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ROLL-OVER-WEB COATING OF PSEUDOPLASTIC

AND VISCOPLASTIC SHEETS USING

THE LUBRICATION APPROXIMATION

Souzanna Sofou and Evan Mitsoulis*
School of Mining Engineering & Metallurgy

National Technical University of Athens

Zografou, 157 80, Athens, Greece

ABSTRACT: The Lubrication Approximation Theory (LAT) is used to provide
numerical results in roll coating over a moving flat web. The Herschel–Bulkley
model of viscoplasticity is used, which reduces with appropriate modifications
to the Bingham, power-law, and Newtonian models. Results are obtained for
such quantities as coating thickness, separation point, and the volumetric flow
rate required for various values of the power-law index (in the case of
pseudoplasticity) and of the Bingham number (in the case of viscoplasticity).
All these values increase substantially with the increasing non-Newtonian
character of the fluid. Yielded and unyielded areas are quantitatively shown for
several cases of viscoplasticity. Pressure gradient and pressure distributions are
given for all cases. Integrated quantities of engineering interest are also
calculated. These include the maximum pressure, the roll/sheet separating force,
and the power input to the roll. These quantities increase substantially and
monotonically in a dimensionless form, as the power-law index decreases or the
Bingham number increases.

KEY WORDS: roll-over-web coating, pseudoplasticity, viscoplasticity, yield stress,
yield line, Herschel–Bulkley model.

INTRODUCTION

ROLL COATING IS a process used in a variety of industries – producing
photographic films, paper and coated products, magnetic recording
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media – for the production of thin layers of specific thickness and final
appearance, coated over a thin moving sheet (sometimes referred to as
the web). This procedure was theoretically introduced by Middleman [1]
and concerns the case where the sheet has the same velocity as the
peripheral roll speed and moves in the same direction (see Figure 1) [1].

Many materials used in roll coating are non-Newtonian, exhibiting
either pseudoplastic (shear-thinning or -thickening) [1] or viscoplastic
(presence of a yield stress) behavior (see, e.g., Bird et al. [2]). Models
describing pseudoplastic behavior include the power-law, Carreau,
Cross, etc. Models describing viscoplastic behavior include the
Bingham, Herschel–Bulkley, and Casson. The Herschel–Bulkley model
has the advantage of reducing – with an appropriate choice of
parameters – to the Bingham, power-law, or Newtonian model.
In simple shear flow, it takes the form ([2]; see also Figure 2):

� ¼ K _��
�� ��n�1

_�� � �y, for j�j > �y, ð1aÞ

_�� ¼ 0, for j�j � �y, ð1bÞ

where � is the shear stress, _�� is the shear rate (¼ du/dy), �y is the
yield stress, K is the consistency index, and n is the power-law index.
Note that when n¼ 1 and K¼� (a constant), the Herschel–Bulkley
model reduces to the Bingham model. When �y¼ 0, the power-law
model is recovered, and when �y¼ 0 and n¼ 1, the Newtonian model
is obtained.

It should be noted that in viscoplastic models, when the shear stress
� falls below �y, a solid structure is formed (unyielded). Also, in
viscoplasticity, the yield stress can be expressed as a function of the
pressure gradient and the yield line, that is, a line separating the yielded
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Figure 1. Schematic representation of the process of roll coating over a moving web and
definition of variables.
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from the unyielded material. This equation, however, strongly depends
on the geometry of the flow field.

An early analysis of roll coating has been carried out by Middleman [1]
for the case of roll-over-web coating pseudoplastic fluids from an infinite
reservoir. Coyle [3] presented results for both the forward [4] and
reverse [5] case of roll-over-roll coating, for the asymmetric case
including the effects of pseudoplasticity and viscoelasticity. It appears,
therefore, that no work has been done for the process of roll-over-web
coating for viscoplastic materials. It is the purpose of this work to
provide numerical results for this process, for such quantities as coating
thickness, separation point, and the volumetric flow rate required for
both pseudoplastic and viscoplastic materials. The results will be given
for full parametric studies of the power-law index and the Bingham
number or dimensionless yield stress. For pseudoplastic fluids, the
results of Middleman [1] are verified and extended, while for viscoplastic
fluids the results are new.

MATHEMATICAL MODELING

Governing Equations

As explained by Middleman [1] and with regard to Figure 1, the
lubrication approximation theory (LAT) regards locally fully developed
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Figure 2. Shear stress vs shear rate for various pseudoplastic and viscoplastic fluids.
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shear flow between the roll and the web. The conservation of
momentum then gives

dP

dx
¼

d�xy

dy
, ð2Þ

where �xy¼ � is the shear stress in the transverse direction. The shear
stress is given by the Herschel–Bulkley model in the present work
(Equation (1)).

In roll-over-web coating, the following dimensionless parameters are
introduced [1,6]:

� ¼
xffiffiffiffiffiffiffiffiffiffi

RH0

p , h ¼ H0 1þ
x2

2RH0

� �
, � ¼

y

H0
, P0 ¼

P

K

H0

U

� �n H0

R

� �1=2

,

u ¼
ux

U
, ~hh ¼

h

H0
, � ¼

Q

UH0
,

ð3Þ

where l is a dimensionless flow rate, and the rest of the symbols are
defined in Figure 1.

According to Middleman [1], it is assumed that the material
splits evenly at point (n1, 0.5 h) to coat both the roll and the sheet.
Then the volumetric flow rate, Q, the coating thickness H, and l are
related by

Q ¼ 2UH, ð4Þ

and

� ¼
2H

H0
: ð5Þ

For the case of viscoplastic fluids, it is customary to define the
Bingham number [7]:

Bn ¼
�y

K

H0

U

� �n

, ð6Þ

where Bn¼ 0 corresponds to purely viscous fluids and Bn!1
corresponds to purely plastic solids.
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Pseudoplastic Fluids

In the present work, we use the equations proposed by Middleman [1]
for pseudoplastic power-law fluids. More precisely, the equation for the
pressure gradient becomes:

dP0

d�
¼

2nþ 1

n

� �n

2nþ1

~hh� �
� �2
� �n�1=2

~hh� �
� �

~hh2nþ1
: ð7Þ

Moreover, the separation point, n1, is found by asserting that the
pressure vanishes there, at which point u also vanishes [1]. Setting
uð�1, 1=2 ~hhÞ ¼ 0, gives the separation point n1 as a function of the
dimensionless coating thickness, l, and of the power-law index, n:

�1 ¼ 2
2nþ 1

n
�� 1

� �� �1=2

: ð8Þ

It should be noted that the above boundary conditions used are one
choice of conditions, and other types have been proposed in the
literature [3–5]. The results depend on the boundary conditions
assumed, but the overall trends, based on the rheology of the material,
are the same.

Viscoplastic Fluids

Bingham Plastics

By integrating Equation (2), and after using Equation (3) we obtain:

�1þ
1

Bn

du

d�
¼ �

dP0

d�

1

Bn
�0 � �ð Þ, ð9Þ

where �0 is the position of zero shear stress.
From the Newtonian analysis, we know that there are three flow

regions in the x-direction: one region near the nip, which has a negative
pressure gradient (dP0/dn<0), and two other regions away from the nip
at the entrance and at the exit with an opposite sign (dP0/dn>0),
as shown in Figure 3(a). For viscoplastic materials, we know that
there are also three flow regions in the y-direction: one region where
the material is unyielded (�p2� �� �p1) and two regions where
it is yielded (0� �� �p2 and �p1� �� ~hh), as shown in Figure 3(b).
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Figure 3. (a) Flow regions in the x-direction: pressure-gradient distribution and (b) flow
regions in the y-direction: yielded/unyielded regions and velocity profiles.
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The location of the two yield lines, which separate the yielded from the
unyielded material, can be found by setting du/d�¼ 0 in Equation (9).
Thus, we obtain:

�p1 ¼ �0 þ
Bn

dP0=d�
, for � ¼ K _�� þ �y ð10aÞ

�p2 ¼ �0 �
Bn

dP0=d�
, for � ¼ K _�� � �y ð10bÞ

We integrate Equation (9) by applying the following boundary
conditions

ux ¼ U for y ¼ 0 ðu ¼ 1 for � ¼ 0Þ, ð11aÞ

ux ¼ U for y ¼ hðxÞ ðu ¼ 1 for � ¼ ~hhÞ: ð11bÞ

Furthermore, as the sign of the pressure gradient changes, so does
the relation between (�p1,�p2), and therefore the sign of �y for each flow
field in the y-direction must be considered. After the appropriate
manipulations, the velocity profile is as follows:

. Region with positive pressure gradient (dP0/dn> 0), (�p1 > �p2)

u ¼

1�
dP0

d�
�0 þ Bn

� �
�� ~hh
� �

þ
dP0

d�

�2 � ~hh2
� �

2
, �p1 � � � ~hh ð12aÞ

1�
1

2

dP0

d�
�2

0 þ Bn �0 �
Bn2

2 dP0=d�ð Þ
, �p2 � � � �p1 ð12bÞ

1þ Bn�
dP0

d�
�0

� �
�þ

dP0

d�

1

2
�2, 0 � � � �p2 ð12cÞ

8>>>>>>>>>><
>>>>>>>>>>:

. Region with negative pressure gradient (dP0/dn<0), (�p1 < �p2)

u ¼

1þ �
dP0

d�
�0 þ Bn

� �
�� ~hh
� �

þ
dP0

d�

�2 � ~hh2
� �

2
, �p2 � � � ~hh ð13aÞ

1�
1

2

dP0

d�
�2

0 � Bn �0 �
Bn2

2 dP0=d�ð Þ
, �p1 � � � �p2 ð13bÞ

1�
dP0

d�
�0 þ Bn

� �
�þ

dP0

d�

1

2
�2, 0 � � � �p1 ð13cÞ

8>>>>>>>>>><
>>>>>>>>>>:
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At this point, �0 remains unknown. It can be found by considering
the following methodology [7]: for the region with a negative pressure
gradient, Equations (13a) for �¼ �p2 and (13c) for �¼ �p1 should
give the same result (plug profile). For both cases, the result of the
calculations is:

�0 ¼
~hh

2
, ð14Þ

which suggests that the line where the shear stress equals zero is at the
middle of the distance of the web from the roll. This should be expected,
since the velocities of the roll and the web are equal.

Integration of the velocity profile gives the dimensionless volumetric
flow rate l:

. Region with positive pressure gradient (dP0/dn> 0), (�p1 > �p2)

�¼ ~hhþ
1

6

dP0

d�
�3

p2� �
3
p1

� �
þ �

~hh2

8

dP0

d�
�

1

2

Bn2

dP0=d�ð Þ
þ

~hh

2
Bn

 !
�p1� �p2

	 


�
1

12

dP0

d�
~hh3þ

~hh

4

dP0

d�
�2

p1� �
2
p2

� �
þ

Bn

2
�2

p1þ �
2
p2

� �
þ

~hh2

2
Bn�Bn h �p1

ð15aÞ

. Region with negative pressure gradient (dP0/dn<0), (�p1<�p2)

�¼ ~hh�
1

6

dP0

d�
�3

p2� �
3
p1

� �
þ þ

~hh2

8

dP0

d�
þ

1

2

Bn2

dP0=d�ð Þ
þ

~hh

2
Bn

 !
�p1� �p2

	 


�
1

12

dP0

d�
~hh3�

~hh

4

dP0

d�
�2

p1� �
2
p2

� �
�

Bn

2
�2

p1þ �
2
p2

� �
�

~hh2

2
BnþBn h �p2

ð15bÞ

From Equation (15), the pressure gradient dP0/dn can now be found.

Note that for Bn¼ 0 the above equations and also the velocity
profiles – Equations (12a), (12c) and (13a), (13c) – are reduced to the
ones given by Middleman [1] for Newtonian fluids.

After numerically calculating the pressure gradients, their integration
requires a boundary condition for the pressure P. The standard
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condition used in the analysis assumes zero pressure at the separation
point [1], i.e.,

P ¼ 0 at � ¼ �1: ð16Þ

Then the pressure distribution is given by the integral:

P0 ¼

Z �1

��f

dP0

d�

� �
d�, ð17aÞ

or

P0 ¼

Z �1

��f

I Bnð Þd�, ð17bÞ

where – nf is the entry point (¼ �1 in the case of an infinite reservoir).

Herschel–Bulkley Fluids

The above analysis can be also applied to the viscoplastic
Herschel–Bulkley fluids. To do this, it is necessary to derive an equation
for the pressure gradient, making use of the constitutive relation
(Equation (1)) and the dimensionless generalized Bingham number
(Equation (6)) for the expression of the dimensionless yield stress. After
the appropriate manipulations, the following velocity profiles are
obtained:

. Region with positive pressure gradient (dP0/dn> 0), (�p1 > �p2)

u¼

1þ
n

nþ1

dP0

d�

����
����ð1=nÞ�1 dP0

d�
��

~hh

2
�

Bn

dP0=d�ð Þ

 !ð1=nÞþ1

�
~hh

2
�

Bn

dP0=d�ð Þ

 !ð1=nÞþ1
8<
:

9=
;,

�p1��� ~hh ð18aÞ

1�
n

nþ1

dP0

d�

����
����ð1=nÞ�1 dP0

d�

~hh

2
�

Bn

dP0=d�ð Þ

 !ð1=nÞþ1

, �p2����p1 ð18bÞ

1þ
n

nþ1

dP0

d�

����
����ð1=nÞ�1 dP0

d�
��

~hh

2
þ

Bn

dP0=d�ð Þ

 !ð1=nÞþ1

�
~hh

2
�

Bn

dP0=d�ð Þ

 !ð1=nÞþ1
8<
:

9=
;,

0����p2 ð18cÞ

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:
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. Region with negative pressure gradient (dP0/dn<0), (�p1 < �p2)

u¼

1þ
n

nþ1

dP0

d�

����
����ð1=nÞ�1 dP0

d�
��

~hh

2
þ

Bn

ðdP0=d�Þ

 !ð1=nÞþ1

�
~hh

2
þ

Bn

ðdP0=d�Þ

 !ð1=nÞþ1
8<
:

9=
;,

�p2��� ~hh ð19aÞ

1�
n

nþ1

dP0

d�

����
����ð1=nÞ�1 dP0

d�

~hh

2
þ

Bn

ðdP0=d�Þ

 !ð1=nÞþ1

, �p1����p2 ð19bÞ

1þ
n

nþ1

dP0

d�

����
����ð1=nÞ�1 dP0

d�
��

~hh

2
�

Bn

ðdP0=d�Þ

 !ð1=nÞþ1

�
~hh

2
þ

Bn

ðdP0=d�Þ

 !ð1=nÞþ1
8<
:

9=
;,

0����p1 ð19cÞ

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Equations (18) and (19) are reduced for n¼ 1 to the equations of the
previous paragraph for Bingham plastics, as they should. Integrating
the velocity profiles, we obtain the volumetric flow rate. After the
appropriate manipulations these are:

. Region with positive pressure gradient (dP0/dn> 0), ( ~hh� l) > 0

�¼ ~hh�
2n

2nþ 1

dP0

d�

����
����ð1=nÞ�1 dP0

d�

� � ~hh

2
�

Bn

ðdP0=d�Þ

 !ð1=nÞþ1
~hh

2
þ

n

nþ 1

Bn

ðdP0=d�Þ

 !
,

ð20aÞ

. Region with negative pressure gradient (dP0/dn<0), ( ~hh�l)<0

�¼ ~hh�
2n

2nþ 1

dP0

d�

����
����ð1=nÞ�1 dP0

d�

� � ~hh

2
þ

Bn

ðdP0=d�Þ

 !ð1=nÞþ1 ~hh

2
�

n

nþ 1

Bn

ðdP0=d�Þ

 !
:

ð20bÞ

For n¼ 1 the above equation reduces to Equation (15), valid for
Bingham plastics, while for Bn¼ 0 it reduces to Equation (7), valid for
pseudoplastic fluids obeying the power-law model.

It should be noted that deriving analytically the expressions for the
Herschel-Bulkley fluids, one must take into account that (1/n)þ 1 has
to be an even number.

Finally, Equations (16) and (17) are also valid for the Herschel–
Bulkley fluids.
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Yield-line Location

Once the pressure gradient distribution is obtained, it is easy to
calculate the location of the yield lines separating the yielded/unyielded
regions. Considering Equations (10a), (10b), and (14), we obtain the
following for the dimensionless yield lines:

�p1 ¼
~hh

2
þ

Bn

dP0=d�
�� �� , ð21aÞ

�p2 ¼
~hh

2
�

Bn

dP0=d�
�� �� : ð21bÞ

Sheet Thickness

The entering sheet thickness Hf is given by:

Hf

H0
¼ 1þ

1

2
�2

f , ð22Þ

and in the case of a flooded (infinite) reservoir, it is infinity (or a very big
number).

The resulting exit coating thickness is given by:

H

H0
¼
�

2
: ð23Þ

The analysis is still not complete at this point, since a relation between
the dimensionless flow rate l, and the separation point n1, should be
found, as in the case of pseudoplastic fluids [1]. The same boundary
conditions are assumed, i.e., the velocity vanishes at the separation
point (the first stagnation point), which explains the formation of a
meniscus. Moreover, as Figure 1 suggests, the film splits evenly, so that
the separation point is at (n1, ~hh/2). This assumption can be accepted due
to the fact that the roll and the sheet move with the same velocity.
In any other case, the surface moving faster would take up a bigger part
of the material.

In the case of viscoplastic fluids, the corresponding equation found
analytically connects the separation point n1 with the dimensionless flow
rate l and the rheological parameters, as expected. It should be
mentioned though, that since it also includes the unknown value of the
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pressure gradient dP0/dn at the separation point, it cannot be used in the
same manner as Equation (8) and so the problem requires a numerical
solution.

In particular, and regarding the more general case of viscoplastic
Herschel–Bulkley fluids, the expression connecting the separation point
n1, with the dimensionless coating thickness l, and the power-law
index n, is (by combining Equations (18b) and (20a) and setting the
velocity equal to zero):

�1 ¼ 2
2nþ 1

n
�� 1þ

2Bn

dP0=d�

� �� �1=2

: ð24Þ

For Bn¼ 0, Equation (24) reduces to Equation (8) valid for
pseudoplastic fluids obeying the power-law model.

Operating Variables

Once the pressure gradient and pressure distributions are found as
functions of n or Bn, then all other quantities of interest are readily
available. The operating variables used in engineering calculations are
computed in the following manner [1]:

(i) the maximum pressure, P(n, Bn), defined by:

Pðn, BnÞ ¼

Z �1

� 2 ��1ð Þ½ �
0:5

I n, Bnð Þd�, ð25Þ

where �½2ð�� 1Þ�0:5corresponds to the point where the pressure
reaches a maximum.

(ii) the roll-separating force per unit width W, F/W(n, Bn), defined by:

F

W
¼

Z x1

�xf

PðxÞdx ¼ K
U

H0

� �n

R F n, Bnð Þ ð26aÞ

with

F n, Bnð Þ ¼

Z �1

��f

Z � 1

�

Iðn, BnÞd�

� �
d�, ð26bÞ

(iii) the power input, _WWðn, BnÞ, defined by:

_WWðn,BnÞ ¼WU

Z x 1

�xf

�xy y¼hðxÞ

�� dx¼
WUK

2

U

H0

� �n ffiffiffiffiffiffiffiffiffiffi
RH0

p
Eðn,BnÞ, ð27aÞ
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with

Eðn, BnÞ ¼

Z � 1

��f

Iðn, BnÞ 1þ
1

2
�2

� �
d�, ð27bÞ

(iv) the adiabatic temperature rise, (�T)ave, defined by:

�Tð Þave¼
_WW n, Bnð Þ

Q�cp
, ð28Þ

where � is the melt density and cp is the melt heat capacity.

METHOD OF SOLUTION

The governing equation (20) for the pressure gradient is nonlinear
and has no analytical solution for the general case of viscoplastic
materials, even for the Bingham plastics. Thus, it requires a numerical
solution based on some appropriate algorithm.

The input data for the present work are the rheological parameters of
the fluid, i.e., the power-law index n, and the Bingham number Bn,
along with the entry point �nf. Since this work is concerned with the
case of a flooded upstream region (infinite reservoir), a big number was
selected, which after a series of numerical tests was set equal to �100.
Another numerical aspect concerns the number of intervals, in which
the flow field is subdivided. This number has to be sufficiently high so
that the numerical results are accurate. We have tested 105 and 106

intervals, because of the highly nonlinear equation, especially for cases
of extreme non-Newtonian behavior, such as small values of the power-
law index n and high values of the Bingham number Bn. The numerical
solutions with 106 intervals were virtually the same with results
with 105 intervals. Therefore, there is sufficient numerical accuracy
in the present results. The tolerance in our numerical algorithm for
convergence is set to 10�9.

Pseudoplastic Fluids

We have used the Modified Regula-Falsi (MRF) numerical method [8]
to solve the governing equation for the pressure gradient. The numerical
integration of these values to obtain the pressure distribution is done
via Simpson’s rule. In order to find the l-value for which the pressure
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is zero at the separation point, we use again the MRF method.
The separation point n1 is expressed as a function of l and n, using
Equation (8).

Viscoplastic Fluids

In this case, both the separation point and the dimensionless flow rate
have to be calculated. The problem is solved as in the previous case, with
the added feature of an external loop, based on the MRF method, which
keeps changing the separation point, until there exists a pair of values
(l, n1) for which both the fluid velocity and the pressure are zero at the
separation point.

It should be noted that this algorithm was first tested for the
pseudoplastic fluids, for which the relation between (l, n1) is explicitly
given by Equation (8). More specifically, the MRF method was used for
the calculation of the separation point, disregarding Equation (8). A
comparison for the results (l, n1) between the two methods (Equation (8)
and numerical solution) showed that the maximum difference was
0.043% for l and 0.025% for n1. Thus, confidence was established in the
numerical algorithm to also use it for viscoplastic fluids.

The yield lines are calculated via Equations (21a,b) using the pressure
gradient values. Finally, the exit coating thickness H/H0 is calculated
from Equation (23) for all cases.

RESULTS AND DISCUSSION

Pseudoplastic Fluids

First the calculations are pursued for pseudoplastic power-law fluids,
both shear-thinning (0�n� 1) and shear-thickening (1�n� 2). The
numerical results for the volumetric flow rate l, the exit coating
thickness H/H0, and the separation point n1, are presented in Table 1.
Numerical results for the maximum pressure and the minimum
pressure gradient are given in Table 2.

The results for the dimensionless pressure gradient distribution
are shown in Figure 4, while the results for the dimensionless
pressure distribution are shown in Figure 5. The smaller the power-
law index n the bigger the dimensionless maximum pressure, and the
steeper the pressure gradient curves. Also, the smaller the power-law
index n the bigger the flow domain, and the bigger the exit coating
thickness.
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This last observation is verified in Figure 6, which shows the
dimensionless volumetric flow rate l, and the exit coating thickness
H/H0, as a function of the power-law index n. The well-known
Newtonian value (for n¼ 1) of l¼ 1.3015 [3] is a starting point, after
which it is noted that shear-thinning increases the values, reaching for
n¼ 0.1, l¼ 1.6395. On the other hand, shear-thickening decreases the
values, reaching for n¼ 2, l¼ 1.2560. Thus, the maximum coating
thickness H/H0, can be as high as 0.8197 for extremely shear-thinning
fluids (n¼ 0.1), 0.6507 for Newtonian fluids (n¼ 1), and 0.6280 for
shear-thickening fluids with n¼ 2.

In Figure 7 the separation point n1, and the exit coating thickness
H/H0, are depicted, as obtained from a full parametric range of the
power-law index n. We observe that the smaller the power-law index,
the bigger the values of the separation point, and thus the bigger the
flow domain.

Finally, Figure 8 shows the engineering quantities P, F, and E.
A decrease of the power-law index n increases these dimensionless
quantities. The Newtonian values (n¼ 1) are F¼ 2.5959, P¼ 1.9208,
and E¼ 10.4141.

Table 1. Dimensionless volumetric flow rate k, exit coating thickness H/H0,
and separation point n1, for roll-over-web coating pseudoplastic

power-law fluids from an infinite reservoir.

n l H/H0 n1

0.1 1.6395 0.8197 6.1113
0.2 1.5208 0.7604 4.3921
0.3 1.4526 0.7263 3.6735
0.4 1.4083 0.7041 3.2672
0.5 1.3771 0.6885 3.0028
0.6 1.3540 0.6770 2.8159
0.7 1.3363 0.6681 2.6764
0.8 1.3223 0.6611 2.5680
0.9 1.3109 0.6554 2.4813
1.0 1.3015 0.6507 2.4102

1.1 1.2936 0.6468 2.3508
1.2 1.2869 0.6435 2.3005
1.3 1.2811 0.6406 2.2573
1.4 1.2761 0.6381 2.2198
1.5 1.2717 0.6359 2.1869
1.6 1.2678 0.6339 2.1578
1.7 1.2644 0.6322 2.1319
1.8 1.2613 0.6306 2.1087
1.9 1.2585 0.6293 2.0878
2.0 1.2560 0.6280 2.0688
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Table 2. Dimensionless maximum pressure P0max, and minimum
pressure gradient dP0/dn|n¼ 0 , for roll-over-web coating

pseudoplastic power-law fluids from an infinite reservoir.

n P0max dP0/dn|n¼0

0.1 2.5816 �2.6281
0.2 2.6074 �2.9757
0.3 2.5530 �3.2075
0.4 2.4610 �3.3631
0.5 2.3748 �3.4737
0.6 2.2752 �3.5437
0.7 2.1831 �3.5894
0.8 2.0915 �3.6126
0.9 2.0041 �3.6218
1.0 1.9220 �3.6173

1.1 1.8430 �3.6045
1.2 1.7690 �3.5836
1.3 1.6991 �3.5566
1.4 1.6331 �3.5249
1.5 1.5718 �3.4887
1.6 1.5117 �3.4507
1.7 1.4558 �3.4096
1.8 1.4028 �3.3666
1.9 1.3525 �3.3221
2.0 1.3059 �3.2756
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power-law index n, for pseudoplastic fluids.
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Viscoplastic Fluids

Calculations were performed next for viscoplastic fluids, and in
particular for Bingham plastics, with 0�Bn� 15. Numerical results for
the dimensionless volumetric flow rate l, final coating thickness H/H0,
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Figure 5. Axial distribution of dimensionless pressure for different values of the power-
law index n, for pseudoplastic fluids.
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and separation point n1, are presented in Table 3, while numerical
results for the maximum pressure and the minimum pressure gradient
are presented in Table 4.

Figure 9 shows the dimensionless pressure gradient distribution for
different values of the Bingham number Bn, while Figure 10 shows the
corresponding dimensionless pressure distribution. As was the case for
pseudoplastic shear-thinning fluids, increasing Bn leads to higher values
for the maximum pressure, while the curves for the pressure gradient
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Figure 8. Operating variables (maximum pressure P, force factor F, and power factor E)
as a function of the power-law index n, for pseudoplastic fluids.
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are getting steeper near the minimum gap H0. Thus, as the material
becomes more viscoplastic, the deformations in the flow domain become
smaller, the material behaves more solid-like and requires higher
pressures and a larger domain to flow and deform.

Figure 11 shows the values for the dimensionless volumetric flow rate
l, and the exit coating thickness H/H0, as a function of Bn. For Bn¼ 0
the well-known Newtonian value l¼ 1.3015 [3] is the starting point for
the calculations of viscoplastic fluids. Further increasing Bn leads
to higher increases of these values. For Bn¼ 10, the coating thickness
H/H0, is 0.8175.

Figure 12 shows the separation point n1, and the coating thickness
H/H0, for 0�Bn� 15. Increasing Bn, and hence the viscoplastic
character of the material, leads again to higher values of the separation
point, and hence the flow domain.

Figure 13 shows results for the operating variables, P, F, and E.
For Bn¼ 0, the Newtonian values are obtained which were mentioned
above, while increasing Bn leads again to increasing these values, in
a dimensionless form.

Table 3. Dimensionless volumetric flow rate l, exit coating thickness H/H0,
and separation point n1, for roll-over-web coating viscoplastic

Bingham fluids from an infinite reservoir.

Bn k H/H0 �1

0 1.3015 0.6507 2.4102

0.001 1.3017 0.6508 2.4120
0.01 1.3032 0.6516 2.4281
0.05 1.3098 0.6549 2.4990
0.1 1.3175 0.6588 2.5858
0.5 1.3666 0.6833 3.2252
1 1.4095 0.7048 3.9239
2 1.4673 0.7337 5.1167
3 1.5068 0.7534 6.1393
4 1.5364 0.7682 7.0504
5 1.5602 0.7801 7.8825
6 1.5798 0.7899 8.6529
7 1.5966 0.7983 9.3749
8 1.6109 0.8055 10.0556
9 1.6236 0.8118 10.7023
10 1.6349 0.8175 11.3205
11 1.6449 0.8224 11.9118
12 1.6540 0.8270 12.4811
13 1.6623 0.8312 13.0311
14 1.6703 0.8352 13.5662
15 1.6773 0.8387 14.0824
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Table 4. Dimensionless maximum pressure P0max, and minimum pressure
gradient dP0/dn|n¼0, for roll-over-web coating viscoplastic

Bingham fluids from an infinite reservoir.

Bn P0max dP0/d�|�¼ 0

0 1.9220 �3.6173

0.001 1.9249 �3.6231
0.01 1.9607 �3.6686
0.05 2.1173 �3.8676
0.1 2.3092 �4.1101
0.5 3.7422 �5.8849
1 5.3861 �7.8493
2 8.4357 �11.3585
3 11.3218 �14.5733
4 14.1018 �17.6115
5 16.8330 �20.5375
6 19.4974 �23.3781
7 22.1351 �26.1503
8 24.7420 �28.8744
9 27.3298 �31.5531
10 29.8877 �34.1975
11 32.4316 �36.8075
12 34.9645 �39.3960
13 37.4763 �41.9551
14 39.9998 �44.5009
15 42.4852 �47.0197
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Figure 14 shows the yielded and unyielded regions for various values
of Bn. The dashed line corresponds to the ‘symmetry’ line of the present
problem, or in other words the locus of the points where the shear stress
is zero. It should be noted that the two yield lines are symmetric with
regard to this line, as evidenced from Equations (21a) and (21b).
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Increasing the Bn number changes the shape and extent of the
yielded/unyielded regions. In particular, increasing Bn (a dimensionless
yield stress) leads to a progressive development of unyielded
regions. The points (on the flow axis) having a plug velocity profile,
i.e., {�p1 ¼

~hh, �p2 ¼ 0}, are those for which the pressure shows extrema:
��1 ¼ ½2ð�� 1Þ�0:5, ��2 ¼ �½2ð�� 1Þ�0:5. Thus, as the increase in Bn leads
to higher l values, these points get farther away from the minimum gap
H0, which produces a gradual change in the shape of the unyielded
regions.
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Figure 13. Operating variables (maximum pressure P, force factor F, and power factor E)
as a function of the Bingham number Bn, for viscoplastic fluids.
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Figure 12. Dimensionless separation point n1, and exit coating thickness H/H0,
as a function of the Bingham number Bn, for viscoplastic fluids.
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Figure 14. Progressive growth of the unyielded zones as the dimensionless Bingham
number Bn, increases in roll-over-web coating of viscoplastic materials obeying the
Bingham plastic model. The shaded regions are unyielded.
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The parametric study for Bingham plastics would have been complete,
if a Bn number were found for which the velocity profile were plug for
the whole flow field, something which is not observed for Bn¼ 15.
However, it is noteworthy that a comparison of the viscoplastic results
for Bn� 10 for the coating thickness and the dimensionless flow rate
with those for the pseudoplastic shear-thinning fluids with n¼ 0.1
revealed that these are about the same. On the other hand, the
separation point is much larger for viscoplastic fluids. After a series of
numerical tests, it became clear that a further increase in the Bn
number led to very high values of the separation point (see Table 3),
but it did not lead to a fully plug velocity profile and did not increase
the values for the coating thickness and the volumetric flow rate
accordingly. This can be explained by the fact that for large values of the
separation point, the flow domain cannot be considered as that between
two flat plates, and the assumptions of LAT, uy�ux and dx� dy,
are not valid. We have, therefore, come across the limitations of LAT
for extracting useful numerical results.

The effect of pseudoplasticity within viscoplasticity is examined
in Figure 15, where the pressure distribution is depicted for several
Herschel-Bulkley fluids at Bn¼ 1. Changing the value of the power-law
index n, has no dramatic effect over the maximum pressure value,
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and it does not change the shape of the pressure curve. The decrease
of the power-law index does however lead to a bigger domain, and bigger
values for the dimensionless flow rate l. For n¼ 0.2, the acquired
values for l and n1 are 1.642 and 6.618 respectively, that is, 16.5% and
68.6% bigger than the ones presented in Table 3 for a Bingham plastic
with Bn¼ 1. Once again, the sensitivity of n1 is more pronounced. These
results confirm that the meniscus location is one of the most sensitive
features in modeling this type of flow.

Critique on the Lubrication Approximation

The key assumption for obtaining the above results has been the
lubrication approximation theory (LAT), which assumes locally fully
developed flow and reduces the conservation equations by using only the
axial velocity component. This assumption is known to give good results
for the pressure distribution in calendering of power-law fluids [9] and
hence for all integrated quantities resulting from that. It is therefore
reasonable to assume that it also does well for viscoplastic fluids, such
as the ones used in the present work.

However, a closer look at the physics of the viscoplastic problem and
in particular the interesting yielded/unyielded regions found here,
reveals that these cannot be so and that Figure 14 is contentious. The
shaded areas cannot be rigid plugs, since the speeds at entry and exit are
different, and there is no chance that a constant speed occurs along the
line where the shear stress equals zero. However, the domain length,
the pressure distribution, and the ensuing operating variables are not
expected to change much (within a few percent) from the values found
by LAT, as was the case in calendering [10].

It is therefore obvious that the introduction of LAT in lubrication flows
with viscoplastic fluids is not valid for such quantities as the yielded/
unyielded regions, since it leads to a ‘paradox’, as pointed out by
Lipscomb and Denn [11]. A 2-D analysis is therefore essential for
obtaining the correct regions, and such an analysis is currently under way
by the authors. However, it is not expected to change drastically the other
results shown here, especially the pressure distribution and integrated
quantities, since roll-over-web coating is primarily a lubrication flow.

CONCLUSIONS

In the present work, the Lubrication Approximation Theory (LAT)
was used along with the power-law, Bingham, and Herschel–Bulkley
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rheological models, in order to obtain numerical results for the
process of roll coating over a moving flat web fed from an infinite
reservoir. For the pseudoplastic fluids, the results by Middleman [1,6]
were verified and extended, while for viscoplastic fluids, a new
methodology was presented and gave new results for Bingham plastics
and Herschel–Bulkley fluids.

Reducing the power-law index n, or increasing the Bingham number
Bn, leads to higher coating thickness, separation point (hence domain
length) and volumetric flow rate. Furthermore, engineering quantities
of the process, such as the maximum pressure, the separating force and
the required power to the roll, all increase with a reduction in n or an
increase in Bn. Finally, the determination of yielded/unyielded regions
showed a progressive growth of unyielded regions by increasing the Bn
number. It was argued that this last finding is a direct result of the
approximation within LAT, and that these unyielded regions should
disappear in a full 2-D analysis of the process. Such an analysis remains
to be done for roll-over-web coating of viscoplastic fluids.

The present results are offered as a quick reference for engineers
working on roll-over-web coating of such materials to determine the
resulting coating thickness of the coatings produced and the correspond-
ing values for important engineering quantities.
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