
HAL Id: hal-00571195
https://hal.science/hal-00571195

Submitted on 1 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimation of Project Completion Time and Factors
Analysis for Concurrent Engineering Project

Management: A Simulation Approach
Enzhen Huang, Shi-Jie (gary) Chen

To cite this version:
Enzhen Huang, Shi-Jie (gary) Chen. Estimation of Project Completion Time and Factors Analysis
for Concurrent Engineering Project Management: A Simulation Approach. Concurrent Engineering:
Research and Applications, 2006, 14 (4), pp.329-341. �10.1177/1063293X06072482�. �hal-00571195�

https://hal.science/hal-00571195
https://hal.archives-ouvertes.fr


CONCURRENT ENGINEERING: Research and Applications

Estimation of Project Completion Time and Factors Analysis for
Concurrent Engineering Project Management: A Simulation Approach
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Abstract: In concurrent engineering projects, tasks are usually interdependent among each other that require much iteration before

completion where the critical path method/program evaluation and review technique (CPM/PERT) may not be applicable to help estimate the

project duration. In addition, carrying out a large-scaled project in a dynamic environment has to deal with various factors at the same time.

When estimating the project completion time, previous research often focused on one subject of interest and assumed the other factors causing

little effect on the overall project duration. The objective of this article is to develop a research framework to help estimate the project completion

time and analyze the major factors that affect the estimation for complex concurrent engineering projects. The framework consists of three

major components: (1) data collection, where the needed data for simulation are prepared including project task structure, task relations, and

quantified team member characteristics; (2) simulation, where tasks are dynamically assigned to the appropriate members/engineers according

to each member’s knowledge level of the task, teamwork capability, work schedule availability, and learning curve improvement; and (3) data

analysis, where significant factors to the project completion time are studied by the ANOVA analysis based on the simulation results. The

effectiveness of our framework and the simulation model is demonstrated by an illustrative example.
Key Words: project management, concurrent engineering, design structure matrix, simulation.
1. Introduction

ying out a large-scaled project in a dynamic
ment has to deal with various factors at the same
Project managers always find it difficult to
te the project duration because of the unexpected
es and the limit of resources. Traditional CPM
RT methods have been widely used in simula-
o estimate the project duration. However, the
of CPM/PERT has been questioned in the

concurrent project environment [1], which for
le, includes the cases in new product design,
re development and supply chain interactions, etc.
current engineering projects, tasks are usually
pendent among each other, which require a group
ple with different engineering backgrounds to
together. The interdependent task group often
in task rework or iteration where CPM/PERT
ot be applicable to help estimate the project
n. One of the popular tools that is able to analyze
ork of tasks in projects is the Design Structure
(DSM). DSM was first introduced by Steward
analyze the engineering design process. It is a

square matrix with n rows and columns, and m non-zero
elements, where n is the number of nodes, tasks or
system elements and m is the number of edges or links of
dependencies in the network of the system. If there is an
edge from node i to node j, the value of element ij is a
unity or a marked sign in the matrix, otherwise the value
of the element is zero or empty. When each nonzero
element in DSM is replaced by a numerical value
(ranging from 0 to 1) to indicate the strength of task
interaction, it is called a numerical DSM. In recent
years, a DSM has been used as a management aid as
well as an engineering tool to guide the organizational
structure of design projects [3–14].

In complex project management, it is desirable to make
the best use of available human resources to improve the
efficiency of project execution. Complex projects often
contain interdependent task groups that require a group
of members with different characteristics and engineering
background to work together in a team [15]. Chen [6]
proposed a methodology for task-member assignment
for concurrent engineering project management. The
research suggested that in order to improve the team
efficiency, each member’s functional knowledge, their
teamwork capability and working relationship should
be understood and incorporated in the task-member
assignment model. Moreover, project managers also
have to consider the availability of each member’s
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in working for more than one project at the same time.
Therefore, the right members will be assigned to the right
task at the right time for complex concurrent engineering
projects.
During the progress of tasks, members can improve

their knowledge level in the area of the task that they
have been working on. Wrights [16] first discovered this
fact in manufacturing assembly lines and defined it as a
‘learning curve’. Based on observations, Wrights devel-
oped a logarithmic function to calculate the learning
curve, which was later called Wrights’ Law. The
function works well for simple repetitive tasks and
operational type of tasks. For the knowledge-based
tasks, Hanakawa et al. [17] studied the learning curve in
software development and developed a mathematical
model of the learning curve. The model integrates the
specifications of tasks, member’s knowledge, and other
member’s characteristics to determine a member’s
productivity on a task. A member can improve his/her
productivity to finish a task because of the learning
curve improvement; therefore the duration of the entire
project is reduced.
When estimating the project completion time in

project management, previous research often focused
on one subject of interest and assumed the other factors
causing little effects on the overall project duration.
Our research in this article with the development of a
research framework considers several major variations
in the lead-time estimation for complex project manage-
ment in a concurrent engineering environment. With the
proposed simulation model in the framework, not only
is the project duration estimated, solutions of task-
member assignments, which are useful for managers,
will also be suggested. The simulation model studies five
major sources that contribute to lead-time variations:
(1) task rework probability; (2) task rework impact
value; (3) availability of member schedules; (4) learning
curve efficiency; and (5) task-member assignment
options. With the result of simulation, an analysis of
variance (ANOVA) is performed to analyze the data and
identify the significant effect of each source of variance.

2. The Research Framework

The research framework of this article contains the
following three major components:

(1) Data collection: This component aims to prepare all
the needed data for the simulation model. Some data
are directly collected by interviewing the project
managers/experts (i.e., member schedules and char-
acteristics). The other data can be derived from
mathematical models (i.e., task clustering).

(2) Simulation: This is the core driver in the framework.
The simulation model dynamically assigns tasks to

the appropriate members/engineers subject to the
resource constraints and the project task structure.
The project completion time is estimated as a result
of the simulation.

(3) Data analysis: The last component is to analyze the
simulation results and to identify the important
factors that affect the project completion time. The
simulation experiment is performed in multiple runs
with different factor levels. ANOVA is used to test
the significance of the factors and their interactions.
Conclusions and recommendations for estimating
the completion time of complex projects will be
given based on the outcomes from the analysis of
ANOVA.

2.1 Task Clustering

The purpose of task clustering is to decompose the
large interdependent task groups identified by DSM into
smaller and manageable sizes. A preliminary step for
clustering is to apply Steward’s partitioning algorithm to
reveal three basic task types in projects (i.e., indepen-
dent, dependent, and interdependent tasks) [2].
Although a partitioning algorithm can help identify
the interdependencies among tasks, the size of inter-
dependent task groups is often large in a complex
project. Research has concluded that the effectiveness of
communication depends on the number of communica-
tion links among the related tasks or system elements.
Therefore an effective and efficient communication will
be difficult to achieve as the size of the interdependent
task group increases [18–22]. Chen and Lin [4,5]
commented that the large interdependent task groups
usually make it difficult for task coordination and team
organization and thus delay the project completion.
The authors developed a model to decompose the large
interdependent task group into smaller and manageable
subgroups based on numerical DSM and clustering
technique. This decomposition model contains the
following three steps:

(1) Symmetrical task interaction matrix: DSM is a
matrix that offers the information of task depen-
dency for their ‘from–to’ descriptions. By assuming
that the input and output connections carry the
same weight, the amount of interaction is calculated
by averaging each pair of symmetrical elements in a
numerical DSM, because the interaction of any two
tasks contains both information input and output
connections. This symmetrical task interaction
matrix is expressed mathematically (for each
pair of row i and column j) as: SymDSMi,j¼

(NumericalDSMi,j þ NumericalDSMj,i)/2.
(2) Decomposition of a large interdependent group: A

large interdependent group is decomposed into
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smaller subgroups using a clustering technique.
The key is to calculate the distance measures
for the matrix. The quantified interaction strengths
in the symmetrical matrix, SymDSMi,j, are used to
calculate the distance measures using Squared
Euclidean Distance, which is able to handle both
binary and numerical measures and is appropriate
for numerical DSM. When clustering the elements,
any two elements with the lowest distance measure
are first grouped together before those elements with
higher distance measures. Using a robust approach,
the average-linkage method, clusters are formed by
evaluating the interactions between all elements
rather than only each pair of elements (i.e., the
case with the single-linkage method). This method is
robust to outliers, hence small changes of coupling
values in the matrix do not affect the clustering
results.

(3) Clustering performance evaluation by numerical
interaction density (NDd): For an n� n matrix,
there are n – 1 possible clustering results. To select
the best solution from all possible clustering results,
a performance measure is needed to evaluate the
clustering performance from each result and deter-
mine the final groups. Chen and Lin developed a
performance measure, NDd, to help select the best
clustering result [5]. NDd, measuring the numerical
interaction strengths outside the block diagonal of
the clustered matrix, is formulated as NDd¼Ne/
Outer-Cells. Ne is the total coupling strengths
outside the block diagonal of the clustered matrix.
Outer-Cells is the total number of cells outside the
block diagonal of the clustered matrix. The best task
clustering is the one with the lowest NDd value.

2.2 Task-member Assignment

The task-member assignment model in our framework
is based on Chen’s research [6]. In order to ensure a
successful team composition, it is important to carefully
choose the team members with desirable qualifications.
Chen and Lin developed a team member model for three
important team member characteristics with quantita-
tive representations (i.e., multifunctional knowledge
rating, teamwork capability rating, and working
relationship rating) [23]. The first is to represent the
multifunctional knowledge of team members. A member
who does not work in a certain functional department
may still have a certain level of knowledge about that
department. This will increase the flexibility when a key
functional member is needed during the team organiza-
tion. Second, to build a successful team, a teamwork
capability of team members is needed by taking their
experience, communication skills, and flexibility in job
assignment into account. Third, since team members

work closely, their collegiality directly affects team
performance regardless of their knowledge and team-
work capability. Thus working relationship between
team members should not be ignored. For effective
human resource management, more and more compa-
nies maintain their employees’ performance, knowledge,
skills, experience, interests, and relevant personal
characteristics in a computerized data bank, called a
skill inventory or a knowledge bank. This knowledge
bank can serve as a useful data source to help managers
assess a member’s multifunctional knowledge, team-
work capability, and working relationship with others.

After task portioning [2] and task clustering [4,5],
the entire project task structure in DSM is coordinated
into two types: single-task and multiple-task. The
focus of task-member assignments will be on these two
types following the task sequence identified in DSM
from top to bottom. The assumptions are: (1) each task
belongs to one functional department and needs one
member only; and (2) each member can be assigned
to multiple tasks. With quantitative measures of team
member characteristics and task workloads, the goal of
assigning the right team members to the right tasks
will be carried out by the task-member assignment
model [6].

For the need of assigning multiple tasks to one
member, a workload factor (W) to each task indicating
the percentage of a member’s capacity required to
complete the task is introduced. In an n-task project, the
workload Wi of each task Xi is defined as: Wi¼ ci/w
(i¼ 1, 2, . . . , n) where w2 {1, 2, 3, . . .} and
ci2 {1, 2, . . . ,w}. When w¼ 2, for example, the possible
task workload of each Wi in the project is either 50%
(1/2) or 100% (2/2). A task with 50% workload means
this task requires 50% of a member’s capacity.
Therefore, once a member is assigned to a 50%
workload task, the remaining 50% of his/her capacity
is still available for the other assignments. In addition,
a task with a 100% workload needs 100% of a member’s
capacity to finish the task. So, any member being
assigned to such a 100% workload task cannot be
available for any other task and has to devote his/her
full time to complete the task. Based on the definition of
task workload factor (W), each workload Wi of task Xi

can only be any one of {1/w, 2/w, 3/w, . . . ,w/w} where
w is a fixed integer for the entire project. This is to avoid
the conflict that may happen during the task-member
assignments. For example, if w is given by two different
integers such as 2 and 3, the possible task workload of
each Wi in the project can be any one of {1/2, 2/2, 1/3,
2/3, 3/3}. After being assigned to a 50% workload task
(1/2), a new selected member will have 50% capacity
left. If we assign the same member to another task with
33.3% workload (1/3), although this member still has
16.7% capacity (1/6) left, he/she is no longer available
for any other task assignments. The 16.7% capacity of
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this member will be wasteful to the company. In terms of
task workload, members can be assigned to multiple
tasks at the same time and will devote a percentage
of their time to each assigned task Xi with respect to the
task workload Wi.
For the single-task assignment, no teamwork

capability and working relationship between team
members are considered since only one member is
needed. A member with the highest knowledge rating to
that task’s functional requirement and with the lowest
teamwork capability will be selected, since single tasks
do not require cooperation and team effort between
members. For a project with n tasks in a company that
has p departments, the procedure for a single-task
assignment is:

(1) Determine a functional department Dk the current
task Xi belongs to and the workload Wi of this task,
where k2 {1, 2, . . . , p} and i2 {1, 2, . . . , n}.

(2) Select all members whose capacity is equal or higher
than the current task’s workload Wi and whose
knowledge rating for the functional department
Dk is above a chosen threshold (R�

s ) determined by
the project managers and put them in candidate
group C1.

(3) Of all members in C1, choose the one with the lowest
teamwork capability rating. If there is a tie with
more than one member chosen, go to Step 4.
Otherwise, go to Step 6.

(4) Put those tied members in group C2.
(5) Of all members in C2, choose the member with the

highest knowledge rating. If tie, choose randomly.
(6) The single-task assignment for task Xi is complete.
(7) This procedure is repeated for any single-task

identified in the DSM matrix.

For the multiple-task assignment, in order to increase
team performance, it has to consider teamwork capa-
bility and working relationship between team members
in addition to their knowledge ratings. After choosing
the appropriate candidate members with respect to
the task workload (W) and the knowledge rating,
a mathematical model is formulated. The objective of
the mathematical model is to optimize the task-member
assignments in terms of teamwork capability and
working relationship ratings. For a project with
n tasks in a company that has p departments, the
procedure for multiple-task assignments is:

(1) Determine which functional department Dk that
each task Xi belongs to and the workload Wi of each
task, where k2 {1, 2, . . . , p} and i2 {1, 2, . . . , n}.

(2) M functional departments are determined in Step 1,
namely {D1, D2, . . . , Dm} corresponding to m tasks
in a multiple-task group.

(3) Let j¼ 1.

(4) Select all members whose capacity is equal to or
higher than the current task’s workload Wi and
whose knowledge rating for the functional depart-
ment Dj is above a chosen threshold (R�

m) deter-
mined by the project managers and put these
members in the candidate group Cj.

(5) If j<m, let j¼ jþ 1 and go to Step 4, otherwise, go
to Step 6.

(6) To select the right team member from each
corresponding candidate group {C1, C2, . . . , Cm},
we formulate a mathematical model as follows:

Max:
Xm
a¼1

Xm
b¼aþ1

X
8i

X
8j

wai, bjxaixbj

ST
X
8i

xai ¼ 1 ða ¼ 1, 2, . . . nÞ

8xai, xbj ¼ 0 or 1

ð1Þ

where

wai, bj ¼ �ðTai þ TbjÞ þ ð1� �ÞRai, bj ð0 � � � 1Þ

is the descriptor of teamwork capability and work-
ing relationship of the i-th candidate member in
group a and j-th candidate member in group b

Tai¼ teamwork capability rating of the i-th
candidate member in group a

Tbj¼ teamwork capability rating of the j-th
candidate member in group b

Rai,bj¼ working relationship rating between the
i-th candidate member in group a and j-th
candidate member in group b

xai¼ the i-th candidate member in group a
xbj¼ the j-th candidate member in group b
m¼ number of candidate groups

(7) This procedure is repeated for any multiple-task
group identified in the DSM matrix.

Each candidate member xai in the a-th group is either
to be selected as a team member (xai¼ 1) or not to be
selected (xai¼ 0). First, a descriptor wai,bj is used for
representing teamwork capability and working relation-
ship between a candidate member xai from the a-th
group and a candidate member xbj from the b-th group.
To decide the relative contribution of teamwork
capability rating and working relationship rating to
wai,bj, a weight � is used. For instance, if �¼ 0.5, total
teamwork capability rating of the two members, Tai and
Tbj, and working relationship Rai,bj will contribute
equally to wai,bj. The project managers are responsible
for determining the value of �. The choice of � depends
on the relative importance of the two factors (teamwork
capability and working relationship) to the decision
makers. The objective function will assign team
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members recursively by comparing all possible team
compositions for every pair of members from different
candidate groups. Finally, the best team is formed with
the maximum objective function value.

2.3 Learning Curve Improvement

In order to cope with the real situation, each
member’s learning curve improvement over the perform-
ing stage of the project is considered because:
(1) members can often gain experience and knowledge
in the area of the task that they are working on; (2) the
improvement of the experience and knowledge will
enhance each member’s ability to complete the assigned
task in a shorter time; (3) it is expected that the longer
the duration of a project is, the higher effect the learning
curve improvement has on the total project time; and
(4) how much a member will be able to learn by
performing a task is different from person to person.
Therefore it is necessary to consider each member’s
learning efficiency in the simulation model. Hanakawa’s
learning curve equation is used in the simulation [17]:

Lijð�Þ ¼
Kije

�Eijð��bijÞ ðbij � �Þ

0 ðbij > �Þ

(
ð2Þ

where:

Lij(�)¼ the quantity of gain to knowledge of member i
executing task j, which has a knowledge level �.

bij¼ member i’s knowledge level about task j.
Kij¼ the maximum quantity of gain to knowledge of

member i by executing task j.
Eij¼ member i’s efficiency of gain to knowledge by

executing task j.
�¼ the required knowledge level to execute task j.

3. The Simulation Model

The simulation model for estimating the project
completion time is shown in Figure 1. The solid
arrows indicate the flows of simulation and the dashed
lines represent the required information or data inputs
in the simulation. The entire project lifecycle is divided
into multiple time units (e.g., in days). The time index is
a counter to update and record the project duration.
In each time unit, the first thing is to examine whether
there are any tasks that require rework. When rework is
needed, the task is usually not restarted from scratch.
Only a portion of the adjusted task will be reworked,
which varies from task to task depending on the values
of ‘rework probability’ and ‘rework impact’. Browning
and Eppinger proposed ‘rework probability’ and
‘rework impact’ in their DSM study to analyze and

control the task rework in simulation [24,25]. The
rework probability is the probability for a specific task
to make adjustment or rework when it receives the
feedback information from another related task. The
rework impact value describes the amount of work in
the task to be reworked.

Task clustering and task-member assignment are
described in sections 2.1 and 2.2, respectively. The
clustered DSM shows a well-organized project task
structure and prepares the interdependent task groups
with manageable sizes. Three important team member
characteristics (i.e., multifunctional knowledge,
teamwork capability, and working relationship) are
quantified. Using the task-member assignment model,
assigning the right tasks to the right members is achieved.

In practice, there are also some other important
constraints to consider in the task-member assignment
such as member schedule, knowledge level threshold,
and task-member assignment options. First, it is often
seen that a member is involved in multiple project tasks
at the same time. Before starting each project, project
managers may want to consider each task’s workload
and the availability in each member’s work schedule, so
that the members will not be overloaded by the assigned
tasks and each task may not wait too long for an
available member. Second, in a complex project, project
managers usually do not assign an inexperienced
member to a task, which is totally new to this
member. A threshold of knowledge level can be used
to cut the unqualified members out of consideration and
only the members with the qualified knowledge level are
to be kept in the candidate pool. Third, it is also
common practice for project managers to prefer to let a
task be handled and completed by the same member.
However, if this member’s schedule is tight, project
managers may consider allowing more than one member
to take turns and be in charge of the task. Such kind of
member rotations will require a transition time, which is
the time needed for a member to be familiar with the
task progress in order to know what has been done so
far if he/she is assigned to continue a partially completed
task left by a previous member.

Task progression is simulated by a stochastic process.
The estimated duration of each task is based on the
triangular distribution. The pessimistic, average and
optimistic times to complete a single task are obtained
by interviewing the project managers and the functional
experts. As the task is proceeding, the member’s learning
curve for the task he/she is working on continues to
improve. Using the learning curve model described in
section 2.3, the simulation records the member’s
learning improvement over each time unit. When each
task is finished, the simulation model checks whether the
task is inter-related to the other tasks that will require
rework. If so, the rework adjustment will be noted
down. At the end of each time unit, the simulation
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checks whether all the tasks are finished without further
rework. If so, the project is completed and the
simulation run is ended, otherwise the simulation goes
to the next time period in the loop and continues to run.

4. Analysis of Results

The objective of this research is not only to estimate
the project completion time, but also to analyze the

major factors that affect the estimation. The following
five major sources that contribute to lead-time varia-
tions are studied: (1) task rework probability; (2) task
rework impact value; (3) availability of member
schedules; (4) learning curve efficiency; and (5) task-
member assignment options. Factors 1 and 2 represent
the coupling strengths or the extent of interdependencies
among the tasks. The higher the rework probabilities
and rework impacts are, the stronger the tasks are
interdependent to each other. Factor 3 is about the

Start

Time index + 1

Task rework
adjustment

Rework
probability

Rework
requirement

Assign tasks
to members

Members
work on 
assigned

tasks

Member
learning
curve

Task duration
(from triangle
distribution)

Assignment
options

Member
knowledge level

threshold

Member schedule

Task structures
(presented by

DSM)

Member
characteristics

Learning curve/
functional
knowledge

improvement

All tasks are
finished?

Yes

End

No

Rework
impact

Figure 1. The simulation model.
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resource constraint as indicated by the member’s work-
ing hours. Factor 4 studies the member’s learning
characteristics and factor 5 is a management decision
between two assignment options: ‘completing a task by
the same member’ versus ‘completing a task by rotating
different available members’. An experiment is designed
based on these five factors and an analysis of variance
(ANOVA) is used to identify the significance of the
factors. Finally, conclusions and recommendations will
be drawn from the ANOVA analysis to help the
managers with their decision-making.

5. An Illustrative Example

To demonstrate the effectiveness of the research
framework, a project with 20 tasks and a company
with 30 members in seven functional departments are
used. The project is an engineering design project
with 20 tasks: X1¼operating structure design,
X2¼ vessel design, X3¼plant layout/general arrange-
ment, X4¼ shipping design, X5¼ structure lifting design,
X6¼pressure drop analysis, X7¼process engineering,
X8¼ structural documentation, X9¼ size valves,
X10¼wind load design, X11¼ seismic design,
X12¼piping design, X13¼ process and instrumentation
diagram, X14¼ equipment support, X15¼ pipe flexibility
analysis, X16¼ design documentation, X17¼ foundation
load design, X18¼ insulation structural design,

X19¼ structural bill of materials, and X20¼ assembly
design. The 30 members from each of the seven
functional departments are: D1¼ {M1, M2, M3, M4,
M5}; D2¼ {M6, M7, M8, M9}; D3¼ {M10, M11, M12,
M13,M14}; D4¼ {M15,M16,M17,M18}; D5¼ {M19,M20,
M21,M22}; D6¼ {M23,M24,M25,M26,M27}; D7¼ {M28,
M29, M30}.

According to Steward’s partitioning algorithm,
Figure 2 shows the partitioned DSM for the 20-task
engineering design project from which not only the
sequence of 20 tasks is identified, the entire structure of
the design process is also revealed. Tasks X3 and X7 are
independent tasks so that they can be performed
concurrently. Tasks {X12, X9, X2, X13, X15} are a set of
dependent tasks, so they can be carried out sequentially.
The two interdependent task groups found in the matrix
are {X1, X4, X5, X8, X10, X11, X17, X18, X19} and {X6,
X14, X20}. Due to various functional requirements
among the interrelated tasks, multifunctional teams are
needed for these two interdependent groups. However,
team performance is usually degraded when team size is
large. The large interdependent task group (i.e., the
9-task interdependent group), therefore, has to be
decomposed into smaller and manageable sizes.
According to the decomposition model developed by
Chen and Lin [4,5], the 9-task interdependent group
{X1, X4, X5, X8, X10, X11, X17, X18, X19} in Figure 2 is
clustered into two smaller groups: {X1, X4, X5, X8, X11,
X18} and {X10, X17, X19}, which are shown by the

X3 X7 X12 X9 X2 X13 X15 X1 X4 X5 X8 X11 X18 X10 X17 X19 X6 X14 X20 X16

X3 •

X7 •

X12 •

X9 1 1 •

X2 1 1 •

X13 1 1 1 •

X15 1 1 1 •

X1 1 1 • 1 1 1 1

X4 1 1 • 1 1 1

X5 1 1 1 1 • 1 1 1

X8 1 1 1 • 1 1

X11 1 1 • 1

X18 1 1 1 1 1 1 •

X10 1 1 1 1 • 1

X17 1 1 1 • 1

X19 1 1 1 •

X6 1 1 1 • 1

X14 1 1 1 1 1 •

X20 1 1 1 1 •

X16 1 1 1 1 1 1 •

Figure 2. The coordinated 20-task DSM.
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shaded blocks. The task structure shown in Figure 2 lays
a sound foundation for team organization where each
team is limited in a manageable size so team members
can work closely and more efficiently.
The task-member assignment model shown in

section 2.2 is implemented in our simulation model
to help form the best team composition. As each task
is assigned to a right member, the member’s learning
curve improvement with the task can be calculated by
Equation (2) in section 2.3. This learning curve
equation shows that if a member’s knowledge level
to the task is above the required level, he/she will not
gain any knowledge improvement. The learning curve
efficiency Eij, which is a number between 0 and 1,
indicates a member i’s efficiency in gaining knowledge
by executing task j. The higher the Eij value is, the
slower the member i is able to improve knowledge by
executing task j. In this example, the required knowl-
edge level � for every task is set to 0.9. The maximum
quantity of knowledge gained by member i by
executing task j is assumed as the difference between
the required knowledge level � and the member’s
current knowledge level bij, that is Kij¼ �� bij.

5.1 Simulation

Before the simulation runs, the decision between two
task-member assignment options: ‘completing a task by
the same member’ versus ‘completing a task by rotating
different available members’, has to be made by the
managers. Then according to the simulation model
shown in Figure 1, the simulation starts to run.
No rework is expected in the first iteration, so the
simulation skips the rework adjustment and goes to the
next step, the task-member assignment. Since a member
may work on several project tasks at the same time, it is
necessary to consider the task workload and the work
schedule of each member. A task with a workload value
‘1’ means that the task requires 100% of a member’s
time and effort to work on it. If a member’s schedule is
not 100% available, he/she cannot be assigned to this
task. After tasks are assigned, members will perform the
assigned tasks that each consumes a number of times,
which is estimated using triangle distribution (i.e.,
optimistic, expected, and pessimistic completion times).
Task workload, task duration, and each member’s work
schedule can be estimated by interviewing managers/
experts from the corresponding functional areas. The
following shows one possible outcome of task-member
assignments by simulation: X1!M1, X2!M11,
X3!M2, X4!M7, X5!M10, X6!M18, X7!M6,
X8!M16, X9!M11, X10!M13, X11!M22,
X12!M2, X13!M17, X14!M20, X15!M28,
X16!M7, X17!M19, X18!M26, X19!M25, and
X20!M26. It should be noted that members M2, M7,
and M26 are assigned to more than one task in this case.

This is due to the fact that the workloads of the tasks
assigned to them do not use up all the available hours
from their work schedules.

For each task, the functional knowledge level of the
member in charge will also influence the progress of the
task. The estimated duration of each task in this study is
based on the assumption that the member in charge is an
expert in the corresponding functional area. Therefore,
if the member selected for the task is not knowledgeable
about the area, the task progression will not be as good
as the estimation.

When a task is completed, simulation will check to see
whether this task is related to the other tasks or not.
If so, rework (or iteration) between this task and its
related tasks will be required in the simulation. Figure 3
shows DSMs of rework probability and rework impact
used in the 20-task example, which determine the
probability and the number of iterations required in
the simulation. The values of rework probability and
rework impact should be carefully estimated by the
experienced managers/experts. A rework probability 0.5
at the location of tasks (i, j) means that there is a 50%
probability for task i to rework after task j is completed.
The amount (or percentage) of rework for a given task is
determined by its value in the rework impact DSM.
For example, after task X13 is completed, the simulation
identifies that tasks X1 and X10 are dependent on task
X13 and knows that the two tasks both have a rework
probability 0.5 with task X13 as indicated in the rework
probability DSM. For task X10, the simulation generates
a random number between 0 and 1. If the number is
not greater than 0.5, rework is scheduled for task X10

and the simulation records its impact value, which is
0.6 indicated in the rework impact DSM. At the
beginning of next iteration, the remaining work of task
X10 will be set as 60%. A similar procedure will be
taken for task X1 to determine the need of rework and
record the amount of rework in the next round,
if necessary.

As tasks continue to proceed in the simulation, the
learning curve improvement will adjust the knowledge
level of each member who has performed the assigned
task for a period of time. Such learning curve improve-
ment will be effective in the next iteration. At the end of
each iteration, if all the tasks are completed and no
further rework is needed, the simulation stops. Each
iteration represents one unit of time (e.g., a day in our
example). The final value of time index is the estimated
project completion time.

5.2 Analysis of Results

To analyze the factors that have an effect on the
project completion time, an experiment using ANOVA is
carried out. Five factors will be tested and they are:
(1) rework probability; (2) rework impact; (3) availability
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of member schedules; (4) learning curve efficiency; and
(5) task-member assignment options. The experimental
design in Table 1 shows that factors A and B both
have three levels while factors C, D, and E have two
levels each, which result totally in 72 treatment
combinations. Each treatment combination will be
given 50 replications in the experiment.

From Table 2 (P-value¼ 0.05), all the factors have
significant effects on the project completion time except
factor D; and all the interactions are significant except
for the interactions of A*D, B*D, and D*E.

The following conclusions are made according to the
ANOVA table:

(1) Factor C (availability of member schedules) has the
strongest effect than the other factors. This can be
seen from the highest F-ratio of factor C (F¼

1702.385) as compared with the others. Therefore,
even though the time performance in a complex
project can be influenced by different factors, the
most important factor is the availability of human
resources (i.e., engineers/members) in this case.
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Figure 3. Rework probability DSM (a) and rework impact DSM (b).
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(2) Factors A (rework probability) and B (rework
impact), which represent the complexity level of
the project task structure and task relations, also
significantly impact the project completion time.
Rework probability determines the iteration
between related tasks and rework impact contributes
the number of iterations. Project managers should
pay more attention to clarifying the entire project
task structure and simplifying the task relations,
so that the chance and number of iterations are
reduced.

(3) In factor E, the first task-member assignment option
(‘completing a task by the same member’) requires
much more time than the second option

(‘completing a task by rotating different available
members’). The main reason is that the transition
time (i.e., 0.5 day), which is the additional time
needed for a member to take over a partially
completed task left by a previous member, chosen
in this study is low. If the transition time is long for
most tasks in the project, the outcomes may be
different.

(4) Although this study shows factor D (learning curve
efficiency) is not significant, we do not suggest that
project managers ignore the learning curve factor
when estimating the completion time for any
projects. The average completion time estimated
by simulation in the 20-task project example is

Table 2. ANOVA table.

Source Type III sum of squares df Mean square F Significance

A 286435.941 2 143217.970 454.216 0.000
B 442268.077 2 221134.039 701.326 0.000
C 536776.022 1 536776.022 1702.385 0.000
D 434.723 1 434.723 1.379 0.240
E 161242.402 1 161242.402 511.380 0.000
A*B 56216.353 4 14054.088 44.573 0.000
A*C 9026.885 2 4513.443 14.314 0.000
A*D 176.405 2 88.202 0.280 0.756
A*E 2888.795 2 1444.398 4.581 0.010
B*C 18368.762 2 9184.381 29.128 0.000
B*D 989.562 2 494.781 1.569 0.208
B*E 2407.835 2 1203.918 3.818 0.022
C*D 1582.714 1 1582.714 5.020 0.025
C*E 162046.503 1 162046.503 513.930 0.000
D*E 1.563 1 1.563 0.005 0.944
Error 1126596.453 3573 315.308

Total 2807458.993 3599

Table 1. Treatment levels in the simulation experiment.

Factors Levels Detail

(A) Rework probability High 80% are randomly generated between
0.5 and 0.6. The other 20% are between 0 and 1

Medium 80% are randomly generated between 0.3
and 0.4. The other 20% are between 0 and 1

Low 80% are randomly generated between
0.1 and 0.2 The other 20% are between 0 and 1

(B) Rework impact High 80% are randomly generated between 0.5
and 0.6. The other 20% are between 0 and 1

Medium 80% are randomly generated between 0.3
and 0.4. The other 20% are between 0 and 1

Low 80% are randomly generated between 0.1
and 0.2 The other 20% are between 0 and 1

(C) Availability of member schedules High The average availability of member schedules is 80%
Medium The average availability of member schedules is 60%

(D) Learning curve efficiency High efficiency Eij¼0.02
Low efficiency Eij¼0.1

(E) Task-member assignment options Option 1 Completing a task by the same member
Option 2 Completing a task by rotating different available members
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51.2 days, which is not generally considered as
a long-term project. We expect the learning curve
may play a bigger role in complex engineering
projects that usually takes months, even several
years to complete, because members will have a
better chance to develop their efficiency and improve
the task performance.

(5) The interaction of C*E shows a stronger effect
(F¼ 513.930) than the other interactions. In general,
project managers would prefer a task to be completed
by the same member (option 1 in factor E) in order to
make their job easier for human resource allocations.
And of course, a better task performance will be
expected because having a member stay with the
same task will keep this member learning to improve
with the task. Therefore, when the level of factor C
(availability of member schedules) is ‘High’, the
likelihood that a project manager will choose the
task-member assignment option 1 is high. However,
as human resources become limited and each
member’s schedule turns out to be tight (i.e., the
level of factor C is ‘Medium’ or ‘Low’), project
managers may allow a task to be completed by
rotating different available members (option 2 in
factor E), so that the task will be able to continue
without much delay.

(6) Even though factor D (learning curve efficiency) is
not significant in this example, it is interesting that
the interaction of C*D shows a significant effect.
The reason is that if members have more available
hours, it is more likely that each task will be handled
and completed by the same member. In such cases,
each member will have a better opportunity to
continue improving his/her task performance and
thus reduce the overall completion time of the
assigned task.

6. Conclusions

In this article, we developed a research framework
with a simulation model to help estimate the project
completion time and analyze the major factors that
affect the estimation for concurrent engineering project
management. According to task clustering using DSM,
the complexity of project task structure is clearly
understood. The task-member assignment model
employed in the simulation facilitates the goal of
assigning the right members to the right tasks at the
right time in terms of each member’s knowledge,
teamwork capability and their working relationships.
Rework probability and rework impact represented by
DSM control task iterations are often occurred in
concurrent engineering projects. Each member’s knowl-
edge improvement in the simulation is modeled by a

learning curve. The work schedule of members and the
workload of tasks are also incorporated in the simula-
tion in order to cope with the dynamic environment of
the project. According to the simulation results, the
major factors that significantly affect the project
completion time are identified using ANOVA.
Therefore project managers can focus more on those
significant factors to reduce the project completion time.

The major contributions of this research are: (1) the
DSM method, which reveals the entire project task
structure and task relations, overcomes the limitation of
traditional PERT/CPM method that cannot handle task
rework/iteration; (2) the simulation model is not only
able to help estimate the project completion time, but
also offers managers the solution of task-member
assignments; and (3) the simulation experiment and the
ANOVA analysis give project managers an insight into
those factors having significant effects on the project
completion time, thus the problems that delay the
project can be solved more efficiently and effectively.

The limitations of this research and future extensions
are summarized as follows:

(1) In this article, we treat the rework probability and
rework impact as constants. It is expected that the
rework probability and rework impact of a task will
likely be decreased (or nonconstants) over iterations
of rework. In some other cases, project managers
may limit the number of iterations allowed for
rework due to some resource-demanding tasks. One
future research extension is to search for a mathe-
matical function that is able to describe the
nonconstant forms of rework probability and
rework impact including the rates of decrease over
iterations. An additional constraint to limit the
number of iterations will also be added to the
simulation in the future research.

(2) The nature and characteristics of projects vary
because different projects have different goals and
are carried out in different contexts. A member’s
learning capability is heavily influenced by how the
project is planned and organized for execution.
Most learning curve models are specifically designed
to fit a certain type of project or task. It is difficult
to determine a learning curve model just right for
different individuals due to each one’s knowledge
base, experience, and learning motivation, etc.
The simulation model in this article focuses on
concurrent engineering projects, which are decom-
posed into inter-related tasks. These tasks, not the
same as simple repetitive jobs (i.e., the assembly
line tasks), can be carried out simultaneously,
require inputs from the other tasks, or need
rework. Our simulation does not limit users to a
specific learning curve model. The reason we
use Hanakawa’s learning curve model is that the
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software development project is a good example of
concurrent engineering. Software projects are
often divided into tasks by different functional
modules, which carry the same characteristics of
concurrent engineering tasks. It is recommended
that the managers should choose the most appro-
priate learning curve model(s) based on different
task types.

(3) Every task in this study shares the same (or
constant) transition time, which is set as a low
value. We expect that the outcomes may not be the
same if different tasks require different (or non-
constant) transition times, which are long overall.
Another future research will be examining different
modes of transition times (i.e., short vs medium vs
long, and constant vs non-constant, etc.) and their
impacts on the project completion time.

(4) The simulation model in this research handles the
project tasks in a concurrent engineering fashion.
In practice, some tasks may not be allowed to start
until their predecessors are completed (e.g., a
predecessor task may provide an essential part or
tool for its successor task). This future research
will aim at building a mixed model that can
accommodate both task structures of sequential
and concurrent engineering in the simulation.
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