Strain-profile determination in ion-implanted single crystals using generalized simulated annealing - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Applied Crystallography Année : 2010

Strain-profile determination in ion-implanted single crystals using generalized simulated annealing

Résumé

A novel least-squares fitting procedure is presented that allows the retrieval of strain profiles in ion-implanted single crystals using high-resolution X-ray diffraction. The model is based on the dynamical theory of diffraction, including a B-spline-based description of the lattice strain. The fitting procedure relies on the generalized simulated annealing algorithm which, contrarily to most common least-squares fitting-based methods, allows the global minimum of the error function (the difference between the experimental and the calculated curves) to be found extremely quickly. It is shown that convergence can be achieved in a few hundred Monte Carlo steps, i.e. a few seconds. The method is model-independent and allows determination of the strain profile even without any ‘guess' regarding its shape. This procedure is applied to the determination of strain profiles in Cs-implanted yttria-stabilized zirconia (YSZ). The strain and damage profiles of YSZ single crystals implanted at different ion fluences are analyzed and discussed.

Dates et versions

hal-00573320 , version 1 (03-03-2011)

Identifiants

Citer

Alexandre Boulle, A. Debelle. Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. Journal of Applied Crystallography, 2010, 43, pp.1046-1052. ⟨10.1107/S0021889810030281⟩. ⟨hal-00573320⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More