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Ellipsoidal Anisotropies in Linear
Elasticity: Extension of Saint Venant’s

Work to Phenomenological
Modeling of Materials

AHMAD POUYA

LCPC – 58 Bd Lefebvre, 75732, Paris Cedex 15, France
ABSTRACT: Several families of elastic anisotropies have been introduced by
Saint Venant (Saint Venent, B. (de) (1863). Sur la distribution des élasticitiés
autour de chaque point d’un solide ou d’un milieu de contexture quelconque,
particulièrement lorsqu’il est amorphe sams être isotrope, Journal de Math. Pures
et Appliquées, Tome VIII (2éme série) pp. 257–430) for which the polar diagram of
elastic parameters in different directions of the material (indicator surface) is
ellipsoidal. These families cover a large variety of models introduced in recent years
for damaged materials or as effective moduli of heterogeneous materials. Ellipsoidal
anisotropy has also been used as a guideline in phenomenological modeling of
materials. Then a question that naturally arises is to know in which conditions
the assumption that some indicator surfaces are ellipsoidal allows one to entirely
determine the elastic constants. This question has not been rigorously studied in the
literature. In this study, first, several basic classes of ellipsoidal anisotropy are
presented. Then the problem of the determination of elastic parameters from
indicator surfaces is discussed in several basic cases that can occur in phenomen-
ological modeling. Finally, the compatibility between the assumption of ellipsoidal
form for different indicator surfaces is discussed. In particular, it is shown that if
the indicator surfaces of

ffiffiffiffiffiffiffiffiffi
EðnÞ4

p
and of

ffiffiffiffiffiffiffiffi
cðnÞ�4

p
(where E(n) and c(n) are, respectively,

the Young’s modulus and the elastic coefficient in the direction n) are ellipsoidal,
then the two ellipsoids have necessarily the same principal axes, and the material in
this case is orthotropic.
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INTRODUCTION

O
N THE BASIS of the idea that the material isotropy geometrically
corresponds to the image of a sphere, one can naturally seek to

extend the isotropic models to anisotropic ones that correspond to an
ellipsoidal variation of parameters in different directions. Saint Venant
(1863) studied several elasticity models of this type, for instance, a model
for which the polar diagram of

ffiffiffiffiffiffiffiffiffi
EðnÞ4

p
, where E(n) is the Young’s modulus

in direction n, defines an ellipsoidal surface. He regarded these models
as being useful for approximation of anisotropic elasticity of amorphous
materials.

The models introduced by Saint Venant do not correspond to
crystalline types of anisotropy, but cover a large variety of models
introduced in recent years for the elasticity tensor of damaged materials
(Halm and Dragon, 1988; Kachanov, 1992; Dragon et al., 2000;
Chiarelli et al., 2003; Alliche, 2004) or as effective moduli of heterogeneous
media (Milgrom and Shtrikman, 1992; Milton, 2002). They allow the
representation of a three-dimensional anisotropy with reduced number of
parameters.

In addition, the concept of ellipsoidal anisotropy has naturally been used
as a guideline for modeling the elasticity of materials, or at least geomaterials
such as soils, rocks, concrete, etc. The anisotropic behavior of these
materials has extensively been studied in recent years by experimental or
numerical methods and is taken into account in geotechnical design (Hefny
and Lo, 1999; Pouya and Reiffsteck, 2003) and also in the study of seismic
wave propagation, genesis of geological structures (Pan and Amadei, 1996),
microcracking of rocks (Takemura et al., 2003), etc. Most of the times,
a rough representation of the anisotropy with a minimum number of
parameters is sufficient for the purposes of these studies. Peres Rodrigues
and Aires-Barros (1970) tried to fit the measured values of the Young’s
modulus in different directions for several varieties of rocks by ellipsoids.
For the study of seismic wave propagation in geological layers, Daley and
Hron (1979) defined the ‘elliptically anisotropic’ medium as being
characterized by elliptical P-wave fronts emanating from a point source.
This concept was widely used in geophysical studies and examined by
Thomsen (1986) in the context of weak anisotropy and transversal isotropy
for a large variety of sedimentary rocks. Louis et al. (2004) proposed a
simplified method to analyze the P-wave velocity data in anisotropic
rocks, which supposes implicitly an ellipsoidal approximation of some
elastic parameters. Pouya and Reiffsteck (2003) remarked that some
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Boehler’s (1975) data on the Young’s modulus of different soils presented
an ellipsoidal property, and showed that this assumption allows one to
simplify the modeling of foundations. As a matter of fact, it was shown by
Pouya (2000) and Pouya and Zaoui (2005) that many closed form solutions
for basic problems in linear isotropic materials can be extended by a
linear transformation to various ‘ellipsoidal’ materials.

The concept of ellipsoidal anisotropy in elasticity thus seems an attractive
guideline for phenomenological modeling of amorphous, microcracked,
or damaged materials since it simplifies data analysis and defines models
with a reduced number of parameters and interesting theoretical properties.
Nevertheless, some theoretical questions concerning the existence and
uniqueness of an elasticity tensor solution for one or more ellipsoidal
indicator surfaces have not been examined rigorously in the literature.
For instance, contrary to what was supposed by Peres Rodrigues and
Aires-Barros (1970), the indicator surface of E(n) can never be an ellipsoid
(different from a sphere), and so the parameters fitted by this author do not
define an elasticity tensor. In this article, first some elastic parameters which
can have ellipsoidal variation are presented. Then the problem of
determination of the elasticity tensor from indicator surfaces, which was
studied by Hé and Curnier (1995) in restricted cases of damaged materials,
are examined for basic cases of ellipsoidal surfaces.

NOTATIONS

In the following, light-face (Greek or Latin) letters denote scalars;
bold-face minuscules and majuscules designate, respectively, vectors
and second-rank tensors or double-index matrices; outline letters are
reserved for fourth-rank tensors. The convention of summation on
repeated indices is used implicitly. The scalar product of the two vectors
is labeled as aEb¼ aibj, and their symmetric tensor product as a� b

with (a� b)ij¼ (aibjþ ajbi)/2. The matrix product is labeled as AB, and the
inner product as A :B¼AijBij. The operation of the fourth-rank tensor C

on A is labeled by C : A with (C : A)ij¼CijklAkl and the operation of A on
a, by A�a.

For an elasticity tensor C verifying the symmetries Cijkl¼Cijlk¼Cklij, two
distinct double index notations are introduced: the double subscript (ij)
is first abbreviated to a single subscript (�) running from 1 to 6 by the
following rule:

11 ! 1, 22 ! 2, 33 ! 3, 23 ! 4, 13 ! 5, 12 ! 6
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The matrix notation C is defined by its components c��¼C(ij)(kl ), and
the dual matrix notation C for the same tensor C, by its components
c��¼ �c�� with

� ¼ 1, if � � 3 and � � 3

� ¼ 4, if � > 3 and � > 3

� ¼ 2 elsewhere:

Note that the elastic compliances that are commonly designated in
the literature by s�� (Lekhnitskii, 1963; Sirotine and Chaskolskaia, 1984;
Ting, 1996), are designated here by s��.

FOURTH-ORDER INDICATOR SURFACES

The indicator surface for a ‘monodirectional’ elastic parameter, i.e.,
a parameter depending upon the elasticity tensor C and only one direction n,
is the polar diagram x¼ r(n)n, where n is a unit vector and r(n) is the value of
the elastic parameter in the direction n. Some examples of ‘monodirectional’
parameters are the Young’s modulus, bulk modulus, elastic coefficient, and
hydrostatic coefficient in direction n defined respectively by

EðnÞ ¼ n� nð Þ:S: n� nð Þ½ �
�1

ð1Þ

bðnÞ ¼ �:S: n� nð Þ½ �
�1

ð2Þ

cðnÞ ¼ n� nð Þ:C: n� nð Þ ð3Þ

hðnÞ ¼ �:C: n� nð Þ ð4Þ

where � is the second-order unit tensor and S¼C
�1. Other monodirectional

parameters, such as the Poisson’s ratio in direction n, �(n)¼ [1�E(n)/b(n)]/2,
or the torsion modulus in direction n, �(n)¼ [2(�ik�nink)Sijklnjnl]

�1, have also
been introduced by some authors, and their indicator surfaces have been
studied (Sirotine and Chaskolskaia, 1984). Investigation of this study
is limited to the parameters defined by Equations (1)–(4), which are the basic
parameters that can be determined experimentally from simple traction or
extension tests.

The indicator surface of Young’s modulus has been widely studied for
all types of materials. The polar equation of this surface:

rðnÞ ¼ EðnÞ ¼ n� nð Þ:S: n� nð Þ½ �
�1

ð5Þ
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can be transformed, by using r2¼ x�x and n¼x/r, into the following
polynomial equation:

x� xð Þ:S: x� xð Þ½ �
2
¼ x � xð Þ

3
ð6Þ

This eighth-order surface has been, in particular, deeply investigated
by Cazzani and Marco (2003, 2005) for cubic, hexagonal, and tetragonal
symmetries. It takes, in general, very complex forms (see Figure 1) and
further analysis has shown that it cannot be an ellipsoid different
from a sphere (Appendix 1). So this surface is not suitable for an
ellipsoidal approximation of E(n) values contrarily to that supposed by
Peres Rodrigues (1970). On the other hand, if the indicator surface of

ffiffiffiffiffiffiffiffiffi
EðnÞ4

p
is considered then a fourth-order surface is found which is described by
the following equation:

x� xð Þ:S: x� xð Þ ¼ 1 ð7Þ

This surface, which contains exactly the same information as
that of the previous one, degenerates for some cases of materials
to second-order surfaces, and more precisely, to ellipsoids. This
defines a class of materials that are said to have a variety of ellipsoidal
anisotropy.

Other fourth-order indicator surfaces which can degenerate to
ellipsoids are those of

ffiffiffiffiffiffiffiffiffi
EðnÞ

p
, [c(n)]�1/4, and [c(n)]�1/2. The indicator surfaces

of [b(n)]1/2 and [h(n)]�1/2 are always ellipsoidal. The denomination and
equations of these surfaces are given in Table 1.

SAINT VENANT’S ANISOTROPIES

Saint Venant (1863) introduced several families of orthotropic materials
for which one or more of the surfaces F4(C), G4(C), F2(C), or G2(C) are
ellipsoidal. Let B¼ {e1, e2, e2} be a set of unit vectors defining a Cartesian
coordinate system, and �(B) be the family of orthotropic materials with
planes of symmetry given by B.

The first family defined by Saint Venant is the subset of �(B), denoted
here by �4(B), for which the following relations between the parameters
are satisfied:

c44 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p
� c23

2
, c55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p
� c13

2
, c66 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p
� c12

2
ð8Þ

Ellipsoidal Anisotropies in Linear Elasticity 99



For C 2 �4ðBÞ, the equation of F4(C), given in Table 1, reduces to the
equation of an ellipsoid with principal axes B and semi-diameters
{ðc11Þ

�1=4, ðc22Þ
�1=4, ðc33Þ

�1=4}:

ffiffiffiffiffiffi
c11

p
x21 þ

ffiffiffiffiffiffi
c22

p
x22 þ

ffiffiffiffiffiffi
c33

p
x23 ¼ 1 ð9Þ

(a) (b)

(c) (d)

XY
Z

Figure 1. Indicator surfaces for an element of �4. For C 2�4(B) with c11¼ 15, c22¼ 10,
c33¼ 5, c12¼�3, c13¼4, c23¼4.5, and c44, c55, c66 given by Equation (8), the indicator
surfaces of

ffiffiffiffiffiffiffiffi
cðnÞ�4

p
, c(n),

ffiffiffiffiffiffiffiffiffi
EðnÞ4

p
, and E(n) are respectively (a) an ellipsoid, (b) a 10th-order, (c)

4th-order and (d) 8th-order surface.
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Equations (8) were considered by many authors, in the context of
transversal isotropy, as defining a degenerate case (Pan and Chou, 1976).

The second family is that of orthotropic tensors for which relations
analogous to Equation (8) hold between the parameters s��. In terms of s��,
these relations become:

s44 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
s22s33

p
� s23

� �
, s55 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
s11s33

p
� s13

� �
, s66 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
s11s22

p
� s12

� �
ð10Þ

and in terms of elastic modulus and Poisson’s ratio (Equation (35)), they
become:

G23 ¼

ffiffiffiffiffiffiffiffiffiffiffi
E2E3

p

2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�23�32

p� � , G31 ¼

ffiffiffiffiffiffiffiffiffiffiffi
E3E1

p

2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�31�13

p� � , G12 ¼

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p

2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�12�21

p� �
ð11Þ

This family, which was also quoted by Lekhnitskii (1963), is labeled here as
�4(B). For C 2 �4ðBÞ, the surface G4(C) is an ellipsoid with principal axes B
and semidiameters {ðs11Þ

�1=4, ðs22Þ
�1=4, ðs33Þ

�1=4}, or {
ffiffiffiffiffiffi
E1

4
p

,
ffiffiffiffiffiffi
E2

4
p

,
ffiffiffiffiffiffi
E3

4
p

}. In the
context of transversal isotropy (with axis x3), the third equality of Equation
(10) is always satisfied and the first two are equivalent. In this context, these
relations were considered by Boehler (1982) as defining a case of limited
anisotropy with elliptical properties.

The elements of �4(B) and �4(B) depend on six intrinsic parameters.
The intersection between �4(B) and �4(B) is denoted by �(B):

�ðBÞ ¼ �4ðBÞ \ �4ðBÞ ð12Þ

Table 1. Indicator surfaces of different elastic parameters
and their polynomial equation.

Indicator surface Elastic parameter Equation

F4(C) ½ðn� nÞ : C : ðn� nÞ��1=4
ðx� xÞ : C : ðx� xÞ ¼ 1

F2(C) ½ðn� nÞ : C : ðn� nÞ��1=2
ðx� xÞ : C : ðx� xÞ ¼ x � x

G4(C) ½ðn� nÞ : S : ðn� nÞ��1=4
ðx� xÞ : S : ðx� xÞ ¼ 1

G2(C) ½ðn� nÞ : S : ðn� nÞ��1=2
ðx� xÞ : S : ðx� xÞ ¼ x � x

f(C) ½d : C : ðn� nÞ��1=2 d : C : ðx� xÞ ¼ 1
g(C) ½d : S : ðn� nÞ��1=2 d : S : ðx� xÞ ¼ 1
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This family of materials, as shown by Saint Venant, depends on four
intrinsic parameters in the coordinates system B, and can be represented
equivalently by one of the following expressions of C or of S in this
coordinates system:

�ðBÞ :

C¼

c11 �
ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p

c22 �
ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p

c33

1��

2

ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p

1��

2

ffiffiffiffiffiffiffiffiffiffiffiffi
c 11c33

p

1��

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p

2
66666666666666664

3
77777777777777775

ð13Þ

�ðBÞ : S¼

1

E1

��ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
��ffiffiffiffiffiffiffiffiffiffiffi
E1E3

p

��ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
1

E2

��ffiffiffiffiffiffiffiffiffiffiffi
E2E3

p

��ffiffiffiffiffiffiffiffiffiffiffi
E1E3

p
��ffiffiffiffiffiffiffiffiffiffiffi
E2E3

p
1

E3

2ð1þ �Þffiffiffiffiffiffiffiffiffiffiffi
E2E3

p

2ð1þ �Þffiffiffiffiffiffiffiffiffiffiffi
E3E1

p

2ð1þ �Þffiffiffiffiffiffiffiffiffiffiffi
E1E2

p

2
666666666666666666666664

3
777777777777777777777775

ð14Þ

The two sets of parameters (c11, c22, c33, �) and (E1,E2,E3, �) are
related by:

� ¼
�

1þ �
, E� ¼

1� �ð Þ 1þ 2�ð Þ

1þ �
c�� ð� ¼ 1,2,3; non-summation upon �Þ

ð15Þ
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Pouya and Zaoui (2005) have shown that for this family of materials,
C can be written in the following forms:

Cijkl ¼ PimPjnPkpPlq
~Cmnpq ð16Þ

Cijkl ¼ lDijDkl þ � DikDjl þDilDjk

� �
ð17Þ

In these relations ~C represents an isotropic elasticity tensor with Lamé
constants l¼ � and �¼ (1��)/2, P is given in the coordinates system B by

P ¼ diag
ffiffiffiffiffiffi
c114

p
,

ffiffiffiffiffiffi
c224

p
,

ffiffiffiffiffiffi
c334

p� �
ð18Þ

and D¼PP.
Conversely, it can be checked that for the materials defined by

Equation (17), both F4(C) and G4(C) are ellipsoidal. Therefore,
Equation (17) defines � type materials where:

� ¼
[
B

�ðBÞ ð19Þ

The expression (17) has been used in some micromechanical studies as
representing the effective modulus of heterogeneous media (Milgrom and
Shtrikman, 1992, Milton, 2002). �-type materials present interesting
theoretical properties. Saint Venant showed that D’Alembert’s displacement
potentials as well as the solution for plane waves propagation in isotropic
elasticity can be extended to this family. Pouya (2000) and Pouya and Zaoui
(2005) showed that Equation (16) between the two elasticity tensors allows
one to extend many closed form solutions for basic problems of elasticity to
�-type materials. Some examples of results extended in this way to �-type
materials are the Eshelby tensor for inclusion-matrix problem (Milgrom and
Shtrikman, 1992; Pouya, 2000) and Green function for infinite space
(Pouya, 2000) and for half-space (Pouya and Zaoui, 2005). The extension of
the Green function solutions for two joined semi-infinite isotropic solids
(Rongved, 1955) or for layered medium constituted of isotropic materials
(Benitez and Rosakis, 1987) to solids constituted of �-type materials would
also be possible (Pouya and Zaoui, 2005).

Thus, theoretical simplifications can result from choosing �-type models
for representing (as an approximation) the elastic anisotropy of materials.

Now Equation (17) is considered. The tensor D can be decomposed as
D¼ pdþ �G where p¼ (D:d)/3 and G is traceless and normalized to unity:
G:d¼ 0, G:G¼ 1. The parameter p can be chosen with l and �: consider
p¼ 1 without loss of generality and write D¼ dþ �G. If �¼ 0, then
Equation (17) gives the isotropic elasticity tensor. In the context of
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‘weak anisotropy’, i.e., when j�j� 1, the first-order expansion of
Equation (17) with respect to � leads to:

Cijkl ¼ l�ij�kl þ � �ik�jl þ �il�jk
� �

þ a1 �ijGkl þ �klGij

� �
þ a2 �ikGjl þ �ilGjk þ �jlGik þ �jkGil

� � ð20Þ

with a1¼ l� and a2¼��. Equation (20) with independent values for a1 and
a2 (and not necessarily infinitesimal) has been widely used in the literature
for representing the elasticity tensor of damaged materials. It has been
obtained by Kachanov (1992) as the effective moduli of microcracked
media and then widely used as a phenomenological model for damaged
geomaterials (Chiarelli et al., 2003; Alliche, 2004) or as an intermediary
between micromechanical and phenomenological models for further
theoretical investigations (Halm and Dragon, 1988; Dragon et al., 2000).

It is interesting to note that Equation (20) can be defined directly
by an ellipsoidal property: for this model the surface F2(C) is ellipsoidal.
Saint Venant defined a subset of �(B), denoted here by �2(B), for which
the following relations are satisfied between the parameters:

c44 ¼
c22 þ c33 � 2c23

4
, c55 ¼

c11 þ c33 � 2c13
4

, c66 ¼
c11 þ c22 � 2c12

4
ð21Þ

For C 2 �2ðBÞ, the surface F2(C) is an ellipsoid with principal axes B

and semidiameters (1=
ffiffiffiffiffiffi
c11

p
, 1=

ffiffiffiffiffiffi
c22

p
, 1=

ffiffiffiffiffiffi
c33

p
). The elements of this family

have the Equation (20) where G is diagonal in B. It can be checked that
Equation (20) defines exactly the family �2 of materials given by:

�2 ¼
[
B

�2ðBÞ ð22Þ

Finally, a subfamily of �(B), denoted here by �2(B), was defined by
Saint Venant for which an Equation (21)-type relation is verified between
s�� parameters, or equivalently (see also Lekhnitskii, 1963):

1

G23
�
2
ffiffiffiffiffiffiffiffiffiffiffiffi
�23�32

pffiffiffiffiffiffiffiffiffiffiffi
E2E3

p ¼
1

E2
þ

1

E3
,

1

G31
�
2
ffiffiffiffiffiffiffiffiffiffiffiffi
�31�13

pffiffiffiffiffiffiffiffiffiffiffi
E3E1

p ¼
1

E3
þ

1

E1
,

1

G12
�
2
ffiffiffiffiffiffiffiffiffiffiffiffi
�12�21

pffiffiffiffiffiffiffiffiffiffiffi
E1E2

p ¼
1

E1
þ

1

E2

ð23Þ

For this family, G2(C) is ellipsoidal with semidiameters {
ffiffiffiffiffiffi
E1

p
,
ffiffiffiffiffiffi
E2

p
,
ffiffiffiffiffiffi
E3

p
}.
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CHARACTERIZATION OF THE MATERIAL

BY INDICATOR SURFACES

For the families studied here previously, the expression of the tensors C
or S is given a priori. Now consider that the values of some monodirectional
elastic parameters have been determined in different directions by
experimental or numerical methods. E(n) values have frequently been
determined experimentally by coring samples in different directions in
rocks and soils (Boehler, 1975). Numerical homogenization methods allow
one to easily determine c(n) or E(n) in different directions. For instance,
Min and Jing (2003) determined the E(n) values for a fractured rock mass
by applying a compression parallel to the sides of a square REV and
by rotating the REV with respect to the fractures (Figure 2). Acoustic
measurements are widely used for determining the parameters of anisotropic
elasticity in different directions. Sometimes a complete set of numerical
values is determined by this method for the 21 parameters of general
anisotropy (Homand et al., 1993). In this case it is interesting to derive
an approximate model having a reduced number of parameters and,

x

y

x

y

θ

REV 1

Figure 2. Numerical determination of the elastic parameters in different directions of a
heterogeneous medium by rotation of the REV with respect to the medium.
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the study of the indicator surfaces can constitute a good guideline for
this purpose.

Consider that the polar diagrams of [c(n)]�1/4,
ffiffiffiffiffiffiffiffiffi
EðnÞ4

p
, [c(n)]�1/2, or

ffiffiffiffiffiffiffiffiffi
EðnÞ

p
have been constructed for one of the several samples (or REVs) by
experimental (or numerical) methods. Suppose that they can be well-fitted
sufficiently by ellipsoidal surfaces (Figure 3). The problem then is to know
how to deduce C from the fitting parameters. A preliminary question would
be to know if any pair of ellipsoids fitted for two different parameters is
compatible with the existence of an elasticity tensor. To study these
problems, first the classes of materials corresponding to one condition of
ellipsoidal indicator surface are characterized, and then the intersection
between two different classes is studied.

Material Classes

The term �̂4(B) is defined as the class of tensors C for which F4(C)
is an ellipsoid admitting the system B as principal axes. This class obviously
includes �4(B), but, as it will be seen further, is greater than �4(B). In the
same way, the classes �̂2(B), �̂4(B), �̂2(B), ’̂(B), and 	̂(B) are defined as the

y

x

REV 1

REV 2

REV 3

Model

Figure 3. Fitting of the experimental or numerical indicator surfaces obtained for one or
several samples by ellipsoids.
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classes of tensors C for which respectively F2(C), G4(C), G2(C), f(C), and
g(C) is ellipsoidal with principal axes B. The classes �̂4, �̂2, �̂4, and �̂2 are
defined as the sets of tensors C for which the surfaces F4(C), F2(C), G4(C),
and G2(C) respectively are ellipsoidal:

�̂4¼
[
B

�̂4ðBÞ, �̂2¼
[
B

�̂2ðBÞ, �̂4 ¼
[
B

�̂4ðBÞ, �̂2 ¼
[
B

�̂2ðBÞ ð24Þ

The spherical classes �̂s, �̂s, ’̂s, and 	̂s are defined as the sets of
tensors C for which respectively surfaces F4(C) (or F2(C)), G4(C) (or G2(C)),
f(C), and g(C) are spherical. Finally Is represents as the class of isotropic
tensors.

At least two different indicator surfaces are required to fully determine C.
Hé and Curnier (1995) showed that if the indicator surfaces of parameters
c(n) and h(n) defined by Equations (3) and (4) are spherical, then C is
isotropic. This is equivalent to say that if surfaces F4(C) and f(C)
are spherical, then C is isotropic:

�̂s \ ’̂ ¼ Is ð25Þ

Equivalently, if G4(C) and g(C) are spherical, then C is isotropic:
�̂s\ 	̂s¼ Is.

These results are extended in the following to ellipsoidal surfaces.
Two cases are studied: when F4(C) or F2(C) is ellipsoidal with the
same planes of symmetry than f(C), and when F4(C) and G4(C) both
are ellipsoidal.

Expression of the Elasticity Tensor for Different Classes

Let us first determine the explicit expressions of tensors C or S for
the classes introduced previuosly. For C 2 �̂4(B), the surface F4(C) is
an ellipsoid with principal axes B. If (D1,D2,D3) denote the semidiameters
of this ellipsoid, then its equation in the coordinate system B is:

x21
D2

1

þ
x22
D2

2

þ
x23
D2

3

¼ 1 ð26Þ

This equation must be equivalent to that given in Table 1 for F4(C):

8x;
x21
D2

1

þ
x22
D2

2

þ
x23
D2

3

¼ 1 , ðx� xÞ:C:ðx� xÞ ¼ 1 ð27Þ
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Using:

x� xð Þ:C: x� xð Þ ¼ c11x
4
1 þ c22x

4
2 þ c33x

4
3 þ 2c23 þ 4c44ð Þx22x

2
3

þ 2c31 þ 4c55ð Þx23x
2
1 þ 2c12 þ 4c66ð Þx21x

2
2

þ 4c14 þ 8c56ð Þx21x2x3 þ 4c25 þ 8c64ð Þx22x3x1

þ 4c36 þ 8c45ð Þx23x1x2

þ 4 c16x
3
1x2 þ c15x

3
1x3 þ c26x

3
2x1 þ c24x

3
2x3

�
þc35x

3
3x1 þ c34x

3
3x2
�

ð28Þ

the equivalence (27) allows one to establish the following relations:

D1 ¼ c11ð Þ
�1=4, D2 ¼ c22ð Þ

�1=4, D3 ¼ c33ð Þ
�1=4

ð29Þ

c23 þ 2c44 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p
, c13 þ 2c55 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c33

p
, c12 þ 2c66 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p
ð30Þ

c14 þ 2c56 ¼ c25 þ 2c46 ¼ c36 þ 2c45 ¼ 0 ð31Þ

c16 ¼ c15 ¼ c26 ¼ c24 ¼ c35 ¼ c34 ¼ 0 ð32Þ

An element of �̂4(B) thus depends upon nine intrinsic parameters
(c11, c22, c33, c12, c23, c13, c14, c25, c36) and reads as:

�̂4ðBÞ : C¼

c11 c12 c13 c14
c22 c23 c25

c33 c36ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p
� c23

2
�
c36
2

�
c25
2ffiffiffiffiffiffiffiffiffiffiffiffi

c11c33
p

� c13

2
�
c14
2ffiffiffiffiffiffiffiffiffiffiffiffi

c11c22
p

� c12

2

2
66666666664

3
77777777775

ð33Þ

The general expressions of C for the class �̂2(B), as well as the expression
of S for �̂4(B) and �̂2(B) can be established in the same way. For instance,
for �̂2(B), C has the same expression as that of Equation (33), but c44,
c55, and c66 are given by Equation (21) instead of Equation (8), and the
relation (29) becomes:

D1 ¼
1ffiffiffiffiffiffi
c11

p , D2 ¼
1ffiffiffiffiffiffi
c22

p , D3 ¼
1ffiffiffiffiffiffi
c33

p ð34Þ
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�̂4(B) is found to be defined by the following expression of S in which
G12, G23, and G13 are given by (11):

�̂4ðBÞ: S

1

E1

��12
E1

��13
E1

s14

��12
E1

1

E2

��23
E2

s25

��13
E1

��23
E2

1

E3
s36

1

G23
�s36 �s25

1

G13
�s14

1

G12

2
666666666666666664

3
777777777777777775

ð35Þ

The surfaces f(C) and g(C) are always ellipsoidal. The class ’̂(B)
(respectively 	̂(B)) represents tensors C for which ellipsoid f(C) (respectively
g(C)) has the principal axes B. Let C 2 ’̂ðB), and note that (d1, d2, d3)
are the semidiameters of f(C). By comparing Equation (26)-like equation
of this ellipsoid to that given in Table 1 for F4(C), and by using
the expression:

d :C:ðx� xÞ ¼ c11 þ c21 þ c31ð Þx21 þ c12 þ c22 þ c32ð Þx22 þ c13 þ c23 þ c33ð Þx23

þ 2 c14 þ c24 þ c34ð Þx2x3 þ 2 c15 þ c25 þ c35ð Þx1x3

þ 2 c16 þ c26 þ c36ð Þx1x2

ð36Þ

one finds:

d1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c11 þ c21 þ c31
p , d2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12 þ c22 þ c32

p , d3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c13 þ c23 þ c33
p ð37Þ

c14 þ c24 þ c34 ¼ c15 þ c25 þ c35 ¼ c16 þ c26 þ c36 ¼ 0 ð38Þ

Class 	̂(B) is characterized by relations analogous to Equation (38) satisfied
by coefficients s��.

Now consider C2 �̂4(B) defined by Equation (33), and define tensor H

diagonal in B, which is given by:

H ¼ diag
ffiffiffiffiffiffi
c11

p
,
ffiffiffiffiffiffi
c22

p
,
ffiffiffiffiffiffi
c33

p� �
ð39Þ
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then one finds:

8x; x� xð Þ:C: x� xð Þ ¼ xEHExð Þ
2

ð40Þ

Conversely, if a symmetric matrix H exists, which allows one to write
Equation (40), then F4(C) is obviously ellipsoidal. Therefore one can write:

�̂4¼ C=9H; 8x; x� xð Þ:C: x� xð Þ ¼ ðx:H:xÞ2
� �

ð41Þ

In the same way:

�̂2¼ C=9H;8x; x� xð Þ:C: x� xð Þ ¼ ðx:H:xÞðx � xÞ
� �

ð42Þ

�̂4¼ C=9H;8x; x� xð Þ:S: x� xð Þ ¼ ðx:H:xÞ2
� �

ð43Þ

�̂2¼ C=9H;8x; x� xð Þ:S: x� xð Þ ¼ ðx:H:xÞðx � xÞ
� �

ð44Þ

It is interesting to note that the materials of classes �̂4, �̂2, �̂4, and �̂2

in general are not orthotropic, and cannot even have any plane of symmetry.
As a matter of fact, a plane of symmetry of C is necessarily a plane
of symmetry of its indicator surfaces. If the three semi-diameters
of the ellipsoid F4(C), for instance, are different then its only planes of
symmetry are those of system B, which manifestly do not constitute planes
of symmetry for C given in Equation (33). In consequence, the method
of characterization of the material’s anisotropy based on the analysis of the
number and orientation of its planes of reflective symmetry (Cowin and
Mehrabadi, 1987, 1995) would not give significant result for these classes
of materials.

MATERIAL IDENTIFICATION

In this section let us study some cases in which two ellipsoidal surfaces
allows us to fully determine C.

Intersection of �̂4(B) and ’̂(B)

Suppose that F4(C) is ellipsoidal. Since f(C) is always ellipsoidal,
the interesting case to consider is when the two ellipsoids have the
same principal axes, i.e., when C 2 �̂4(BÞ \ ’̂(B). Then C is given by
Equation (33), and Equation (38) on ’̂(B) implies that c14¼ c25¼ c36¼ 0; so
C is orthotropic. The following result is obtained in this way:

�̂4ðBÞ \ ’̂ðBÞ ¼�4 ðBÞ ð45Þ
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In the same way, it can be shown that:

�̂2ðBÞ \ ’̂ ðBÞ ¼�2ðBÞ ð46Þ

The same data c(n) can be utilized for defining two surfaces F2(C) and F4(C).
According to that data a best ellipsoidal fitting is obtained for F4(C) or for
F2(C), an element of �̂4 or of �̂2 is found. Equations (45) and (46) mean
that, when fitting F4(C) or F2(C) by an ellipsoid, if the principal axes of the
ellipsoid are constrained to have the same direction as that for f(C), then
an orthotropic material is found. The parameters of C can be, in these
cases, fully determined from the semidiameters of the two ellipsoids by using
Equations (29), (30), and (37) in the first case and Equations (21), (34),
and (37) in the second case.

Now consider the case of materials for which c(n) is constant. In this case
C 2 �̂s. Since for every system of axes B, �̂s � �̂4(B), one can deduce from
Equation (45) that �̂s \ ’̂ðBÞ � �̂4(B), and can then establish:

�̂s \ ’̂ ðBÞ ¼�sðBÞ ð47Þ

An element of �s(B) is given by Equation (33) in which c14¼ c25¼ c36¼ 0
and c11¼ c22¼ c33 If, in addition, f(C) is spherical, then by writing
d1¼ d2¼ d3 in Equation (37) for an element of �s(B), one finds that C

is isotropic. Equation (47) reduces in this case to the result given by Hé
and Curnier (1995):

�̂s \ ’̂s ¼ Is ð48Þ

Equivalent relations to Equations (45)–(47) can be written for �̂-type
materials, for instance, for the first relation, �̂4(BÞ \ 	̂ðBÞ ¼ �̂4(B).

It is interesting to note that Equation (47) implies that the elements of �̂s

(and equivalently �̂s) are all orthotropic. As a matter of fact, for every
C 2 �̂s, if B denotes a system of principal axes of f(C), then C 2 ’̂(B), and
then according to Equation (47), C 2 �s(B) and hence C is orthotropic:

If the elastic coefficient c(n) (or Young’s modulus E(n)) is constant in all
directions, then the material is orthotropic.

Intersection of �̂4 and �̂4

Consider in this section the case of materials for which both indicator
surfaces F4(C) and G4(C) are ellipsoidal. First consider the case in which
these ellipsoids have a common set of principal axes B. Then the more
general case is considered in which this condition is not supposed a priori.
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INTERSECTION OF �̂4(B) AND �̂4(B)
If C 2 �̂4(BÞ \ �̂4(B), then the planes of the coordinate system B

constitute planes of reflexive symmetry for the surfaces F4(C) and G4(C),
or also for the scalar functions (n� n): C:(n� n) and (n� n):S:(n� n). This
property for the function (n� n): C:(n� n) is equivalent to Equations (30)
and (31) and also to the expression of the matrix C given by Equations (49)
and (50). The same property for (n� n):S:(n� n) is equivalent to the S
given by Equations (49) and (51):

C ¼
M D

D
1

2
N

" #
, S ¼

M0 2D0

2D0 2N0

� �
ð49Þ

with:

M ¼

c11 c12 c13

c22 c23

c33

2
64

3
75, N ¼

2c44 �c36 �c25

2c55 �c14

2c66

2
64

3
75, D ¼

c14

c25

c36

2
64

3
75

ð50Þ

M0 ¼

s11 s12 s13
s22 s23

s33

2
4

3
5, N0 ¼

1

2

s44 �s36 �s25
s55 �s14

s66

2
4

3
5, D0 ¼

1

2

s14
s25

s36

2
4

3
5

ð51Þ

Equation C :S¼ I, or c�� s�	¼ ���, implies the following matrix equations
in which I represents the 3� 3 unit matrix:

MM0 þ 2DD0 ¼ I ð52Þ

NN0 þ 2DD0 ¼ I ð53Þ

MD0 þDN0 ¼ 0 ð54Þ

DM0 þND0 ¼ 0 ð55Þ

Symmetry and positive definite properties of C and S imply that M, M0,
N, and N0 are symmetric and positive definite.

In addition to these relations, Equations (8) and (10) must be satisfied
for F4(C) and G4(C) to be ellipsoidal.
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Equations (50)–(55) which express the symmetry of (n� n):C:(n� n) and
(n� n):S:(n� n) with respect to the planes of the coordinate system have
been studied in Appendix 2. It has been shown that they can have three
different types of solutions and only one of these types shown here, is
compatible with which (8) and (10).

The first type (Case 1) is characterized by a parameter �1 6¼ 0 and by, in
particular, the following relations between the parameters (Equations (10)
and (11) in Appendix 2):

s44 ¼ ð1� 2�1Þ=2c44, s22 ¼ c33=½c22c33 � ðc23Þ
2
�,

s33 ¼ c22=½c22c33 � ðc23Þ
2
�, s23 ¼ �c23=½c22c33 � ðc23Þ

2
�

Substituting these relations in the first Equation of (10), one finds:

1� 2�1
2c44

¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p

c22c33 � c223
þ

c23

c22c33 � c223
¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p
� c23

Since this equation, compared to Equation (8) implies �1¼ 0, Case 1
is incompatible with Equations (8) and (10).

The second type of solution (Case 2.1) is characterized by a parameter
�<0 and a parameter � satisfying:

1� 4�ð Þ
2�2 þ 2� 9�ð Þ��þ �2 ¼ 0 ð56Þ

In this case the following relation between the parameters can be obtained
(deduced from Equations (34) and (36) in Appendix 2):

2c44 þ c33 ¼ �2 1� kð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p

where �¼��/[�(1� 4�)]. This equation, compared to Equation (8) leads
to �2(1� �)¼ 1 and then to �2(1� �)/[�(1�4�)]2¼ 1. Substituting in this
equation for �2(1�4�)2 by Equation (56), one finds � [�(1�5�)þ�]¼ 0. Since
�¼ 0 is not compatible with Case 2.1, it is deduced that �¼��/(1�5�). By
substituting this expression of � in Equation (56) one finds �3(1�4�)¼ 0,
which is also incompatible with the condition �<0 characterizing Case 2.1.
Thus, this case is also incompatible with Equation (8).

Therefore, the only type of solution of Equations (50)–(55) compatible
with Equations (8) and (9) is the last type described in Appendix 2 (Case 2.2)
in which D¼D0 ¼ 0.
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In conclusion, for C 2 �̂4ðBÞ \ �̂4(B), the matrices C and S are given in
the coordinate system B by Equation (49) with D¼D0 ¼ 0. This means that
C 2 �̂4ðBÞ \ �̂4(B) is orthotropic and that its planes of orthotropy are given
by B. This is a main result of the present article. It allows one to write:

�̂4ðBÞ \ �̂4ðBÞ ¼ �̂4ðBÞ \ �̂4ðBÞ ð57Þ

and, by using Equation (12):

�̂4ðBÞ \ �̂4ðBÞ ¼ �ðBÞ ð58Þ

In this case, matrices C and S respectively are given by Equations (13) and
(14). The parameters c11, c22, and c33 can be deduced from the semidiameters
of F4(C) (Equations (29)) and the semidiameters {

ffiffiffiffiffiffi
E1

4
p

,
ffiffiffiffiffiffi
E2

4
p

,
ffiffiffiffiffiffi
E3

4
p

} of G4(C),
and �, and � are deduced from Equation (15). The tensor C in this way is
fully determined.

INTERSECTIONS OF �̂S AND �̂S

First �̂s \ �̂4(B) is studied. Since �̂s � �̂4(B), Equation (58) implies
that �̂s \ �̂4ðBÞ � �ðBÞ. Then if C 2 �̂s \ �̂4(B), C is given by Equation
(13) and the relations (29) lead to c11¼ c22¼ c33. This means that C is
isotropic. It can be deduced that �̂sC�̂4(BÞ � Is and then shown that:

�̂s \ �̂4ðBÞ ¼ Is ð59Þ

By using Equation (24) of �̂4, the equality Equation (59) can be
extended to:

�̂s \ �̂4 ¼ Is ð60Þ

Since �̂s � �̂4, it can be deduced from Equation (60) that �̂s \ �̂s � Is
and since conversely Is� �̂s and Is� �̂s, then:

�̂s \ �̂s ¼ Is ð61Þ

This result means that: if E(n) and c(n) are both constant in all directions,
C is isotropic.

The coefficients E and � corresponding to this isotropic elasticity tensor
can be deduced from the radii of the spheres F4(C) and G4(C), noted
respectively R and 
, by:


4 ¼ E, R4 ¼
ð1þ �Þð1� 2�Þ

ð1� �ÞE
ð62Þ
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INTERSECTION OF �̂4 AND �̂4

Now suppose that C 2 �̂4(BÞ \ �̂4. In this case, B defines a system of
principal axes for ellipsoid F4(C), but, a priori, not necessarily for G4(C).
Since C 2 �̂4(B), matrix C has Equation (33) in the coordinate system B.
Consider now tensor Q, diagonal in the basis B, and given by:

Q ¼ diag
1ffiffiffiffiffiffi
c114

p ,
1ffiffiffiffiffiffi
c224

p ,
1ffiffiffiffiffiffi
c334

p

� 	
ð63Þ

Let tensor C0 be deduced from C by the following transformation (Pouya,
2000; Pouya and Zaoui, 2005):

C0
ijkl ¼ QimQjnQkpQlqCmnpq ð64Þ

It can be verified that C0 has the symmetries of an elasticity tensor and
is positive definite. So it represents a new elasticity tensor. The matrix C0

has Equation (33) in the coordinate system B with, in particular:

c011 ¼ 1, c012 ¼
c12ffiffiffiffiffiffiffiffiffiffiffiffi
c11c22

p , c014 ¼
c14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c211c22c33
4

q ,

c044 ¼
c44ffiffiffiffiffiffiffiffiffiffiffiffi
c22c33

p , c045 ¼
c45ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c211c22c33

q ð65Þ

The other elements of C0 are deduced from Equation (65) by
index permutation. Equations (30) and (31) are well satisfied; for
instance:

c044 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c022c

0
33

p
� c023

2
, c045 ¼ �

c036
2

Since c011 ¼ c022 ¼ c033¼1, then C
0
2 �̂s. Denoting S

0¼C
0�1 and P¼Q�1,

it can be deduced from Equation (64) that:

S0
ijkl ¼ PimPjnPkpPlqSmnpq ð66Þ

Since it is assumed that C 2 �̂ 4, according to Equation (43), a reversible
tensor T exists which allows one to write:

8x; x� xð Þ:S: x� xð Þ ¼ ðx � T � xÞ2 ð67Þ
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Equation (66) then implies that:

8x; x� xð Þ:S
0
: x� xð Þ ¼ ðx � T0 � xÞ2 ð68Þ

with:

T0 ¼ PTP

According to Equation (43), this means that C
0
2 �̂4. Since already

C
0
2 �̂s, Equation (60) implies that C0

2 Is. Then writing Equation (64) as:

Cijkl ¼ PimPjnPkpPlqC
0
mnpq

and comparing with Equation (16), it can be deduced that C 2 �ðBÞ.
This implies that �̂4(BÞ \ �̂4 	 �4ðBÞ. Since conversely �(BÞ � �̂4(B) and
�(BÞ � �̂4, one obtains:

�̂4ðBÞ \ �̂4 ¼ �ðBÞ ð69Þ

By using Equation (19) and (24) of � and �̂4, the result i.e., Equation (69)
allows one to write:

�̂4 \ �̂4

[
B

�̂4ðBÞ

 !
\ �̂4 ¼

[
B

�̂4ðBÞ \ �̂4


 �
¼
[
B

�ðBÞ ¼ �

and finally:

�̂4 \ �̂4 ¼ � ð70Þ

This equation means that, if the surfaces F4(C) and G4(C) are both
ellipsoidal, then they have necessarily the same (or a common system of)
principal axes. Moreover, the material is orthotropic and the common
system of principal axes of the two ellipsoids defines also the planes of
orthotropy.

In consequence, in the phenomenological modeling of a materials
elasticity, when the values of E(n) and c(n) are given and one searches for
an ellipsoidal approximation of both surfaces F4(C) and G4(C), then the
two ellipsoids fitting these surfaces must be constrained to have the same

116 A. POUYA



directions of principal axes. Only under this condition can all the parameters
of C, which will be defined in this case by Equations (13) or (14), be
determined. They are deduced from the semidiameters of the two ellipsoids
and Equation (15).

DISCUSSION AND CONCLUSIONS

In this article, some cases of ellipsoidal anisotropy and the method
and conditions of elasticity tensor determination from ellipsoidal fitting
parameters were studied.

As mentioned previously, the solution of many basic problems of
elasticity for �-type materials can be deduced by a linear transformation
from the solutions known for isotropic materials (Pouya, 2000; Pouya and
Zaoui, 2005). It should be emphasized that some problems which can be
solved in this way for �-type materials, such as the Green function of a half-
space (Pouya and Zaoui, 2005), cannot be approached by other methods
such as the Stroh formalism (Stroh, 1958; Ting, 1996) since they do not
present any plane of symmetry. The author’s ongoing investigations show
that some of these closed-form solutions, for instance the Green function
solution for infinite space, can be established for the family �̂4. This
increases the interest of this type of anisotropy. Class �̂2 recovers, as
mentioned above, a large family of models already used for damaged or
heterogeneous materials, which are based on a second-order damage tensor
(Kachanov, 1992). Ellipsoidal models could also be used for the
approximation of more complex damage models based on fourth-order
tensors (Zheng, 1997). It can be noticed that in spite of more interesting
properties of �̂4 and �̂2, classes �̂4 and �̂2, have drawn more attention in the
literature. For instance, �4 and �2 are the only families mentioned by
Lekhnitskii (1963) when quoting Saint Venant’s work.

In conclusion, the concept of ellipsoidal anisotropy, when it fits the
materials data well, seems an attractive guideline for phenomenological
modeling of the amorphous or damaged materials elasticity. As a way to
define anisotropic models with a reduced number of parameters, it
constitutes an alternative to the method based on the number and
orientation of planes of reflective symmetry (Cowin and Mehrabadi, 1987,
1995). The two methods recover different families of materials. Besides
providing potential tools for modeling the materials anisotropy, ellipsoidal
anisotropy classes, which are an extension of the families introduced by
Saint Venant, present interesting theoretical features concerning the
resolution of elastic body problems.
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APPENDIX 1

The Indicator Surface of the Young’s Modulus

The indicator surface of the Young’s modulus is defined by the equation
(see the main text):

x� xð Þ:S: x� xð Þ½ �
2
¼ x � xð Þ

3
ð71Þ

Suppose that this surface is an ellipsoid, the equation of an ellipsoid can
be written as:

x �H � x ¼ 1 ð72Þ

where H is a second-rank symmetric and positive definite tensor. Then, one
can write the following equivalence:

8x; x� xð Þ:S: x� xð Þ½ �
2
¼ x � xð Þ

3
, x �H � x ¼ 1 ð73Þ

For every vector x, if 
¼ (xEHEx)1/2, and x0 ¼x/
, one finds:

x0EHEx0 ¼ 1 ð74Þ

Then, according to Equation (73), we have [(x0 � x0):S:(x0 �x0)]2¼ (x0 � x0)3,
and by taking into account Equation (74), [(x0 � x0):S : (x0 � x0)]2¼
(x0 � x0)3(x0 �H � x0). Multiplying the two sides of this equality by 
8, one
finds: [(x� x):S:(x�x)]2¼ (x � x)3(x �H � x). Therefore,

8x; x� xð Þ:S: x� xð Þ½ �
2
¼ x � xð Þ

3 x �H � xð Þ ð75Þ

If x¼ (x, 1, 0), the expression (x� x):S:(x� x) becomes a fourth-order
polynomial in the scalar variable x. This polynomial has no real root,
because if (x�x):S:(x�x)¼ 0, owing to positive definite assumption for S,
one must have x�x¼ 0, and then x¼ 0, and this is incompatible with
x¼ (x, 1, 0). Therefore, this fourth-order polynomial in x can be decom-
posed in the product of two irreducible second-order polynomials:

x� xð Þ:S: x� xð Þ ¼ P1ðxÞP2ðxÞ ð76Þ

Equation (75) implies then:

P1ðxÞ½ �
2 P2ðxÞ½ �

2
¼ x2 þ 1
� �3

H11x
2 þ 2H12xþH22

� �
ð77Þ

118 A. POUYA



Since all polynomials in the two sides of this equality are irreducible, P1(x)
and P2(x) must be proportional to x2þ 1 or H11x

2
þ 2H12xþH22. Then,

since the polynomials appear in the left side at pair power and, in the right,
at odd power, one can establish that Equation (77) is possible only if
H11x

2
þ 2H12xþH22 is proportional to x2þ 1. This means that H11¼H22

and H12¼ 0. In the same way one can establish that H11¼H33, H13¼ 0, and
H23¼ 0, and globally that H is proportional to the unit tensor. Therefore,
the surface defined by Equation (72) is a sphere.

The indicating surface of Young’s modulus thus cannot be an ellipsoid
different from a sphere.

APPENDIX 2

Conditions of Three Orthogonal Planes of Symmetry for c(n) and E(n)

The conditions of symmetry of the scalar functions (n� n):C:(n� n) and
(n� n):S:(n� n) with respect to the planes of the coordinate system have
been considered in the main text. They are equivalent to suppose that the
following matrices:

A ¼

a1 c3 c2

c3 a2 c1

c2 c1 a3

2
64

3
75, B ¼

b1 �d3 �d2

�d3 b2 �d1

�d2 �d1 b3

2
64

3
75, D ¼

d1

d2

d3

2
64

3
75

A0 ¼

a01 c03 c02

c03 a02 c01

c02 c01 a03

2
64

3
75, B0 ¼

b01 �d03 �d02

�d03 b02 �d01

�d02 �d01 b03

2
64

3
75, D0 ¼

d01

d02

d03

2
64

3
75

with A, A0, B, and B0 being positive-definite, satisfy the following equations:

AA0 ¼ I� 2DD0 ð78Þ

BB0 ¼ I� 2DD0 ð79Þ

AD0 þDB0 ¼ 0 ð80Þ

DA0 þ BD0 ¼ 0 ð81Þ

where I is a 3� 3 unit matrix. These matrix equations lead to a system of
equations on (ai, bi, ci, di, a

0
i,b

0
i,c

0
i,d

0
i), with (i¼ 1,2,3), which is invariant for

permutation of the indexes {1,2,3}. This property of index permutation
invariance allows an extension of some results. Let us denote:

�1 ¼ d1d
0
1, �2 ¼ d2d

0
2, �3 ¼ d3d

0
3 ð82Þ
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We can write:

DD0 ¼ D0D ¼

�1
�2

�3

2
4

3
5 ð83Þ

Multiplying both sides of Equation (81) by D one finds: BD0D¼�DA0D,
and it can be deduced that BD0D is symmetric. This symmetry implies the
following relations:

�1d3 ¼ �2d3, �2d1 ¼ �3d1, �3d2 ¼ �1d2 ð84Þ

Multiplying both sides of �1d3¼ �2d3 by d03 and by using Equation (82),
one finds �1�3¼ �2�3. The index permutation gives:

�1�2 ¼ �2�3 ¼ �3�1 ð85Þ

This equation implies that either �1¼ �2¼ �3 or two of the �is are equal to
zero and the third one is different. The following general structure of the
equations is studied in these two cases. Because of the index permutation
invariance, the study of the case in which only one �i is different from zero
(Case 1) can be restricted to the study of the subcase �1 6¼ 0, and �2¼ �3¼ 0
(Case 1). In the other case (Case 2), the subcases �1¼ �2¼ �3 6¼ 0 (Case 2.1)
and �1¼ �2¼ �3¼0 (Case 2.2) are distinguished.

Case 1.1

In this case �1 6¼ 0, and �2¼ �3¼ 0. All equations and assumptions are
invariant for index permutation {2,3}. Equation (84) implies: d2¼ d3¼ 0.
Multiplying both sides of Equation (80) by D, one finds: AD0D¼�DB0D.
Then, writing (AD0D)21¼�(DB0D)21 one finds: c3�1¼ d2d

0
3d1¼ 0, and

implies c3¼ 0, and by index permutation, c2¼ 0. Therefore, the matrices
A, B, and D have the following expressions:

A ¼

a1 0 0

0 a2 c1

0 c1 a3

2
64

3
75, B ¼

b1 0 0

0 b2 �d1

0 �d1 b3

2
64

3
75,

D ¼

d1

0

0

2
64

3
75, DD0 ¼

�1

0

0

2
64

3
75

ð86Þ

120 A. POUYA



A0 and B0 can be deduced from Equations (86), (78) and (79). Matrix D0

can also be determined since its elements are given by the nondiagonal
terms of B0. One finds that these matrices have the same form as A, B, and
D with:

a01 ¼
1� 2�1

a1

� 	
, a02 ¼

a3

a2a3 � c21

� 	
,

a03 ¼
a2

a2a3 � c21

� 	
, c01 ¼ �

c1

a2a3 � c21

� 	
ð87Þ

b01 ¼
1� 2�1

b1

� 	
, b02 ¼

b3

b2b3 � d21

� 	
,

b03 ¼
b2

b2b3 � d21

� 	
, d 0

1 ¼
�d1

b2b3 � d21

� 	
ð88Þ

The parameters defining A, B and D are not all independent. As a matter
of fact, Equation (79) implies (BB0)22¼ 1, and then: b2b

0
2 þ d01d1¼ 1. By

substituting in this equation for b02 by Equation (88) and using d01d1¼ �1,
one finds:

d21 ¼
��1b2b3
1� �1

ð89Þ

Equation (80) implies (AD0 þDB0)11¼ 0, and then: a1d
0
1 þ d1b

0
1 ¼ 0.

Multiplication of the two sides by d1 yields: a1�1þ d21b
0
1 ¼ 0, and substituting

for b01 by Equation (11) and for d21 by Equation (89) gives:

a1b1
b2b3

¼
1� 2�1
1� �1

ð90Þ

In conclusion, in this case all parameters of A,B,D,A0,B0,D0, except
for the sign of d1 and d 0

1, are deduced from (a1, a2, a3, c1, b1, b2, b3) by
Equations (87–90).

Case 2

In this case:

�1 ¼ �2 ¼ �3 ¼ � ð91Þ

and all the equations are invariant for index permutation {1,2,3}.
Equation (83) can be written as:

D0D ¼ �I ð92Þ
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By multiplying the two sides of Equation (80) at the right by D, we find:

DB0D ¼ ��A ð93Þ

and one then deduces detB0 (detD)2¼��3 detA. Since A and B0 are positive-
definite this relation implies:

� � 0 ð94Þ

Besides, taking into account Equation (92), Equation (79) reads: BB0 ¼

(1�2�) I, and implies (BB0)11¼ (1�2�), or also b1b
0
1 þ d3d

0
3 þ d2d

0
2 ¼ (1�2�).

Substituting in this equation for d3d
0
3 and d2d

0
2 by �, one finds b1b

0
1 ¼ 1� 4�.

Index permutation leads to:

b1b
0
1 ¼ b2b

0
2 ¼ b3b

0
3 ¼ 1� 4� ð95Þ

The elements of B�1 can be explicitly expressed in terms of B. In
particular one can have:

B�1
� �

11
¼

b2b3 � d21
�

, B�1
� �

13
¼

d2d3 � b1d1
�

ð96Þ

where:

� ¼ detB ¼ b1b2b3 � b1d
2
1þb2d

2
2 þ b3d

2
3

� �
� 2d1d2d3 ð97Þ

Using Equation (19) and B0 ¼ (1�2�) B�1, one finds:

b01 ¼ 1� 2�ð Þ
b2b3 � d21

�

� 	
ð98Þ

d01 ¼ � 1� 2�ð Þ
d2d3 � b1d1

�

� 	
ð99Þ

Multiplying both sides of Equation (98) by b1, one finds b1b
0
1 ¼ (1� 2�)

(b1 b2 b3� b1 d
2
1)/� and then using Equation (95) one finds:

b1d
2
1 ¼ b1b2b3 � �

ð1� 4�Þ

ð1� 2�Þ
ð100Þ

Note:

b ¼ b1b2b3 ð101Þ
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Index permutation invariance in Equation (100) implies
b1d

2
1 ¼ b2d

2
2 ¼ b3d

2
3 . One can define � by writing:

b1d
2
1 ¼ b2d

2
2 ¼ b3d

2
3¼b� ð102Þ

Multiplying the two sides of Equation (99) by d1 and using d1d
0
1 ¼ �

and b1d
2
1 ¼ b�, one finds:

d1d2d3 ¼ �b��
��

ð1� 2�Þ
ð103Þ

Substituting in Equation (97) by Equations (100) and (101), one finds:

� ¼ b 1� 3�ð Þ � 2d1d2d3 ð104Þ

Elimination of � and d1d2d3 between Equations (104) and (103) leads to:

� ¼ b 1� �ð Þ
1� 2�

1� 4�

� 	
ð105Þ

d1d2d3 ¼ �b
�þ � 1� 5�ð Þ

1� 4�ð Þ

� �
ð106Þ

Equation (102) implies b3�3¼ b1b2b3 d
2
1 d

2
2 d

2
3 ¼ b(d1d2d3)

2. Substituting in
this equation for d1d2d3 by Equation (106), one finds for � the equation:
(1� �)[(1� 4�)2�2þ (2� 9�)��þ �2]¼ 0. The assumption that B is positive-
definite implies that �>0 and also b1>0, b2>0, b3>0, and thus b>0.
Then, since �� 0, (28) implies 1� �>0, the equation on � reduces to:

1� 4�ð Þ
2�2 þ 2� 9�ð Þ��þ �2 ¼ 0 ð107Þ

Now, consider the two subcases � 6¼ 0 (Case 2.1) and �¼ 0 (Case 2.2).

Case 2.1

In this case �<0. It can be deduced from Equation (93) that
�A11¼�(DB0D)11, and then a1¼�d21 b01/�. By multiplying the two sides
by b21 and by taking account of Equations (95) and (102), one
finds a1b

2
1 ¼�b� (1� 4�)/�. Index permutation invariance then gives:

a1b
2
1 ¼ a2b

2
2 ¼ a3b

2
3¼

�b�ð1� 4�Þ

�
ð108Þ
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This equation allows one to write �[b� (1� 4�)/�]3¼ a1b
2
1a2b

2
2a3b

2
3 ¼

a1a2a3b
2 and to deduce:

b ¼ �3a1a2a3, � ¼
��

½�ð1� 4�Þ�
ð109Þ

From Equation (93) one can also deduce ��A23¼ (DB0D)23, and so
�c1¼ d2d3d

0
1. By multiplying the two sides of this equality by d 2

1 and
simplifying by �, one finds c1d

2
1 ¼ d1d2d3. By index permutation and by using

Equation (106) one finds:

c1d
2
1 ¼ c2d

2
2 ¼ c3d

2
3 ¼ �b

�þ � 1� 5�ð Þ½ �

1� 4�ð Þ
ð110Þ

Equation (107) has two negative roots, compatible with the condition �>0
in Equation (105). Now, one can show that if (a1, a2, a3, �) are given and if
one of the roots � of Equation (107) is chosen, then all the parameters of
A,B,D,A0,B0,D0 can be determined, except for the sign of di and d 0

i . As a
matter of fact, in this case, b can be deduced from Equation (109) and then
bi from Equation (108), di from Equation (102), and ci from Equation (110).
The result is:

b1 ¼ �
ffiffiffiffiffiffiffiffiffi
a2a3

p
, b2 ¼ �

ffiffiffiffiffiffiffiffiffiffi
a1a3,

p
b3 ¼ �

ffiffiffiffiffiffiffiffiffi
a1a2

p
ð111Þ

d21 ¼ �2�a1
ffiffiffiffiffiffiffiffiffi
a2a3

p
, d22 ¼ �2�a2

ffiffiffiffiffiffiffiffiffiffi
a1a3,

p
d23 ¼ �2�a3

ffiffiffiffiffiffiffiffiffi
a1a2

p
ð112Þ

c1 ¼ 	
ffiffiffiffiffiffiffiffiffi
a2a3

p
, c2 ¼ 	

ffiffiffiffiffiffiffiffiffiffi
a1a3,

p
c3 ¼ 	

ffiffiffiffiffiffiffiffiffi
a1a2

p
, 	 ¼ �2ð1� �Þ � � ð113Þ

A0 and B0 are given by A0 ¼ (1�2�)A�1, B0 ¼ (1�2�) B�1 and D0 is deduced
from the elements of B0.

Case 2.2

In this case �¼ 0. Then Equation (107) implies �¼ 0, and since B is
positive-definite, Equation (102) implies d1¼ d2¼ d3¼ 0. This condition and
Equation (81) lead to D0 ¼ 0. Therefore, in this case, A and B are two
independent matrices, A0 ¼A�1, B0 ¼B�1 and:

D ¼ D0 ¼ 0 ð114Þ
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pp. 257–430.

Sirotine, Y. and Chaskolskaia, M. (1984). Fondements de la physique des cristaux, Editions
MIR, Moscou.

Stroh, A.N. (1958). Dislocations and Cracks in Anisotropic Elasticity, Phil. Mag., 3: 625–646.

Takemura, T., Golshani, A., Oda, M. and Suzuki, K. (2003). Preferred Orientations of Open
Microcracks in Granite and their Relation with Anisotropic Elasticity, Int. J. Rock Mech.
& Mininig Sci., 40: 443–454.

Thomsen, L. (1986). Weak Elastic Anisotropy, Geophysics, 51(10): 1954–1966.

Ting, T.C.T. (1996). Anisotropic elasticity, Oxford University Press, Oxford.

Zheng, Q.S. 1997. A Unified Invariant Description of Micromechanically-based
Effective Elastic Properties for Two-dimensional Damaged Solids, Mechanics of materials,
25: 273–289.

126 A. POUYA


