equipped

with only a finite set of discrete speed levels s1 < s2 < . . . < sd. The offline algorithm YDS

can be modified easily to handle feasible job instances, i.e. inputs for which feasible schedules

Susanne Albers 5

exist using the restricted set of speeds. Feasibility can be checked easily by always using

the maximum speed sd and scheduling available jobs according to the EDF policy. Given a

feasible job instance the modification of YDS is as follows. We first construct the schedule

according to YDS . For each identified interval I of maximum density we approximate the

desired speed ∆I by the two adjacent speed levels sk and sk+1, such that sk < ∆I < sk+1.

Speed sk+1 is used first for some δ time units and sk is used for the last |I| − δ time units in

I, where δ is chosen such that the total work completed in I is equal to the original amount

of |I|∆I . An algorithm with an improved running time of O(dn log n) was presented by Li

and Yao [28].

If the given job instance is not feasible, it is impossible to complete all the jobs. Here

the goal is to design algorithms that achieve good throughput, which is the total processing

volume of jobs finished by their deadline, and at the same time optimize energy consumption.

Papers [4, 15] present algorithms that even work online. At any time the strategies maintain

a pool of jobs they intend to complete. Newly arriving jobs may be admitted to this pool. If

the pool contains too large a processing volume, jobs are expelled such that the throughput is

not diminished significantly. The algorithm with the best competitiveness currently known

is due to Bansal et al. [4]. The algorithm, called Slow-D, is 4-competitive in terms of

throughput and constant competitive with respect to energy consumption. We describe the

strategy.

Slow-D assumes that the processor has a continuous speed spectrum that is upper

bounded by a maximum speed smax. The algorithm always keeps track of the speeds that

Optimal Available would use for the workload currently available. At any time t Slow-D

uses the speed that Optimal Available would set at time t provided that this speed does not

exceed smax; otherwise Slow-D uses smax. The algorithm also considers scheduling times

that are critical in terms of speed. For any t, down-time(t) is the latest time t′ ≥ t in the

future schedule such that the speed of Optimal Available is at least smax. If no such time

exists, down-time(t) is set to the most recent time when smax was used or to 0 if this has

never been the case. Using this definition, jobs are labeled as urgent or slack. These labels

may change over time. A job Ji is called t-urgent if di ≤ down-time(t); otherwise it is called

t-slack. Additionally, Slow-D maintains two queues Qwork and Qwait of jobs it intends to

process. The status of Qwork defines urgent periods. An urgent period starts at the release

time ri of a job Ji if Qwork contained no urgent job right before ri and Ji is an urgent job

admitted to Qwork at time ri. An urgent period ends at time t if Qwork contains no more

t-urgent jobs. Slow-D works as follows.

Algorithm Slow-D: Job arrival: A job Ji arriving at time ri is admitted to Qwork if it

is ri-slack or if Ji and all the remaining work of ri-urgent jobs in Qwork can be completed

using smax. Otherwise Ji is appended to Qwait.

Job interrupt: Whenever a job Ji in Qwait reaches its last starting time t = di −wi/smax,

it raises an interrupt. At this time the algorithm is in an urgent period. Let Jk be the last

job transfered from Qwait to Qwork in the current period. If no such job exists, let Jk be a

dummy job of processing volume zero transfered just before the current period started. Let

W be the total original work of jobs ever admitted to Qwork that have become urgent after

Jk was transfered to Qwork. If wi > 2(wk + W), then remove all t-urgent jobs from Qwork

and admit Ji; otherwise discard Ji.

Job completion: Whenever a job is completed, it is removed from Qwork.

Bansal et al. [4] analyzed the above algorithm and proved the following result.

STACS’11

6 Algorithms for Dynamic Speed Scaling

◮ Theorem 2.7. [4] Slow-D is 4-competitive with respect to throughput and (αα + α24α)-

competitive with respect to energy.

Interestingly, the competitiveness of 4 is best possible, even if energy is ignored, see [12].

2.3 Problem extensions

We consider further extensions of the classical deadline-based scheduling setting.

Sleep states: Irani et al. [22] investigate an extended scenario where a variable-speed

processor may be transitioned into a sleep state. In the sleep state, the energy consumption

is 0 while in the active state even at speed 0 some non-negative amount of energy is consumed.

Hence [22] combines speed scaling with power-down mechanisms. In the standard setting

without sleep state, algorithms tend to use low speed levels subject to release time and

deadline constraints. In contrast, in the setting with sleep state it can be beneficial to speed

up a job so as to generate idle times in which the processor can be transitioned to the sleep

mode. Irani et al. [22] develop online and offline algorithms for this extended setting. For

the online setting an algorithm with an improved competitiveness was presented by Han et

al. [21]; their strategy achieves a competitiveness of αα + 2. Baptiste [9], Baptiste et al. [10]

and Demaine et al. [18] also study scheduling problems where a processor may be set asleep,

albeit in a setting without speed scaling.

Parallel processors: The results presented so far address single-processor architectures.

However, energy consumption is also a major concern in multi-processor environments. Con-

sider a setting with m identical parallel processors. As usual the processing of a jobs may

be preempted at any time. We distinguish two problem variants depending on whether or

not job migration is allowed. If job migration is feasible, then whenever a job is preempted

it may be moved to another processor. In some applications job migration can be an ex-

pensive or undesirable operation, and thus might be infeasible. In any case the goal is to

minimize the total energy consumption on all the processors. Bingham and Greenstreet [13]

showed that if job migration is allowed, the offline problem is polynomially solvable. How-

ever the corresponding algorithm relies on linear programming and, as the authors mention,

the complexity of the algorithm might be too high for most practical applications.

Albers et al. [2] assume that job migration is not allowed. They show that the of-

fline problem is NP-hard, even for unit-size jobs. Albers et al. [2] then develop polynomial

time offline algorithms that achieve constant factor approximations, i.e. for any input the

consumed energy is within a constant factor of the true optimum. They also devise on-

line algorithms attaining constant competitive ratios. Greiner et al. [19] gave a strategy

that converts a c-approximation algorithm for a single processor into a randomized cBα-

approximation algorithm for multiple processors. Here Bα is the α-th Bell number. A

corresponding statement holds for online algorithms.

Lam et al. [24] study deadline-based scheduling on two speed-bounded processors. They

present a strategy that is constant competitive in terms of throughput maximization and

energy minimization.

3 Minimizing flow times

A classical objective in scheduling is the minimization of response times. A user releasing a

task to a system would like to receive feedback, say the result of a computation, as quickly

as possible. User satisfaction often depends on how fast a device reacts. Unfortunately, re-

sponse time minimization and energy minimization are contradicting objectives. To achieve

Susanne Albers 7

fast response times a system must usually use high processor speeds, which lead to high

energy consumption. On the other hand, to save energy low speeds should be used, which

result in high response times. Hence one has to find ways to integrate both objectives.

Consider n jobs J1, . . . , Jn that have to be scheduled on a variable-speed processor. Each

job Ji is specified by a release time ri and a processing volume wi. When a job arrives, its

processing volume is known. Preemption of jobs is allowed. In the scheduling literature,

response time is referred to as flow time. The flow time fi of a job Ji is the length of the time

interval between release time and completion time of the job. We seek schedules minimizing

the total flow time
∑n

i=1 fi.

3.1 Energy plus flow

Albers and Fujiwara [1] proposed the following approach to integrate energy and flow time

minimization. They consider a combined objective function that simply adds the two costs.

Let E denote the energy consumption of a schedule. We wish to minimize g = E +
∑n

i=1 fi.

By multiplying either the energy or the flow time by a scalar, we can also consider a weighted

combination of the two costs, expressing the relative value of the two terms in the total cost.

Albers and Fujiwara [1] concentrate on the setting where all jobs have the same processing

volume. By scaling, one can assume that all jobs have unit-size. They show that opti-

mal offline schedules can be constructed in polynomial time using a dynamic programming

approach.

Most of [1] is concerned with the online setting where jobs arrive over time. Albers and

Fujiwara present a simple online strategy that processes jobs in batches and achieves a con-

stant competitive ratio. Batched processing allows one to make scheduling decisions, which

are computationally expensive, only every once in a while. This is certainly an advantage in

low-power computing environments. Nonetheless, Albers and Fujiwara conjectured that the

following algorithm achieves a better performance with respect to the minimization of g: At

any time, if there are ℓ active jobs, use speed α
√

ℓ. A job is active if it has been released but

is still unfinished. Intuitively, this is a reasonable strategy because, in each time unit, the

incurred energy of (α
√

ℓ)α = ℓ is equal to the additional flow time accumulated by the ℓ jobs

during that time unit. Hence, both energy and flow time contribute the same value to the

objective function. The algorithm and variants thereof have been the subject of extensive

analyses [4, 5, 8, 26], not only for unit-size jobs but also for arbitrary size jobs. Moreover,

unweighted and weighted flow times have been considered.

The currently best result is due to Bansal et al. [5]. They modify the above algorithm

slightly by using a speed of α
√

ℓ + 1 whenever ℓ jobs are active. Inspired by a paper of Lam et

al. [26] they apply the Shortest Remaining Processing Time (SRPT) policy to the available

jobs. More precisely, at any time among the active jobs, the one with the least remaining

work is scheduled.

Algorithm Job Count: At any time if there are ℓ ≥ 1 active jobs, use speed α
√

ℓ + 1. If

no job is available, use speed 0. Always schedule the job with the least remaining unfinished

work.

◮ Theorem 3.1. [5] Job Count is 3-competitive for arbitrary size jobs.

The above result even holds for a very general class of convex power functions. Bansal et

al. [5, 8] study a generalized setting where each job Ji has a weight βi associated with it and

in objective function g the total flow time is replaced by the weighted flow time
∑n

i=1 βifi.

The proposed algorithms rely on the Highest Density First (HDF) policy, i.e. at any time

among the available unfinished jobs the one with the highest density is processed. The

STACS’11

8 Algorithms for Dynamic Speed Scaling

density of a job Ji is the ratio βi/wi of its weight to its work. Bansal et al. [8] introduced a

relaxed objective function consisting of energy plus the fractional weighted flow time of the

jobs. In the fractional weighted flow time measure, at any time a job contributes its weight

times the percentage of unfinished work to the objective. In their first paper Bansal et al. [8]

gave a constant competitive online algorithm for minimizing energy plus fractional weighted

flow. An algorithm achieving a small constant competitive ratio of 2 was shown in the second

paper [5]. This algorithm always applies HDF for job selection and sets the processor power

equal to the total fractional weight of the unfinished jobs. A constant competitive algorithm

for the original objective function of energy plus (integral) weighted flow was shown in [8].

Bansal et al. [4] and Lam et al. [26] propose algorithms for the setting that there is an

upper bound on the maximum processor speed. All the results mentioned so far assume

that when a job arrives, its processing volume is known. Articles [16, 26] investigate the

harder case that this information is not available.

3.2 Problem extensions and modifications

Sleep states: Lam et al. [23] study an extended setting where a variable-speed processor is

equipped with one or several sleep states. The processing time of incoming jobs may or may

not be known. The authors devise online algorithms achieving constant competitive ratios

for minimizing energy plus flow.

Parallel processors: Lam et al. [25] and Gupta et al. [20] investigate scenarios with m

parallel processors. Both articles assume that job migration is not allowed. For identical

processors Lam et al. [25] present a constant competitive online algorithm for minimizing

energy plus flow. The performance ratio even holds against migratory offline schedules.

The corresponding algorithm classifies jobs according to their processing volumes and was

originally proposed by Albers et al. [2]. Gupta et al. [20] consider heterogeneous processors

and study the effect of resource augmentation: If an offline algorithm can run a processor

at speed s and power P (s), then an online algorithm is able to run the processor at speed

(1 + ǫ)s and power P (s), for any given ǫ > 0. Gupta et al. present an online algorithm that

is scalable for minimizing energy plus weighted flow. Here scalable means that the online

cost is upper bounded by O(f(ǫ)) time the optimum cost, where f is a polynomial function

of small degree. Again the result holds for a very general class of power functions. If the

power functions of all the processors are of the form Pi(s) = sαi , 1 ≤ i ≤ m, Gupta et al.

show a O(α2)-competitive algorithm, where α = maxi αi. Hence resource augmentation is

not needed. Chan et al. [17] investigate parallel processor scheduling assuming that jobs

have varying degrees of parallelizability and their processing times are initially unknown.

Limited energy: Pruhs et al. [31] consider another approach to integrate energy and flow

time minimization. More specifically they study a problem where a fixed energy volume E is

given and the goal is to minimize the total flow time of the jobs. Pruhs et al. [31] assume that

all jobs have unit-size. They consider the offline scenario and show that optimal schedules

can be computed in polynomial time. Bunde [14] extends the result to parallel processor

environments and gives an arbitrarily-good approximation for scheduling unit-size jobs. He

also shows that the optimal flow time value cannot be exactly computed on a machine

supporting exact real arithmetic, including the extraction of roots. We remark that in the

framework with a limited energy volume it is hard to construct good online algorithms. If

future jobs are unknown, it is unclear how much energy to invest for the currently available

tasks.

Susanne Albers 9

4 Conclusions

In this paper we have surveyed algorithmic results on dynamic speed scaling, focusing on

settings with strict job deadlines and on the minimization of job flow times. Various papers

have also addressed other scenarios. A basic objective function in scheduling is makespan

minimization, i.e. the minimization of the point in time when the entire schedule ends.

Bunde [9] develops algorithms for single and multi-processor environments. Pruhs et al. [32]

consider tasks having precedence constraints defined between them. They devise algorithms

for parallel processors given a fixed energy volume. In summary, practical applications

motivate the investigation of many further settings and we expect that dynamic speed scaling

continues to be an active area of research.

References

1 S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM

Transactions on Algorithms, 3, 2007.

2 S. Albers, F. Müller and S. Schmelzer. Speed scaling on parallel processors. Proc. 19th

ACM Symposium on Parallelism in Algorithms and Architectures, 289–298, 2007.

3 N. Bansal, D.P. Bunde, H.-L. Chan and K. Pruhs. Average rate speed scaling. Proc. 8th

Latin American Symposium on Theoretical Informatics, Springer LNCS 4957, 240–251,

2008.

4 N. Bansal, H.-L. Chan, T.-W. Lam and K.-L. Lee. Scheduling for speed bounded processors.

Proc. 35th International Colloquium on Automata, Languages and Programming, Springer

LNCS 5125, 409–420, 2008.

5 N. Bansal, H.-L. Chan and K. Pruhs. Speed scaling with an arbitrary power function. Proc.

20th ACM-SIAM Symposium on Discrete Algorithm, 693–701, 2009.

6 N. Bansal, H.-L. Chan, K. Pruhs and D. Katz. Improved bounds for speed scaling in devices

obeying the cube-root rule. Proc. 36th International Colloqium on Automata, Languages

and Programming, Springer LNCS 5555, 144–155, 2009.

7 N. Bansal, T. Kimbrel and K. Pruhs. Speed scaling to manage energy and temperature.

Journal of the ACM, 54, 2007.

8 N. Bansal, K. Pruhs and C. Stein. Speed scaling for weighted flow time. SIAM Journal on

Computing, 39:1294–1308, 2009.

9 P. Baptiste. Scheduling unit tasks to minimize the number of idle periods: a polynomial

time algorithm for offline dynamic power management. Proc. 17th Annual ACM-SIAM

Symposium on Discrete Algorithms, 364–367, 2006.

10 P. Baptiste, M. Chrobak and C. Dürr. Polynomial time algorithms for minimum energy

scheduling. Proc. 15th Annual European Symposium on Algorithms, Springer LNCS 4698,

136–150, 2007.

11 L.A. Barroso. The price of performance. ACM Queue, 3, 2005.

12 S.K. Baruah, G. Koren, B. Mishra, A. Raghunathan, L.E. Rosier and D. Shasha. On-line

scheduling in the presence of overload. Proc. 32nd Annual Symposium on Foundations of

Computer Science, 100–110, 1991.

13 B.D. Bingham and M.R. Greenstreet. Energy optimal scheduling on multiprocessors with

migration. Proc. IEEE International Symposium on Parallel and Distributed Processing

with Applications, 143–152, 2008.

14 D.P. Bunde. Power-aware scheduling for makespan and flow. Journal of Scheduling, 12:489–

500, 2009.

STACS’11

10 Algorithms for Dynamic Speed Scaling

15 H.-L. Chan, W.-T. Chan, T.-W. Lam, K.-L. Lee, K.-S. Mak and P.W.H. Wong. Optimizing

throughput and energy in online deadline scheduling. ACM Transactions on Algorithms, 6,

2009.

16 H.-L. Chan, J. Edmonds, T.-W. Lam, L.-K. Lee, A. Marchetti-Spaccamela and K. Pruhs.

Nonclairvoyant speed scaling for flow and energy. Proc. 26th International Symposium on

Theoretical Aspects of Computer Science, 255–264, 2009.

17 H.-L. Chan, J. Edmonds and K. Pruhs. Speed scaling of processes with arbitrary speedup

curves on a multiprocessor. Proc. 21st Annual ACM Symposium on Parallel Algorithms

and Architectures, 1–10, 2009.

18 E.D. Demaine, M. Ghodsi, M.T. Hajiaghayi, A.S. Sayedi-Roshkhar and M. Zadimoghad-

dam. Scheduling to minimize gaps and power consumption. Proc. 19th Annual ACM Sym-

posium on Parallel Algorithms and Architectures, 46–54, 2007.

19 G. Greiner, T. Nonner and A. Souza. The bell is ringing in speed-scaled multiprocessor

scheduling. Proc. 21st Annual ACM Symposium on Parallel Algorithms and Architectures,

11–18, 2009.

20 A. Gupta, R. Krishnaswamy and K. Pruhs. Scalably scheduling power-heterogeneous pro-

cessors. Proc. 37th International Colloqium on Automata, Languages and Programming,

Springer LNCS 6198, 312–323, 2010.

21 X. Han, T.W, Lam, L.-K. Lee, I.K.-K. To and P.W.H. Wong. Deadline scheduling and power

management for speed bounded processors. Theoretical Computer Science, 411:3587-3600,

2010.

22 S. Irani, S.K. Shukla and R. Gupta. Algorithms for power savings. ACM Transactions on

Algorithms, 3, 2007.

23 T.W. Lam, L.-K. Lee, H.-F. Ting, I.K.-K. To and P.W.H. Wong. Sleep with guilt and

work faster to minimize flow plus energy. Proc. 36th International Colloqium on Automata,

Languages and Programming, Springer LNCS 5555, 665–676, 2009.

24 T.-W. Lam, L.-K. Lee, I.K.-K. To and P.W.H. Wong. Energy efficient deadline scheduling

in two processor systems. Proc. 18th International Symposium on Algorithms and Compu-

tation, Springer LNCS 4835, 476–487, 2007.

25 T.-W. Lam, L.-K. Lee, I.K.-K. To and P.W.H. Wong. Competitive non-migratory schedul-

ing for flow time and energy. Proc. 20th Annual ACM Symposium on Parallel Algorithms

and Architectures, 256–264, 2008.

26 T.-W. Lam, L.-K. Lee, I.K.-K. To and P.W.H. Wong. Speed scaling functions for flow

time scheduling based on active job count. Proc. 16th Annual European Symposium on

Algorithms, Springer LNCS 5193, 647–659, 2008.

27 M. Li, B.J. Liu and F.F. Yao. Min-energy voltage allocation for tree-structured tasks.

Journal on Combintorial Optimization, 11:305–319, 2006.

28 M. Li and F.F. Yao. An efficient algorithm for computing optimal discrete voltage schedules.

SIAM Journal on Computing, 35:658–671, 2005.

29 M. Li, A.C. Yao and F.F. Yao. Discrete and continuous min-energy schedules for variable

voltage processors. Proc. National Academy of Sciences USA, 103, 3983–3987, 2006.

30 J. Markoff and S. Lohr. Intel’s huge bet turns iffy. The New York Times, Septemer 29,

2002.

31 K. Pruhs, P. Uthaisombut and G.J. Woeginger. Getting the best response for your erg.

ACM Transactions on Algorithms, 4, 2008.

32 K. Pruhs, R. van Stee and P. Uthaisombut. Speed scaling of tasks with precedence con-

straints. Theory of Computing Systems, 43:67–80, 2008.

33 D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules. Com-

munications of the ACM, 28:202–208, 1985.

Susanne Albers 11

34 F.F. Yao, A.J. Demers and S. Shenker. A scheduling model for reduced CPU energy. Proc.

36th IEEE Symposium on Foundations of Computer Science, 374–382, 1995.

STACS’11

	Introduction
	Scheduling with deadlines
	Basic algorithms
	Speed-bounded processors
	Problem extensions

	Minimizing flow times
	Energy plus flow
	Problem extensions and modifications

	Conclusions

