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ABSTRACT: This article presents a study of steel fiber-reinforced concrete (SFRC).
In its first part, a four-point bending test performed on both plain concrete
and SFRC is investigated. The collected nonlinear load–deflection curves are
transformed into stress–strain curves with the help of an incremental method,
which the authors developed in the nonlinear regime. In the second part of this
article, the authors present a micromechanical approach based on Mori–Tanaka/
Voigt mean-field homogenization schemes in order to model the effective nonlinear
behavior of the three-phase brittle composite materials. The first phase (concrete
matrix) is assumed to obey Ju’s brittle damage model. The second phase (fibers)
is modeled with classical J2 plasticity, while the third phase represents cavities.
Numerical algorithms enable the simulation of SFRC within reasonable CPU time
and memory requirements. The homogenization module is interfaced to the finite
element package ABAQUS. A two-scale simulation of the bending test is validated
against the experimental results.

KEY WORDS: micromechanics, homogenization, damage, experiments, steel fiber-
reinforced concrete.

INTRODUCTION

C
OMPOSITE MATERIALS REINFORCED with particles or fibers are
widely used in industrial applications due to their good mechanical,
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thermal, and electrical properties. For the scientist as well as for industry,
an important challenge is to understand the relationship between micro-
structure and macroscopic response. Numerical simulation is a necessary
tool in order to design composite materials with optimized properties.

Concrete lends itself to a variety of innovative designs, but two
characteristics have limited its use: it is brittle and weak in tension. One
way to overcome this problem is to add metallic fibers to the concrete mix.
Fibers hinder microcracking, thus improving the composite’s ductility
(Rossi, 1998). Steel fiber-reinforced concrete (SFRC) captivates one’s interest
because it has a large range of applications in civil engineering. It is used
in bridges, pipes, airport runways, tunnel linings, etc. Steel fibers are
much stiffer than concrete. However, as illustrated in the present study,
the addition of fibers may induce porosity that reduces significantly the
overall stiffness; see also Walkus et al. (1979).

The SFRC has been the subject of previous investigations. Among
researchers who focused on experimental aspects, Walkus et al. (1979)
analyzed the response of concrete reinforced with various volume fractions
of fibers under tensile loading. Soroushian and Bayasi (1991) performed
bending tests, and Van Hauwaert (2000) investigated the fiber adhesion. The
mechanical response of concrete microstructures has also been studied
numerically, but the use of homogenization methods has generally been
limited to the elastic regime. For example, Li et al. (1999) and Zaho and
Chen (1998) used an extended double inclusion scheme based on the Eshelby
(1957) equivalent inclusion to model the interfacial transition zone (ITZ).
The latter represents the interface between coarse aggregates and cement
paste. Teng et al. (2004) predicted the composite’s elastic response using
a tensorial representation of fiber orientation.

In the present article, the authors develop a micromechanical approach
based on mean-field homogenization in order to predict the nonlinear
behavior of SFRC. Nonlinearity results from damage in the concrete matrix
and from the interaction with elastic–plastic metallic fibers. The authors
study some experimental, (micro)mechanical, and numerical aspects of
SFRC with the aim of achieving an appropriate modeling of the composite.

The experimental study led to the crucial finding that initial voids
and microcracks coalescence due to damage process, and porosity due
to fiber addition must not be confused even if both cause a decrease in
the composite’s stiffness. Assuming that concrete material, including
microcracks and initial voids, represents one phase (the matrix) and fibers
the other (reinforcement phase), when these two phases are mixed in
order to obtain SFRC, the initial porosity of the matrix phase increases
in a significant manner. This porosity increase is viewed as a full phase
and the SFRC is modeled, therefore, as a three-phase composite.
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The first phase consists of concrete material, microcracks and initial
voids; the second phase represents fibers, while the third one represents the
increase in porosity.

Activation of microcracks and coalescence of voids is handled by Ju’s
(1989) energy-based brittle damage model, which accounts for damage
evolution only when the material is submitted to tensile strains. The latter
are extracted using spectral decomposition and positive projection tensors
(Krajcinovic, 1996).

The SFRC is modeled with an incremental formulation of Mori–Tanaka/
Voigt mean-field homogenization schemes in the nonlinear regime; see
Doghri and Ouaar (2003), Doghri and Friebel (2005) and Doghri and Tinel
(2005). In order to simulate the four-point bending test and other more
elaborated structures of civil engineering, a two-scale approach was
developed based on an interface between the authors homogenization
module and the ABAQUS (2004) finite element (FE) software through
its user-defined material capability.

The article is organized as follows. The ‘Experimental bending tests’
section deals with experimental four-point bending tests on both plain
concrete and SFRC. Composite samples are prepared with two values of
the fiber volume fraction. To be workable, experimental load–deflection
curves are converted into stress–strain curves in ‘Conversion of the load–
deflection curve into a stress–strain curve’ section. Conversion is based
on the assumption of pure bending and on an incremental formulation,
which relates bending moment and normal stress acting over the cross
section of the beam. The ‘Homogenization procedure’ section presents the
two-step homogenization approach based on Mori–Tanaka and Voigt
schemes. The constitutive models used at the microlevel (Ju’s brittle damage
model for the concrete matrix and J2 elastoplasticity for the steel fibers)
are presented in the ‘Micro constitutive models’ section. The overall micro–
macro algorithm is outlined in the ‘Overall micro–macro algorithm’ section,
while the ‘Numerical simulation’ section is devoted to numerical results.
Model predictions are compared to experimental results, demonstrating
the necessity to give specific treatment to the initial porosity and to the
voids created by damage.

EXPERIMENTAL BENDING TESTS

Mechanical properties of concrete and SFRC have been assessed using
a four-point bending apparatus. In order to evaluate the reinforcement
by steel fibers, the same tests have been conducted on three series of
specimen: (i) plain concrete, (ii) SFRC containing 1% volume of fibers,
and (iii) SFRC containing 3% volume of fibers.
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All specimens have been cast in 600� 150� 150mm steel molds, in
accordance with the recommendations of JSCE-SF4, NBN B15-238, and
ASTM C1018. Bending tests were performed after 28 days, when concrete
was assumed to have reached its maximum strength. The type of fibers used
in this investigation is hooked-end steel. The fibers, called ZP30/0.5 are
manufactured by Bekaert (Belgium). Fibers have a length of 30mm with a
diameter of 0.5mm. Hence, the aspect ratio Ar is 60. Mechanical properties
are the following: Young’s modulus E¼ 210GPa, and Poisson’s ratio
�¼ 0.3. The concrete mix was prepared with special cement 32.5
(LAFARGE MORTIERS), river sand 0/5, coarse aggregates 4/14, and
water. Table 1 summarizes the ingredient proportions of the mixture.

Bending tests have been conducted on an MTS testing machine equipped
with a load cell of 100 kN. The load is applied to the specimen through two
rollers, 150mm apart (Figure 1). Two linear voltage differential trans-
formers (LVDT) are fixed on the lateral faces of the specimen. They record
the vertical deflection of the beam. A MTS 632.02F-20 extensometer
(or ‘clip on gage’) is pasted underneath the beam in order to measure
the stretching of lower fibers. Near the extensometer, a stress gage of
type CEA-06-250UN-350 provides supplementary strain measurement of
the lower fibers. Figure 1 shows a schematic representation of the various
components of the acquisition system.

Load–deflection curves for both plain concrete and concrete reinforced
with 1 or 3% of steel fibers are presented in Figure 2. Three specimens are
tested for each case. It appears that fibers increase the ductility of concrete:
the area located under load–deflection curves is significantly raised. On
the other hand, the presence of fibers decreases somewhat the overall
stiffness. Adding fibers increases the porosity, which counterbalances the
reinforcement of the composite. This conclusion has a crucial importance
in the micromechanical modeling of the composite. Measurements of the
maximum tensile strain underneath the beam are not shown here. They are
less accurate, and will therefore only be used in a qualitative comparison
with the deflection measurements (next section).

Table 1. Ingredient proportions of the
concrete mixture.

Constituent Quantity (kg)

Cement 32.5 18.5
River sand 0/5 37.2
Coarse aggregates 4/14 55.8
Water 8.37
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CONVERSION OF THE LOAD–DEFLECTION CURVE

INTO A STRESS–STRAIN CURVE

Due to its poor tensile strength, concrete is generally characterized by
bending tests instead of uniaxial tensile tests. Uniaxial stress–strain curves
are, nevertheless, necessary in order to fit the parameters of constitutive
models in numerical simulations. In this section, the load–deflection curve
is exploited under simplifying assumptions. These assumptions will be
validated in a subsequent section using FE modeling. According to classical
beam theory, four-point bending creates a constant bending moment M
throughout the portion of the beam located between the two central rollers.

Voltmeter

Acquisition
card

Computer

Load

Stretching

Strain

Deflection

(a)

(b)

 

 H

F F
B

l/4 l/2 l/4

Figure 1. Four-point bending test: (a) schematic representation of the acquisition chain and
(b) beam model and notations.
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For the apparatus sketched in Figure 1, one obtains M¼Fl/2, where F is the
load F exerted on one roller. The authors consider, for the moment, that all
components of the stress tensor are negligible compared to the longitudinal
stress �xx, and also neglect friction. Hence, bending occurs under the action
of a pure bending moment. If y 2 ½�C,H� C � represents the height-
coordinate of the cross section and B, the thickness in the z direction:

M ¼ B

Z H�C

�C

�xxð yÞy dy ¼ F
l

2
: ð1Þ

As friction is neglected, the resultant of �xx over the short-transverse
section of the beam is nil:

B

Z H�C

�C

�xxð yÞ dy ¼ 0: ð2Þ

Pure bending deforms the longitudinal material lines into concentric arcs.
In Figure 3, the neutral line y¼ 0 separates two regions of the beam,
y 2 ½�C,0� and y 2 ½0,H� C� inside which �xx is compressive and tensile,
respectively. The longitudinal strain "xx varies linearly with y. If R denotes
the curvature radius of the neutral line, and if C represents the distance
of the neutral line relative to the upper fiber of the beam, one writes:

"xxð yÞ ¼
y

R
¼

y

H� C
"t: ð3Þ

Figure 2. Plain concrete and SFRC (1 and 3%) under four-point bending: load–deflection
curve.
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In the right-hand side expression, "t is the maximum tensile strain.
It can be measured by the gage placed underneath the beam. However, as
mentioned in the previous section, the data recorded by that gage are not
accurate enough. It is better to measure the beam’s vertical deflection D,
compute the bending radius R from the following relation (see Figure 3):

R ¼
1

2D

l

4

� �2

þD2

" #
þ C, ð4Þ

and obtain "t¼ (H�C)/R. Designating successive bending increments by
the subscript i, it is shown hereafter how using the measured values of Mi

and Di together with the pure bending assumption, one is able to derive
the longitudinal stress–strain relationship in an incremental manner.

During the first loading steps, Di evolves linearly with Mi because the
material remains elastic. By substituting Equation (3) into (2) and using the
linear elastic relation, �xx ¼ ki"xx, it turns out that the neutral line coincides
with the mid-thickness (Figure 4), i.e., Ci¼H/2. Based on Equations (1)–(3),
the bending moment Mi is related to the bending radius Ri and to the yet
unknown elastic constant ki:

Mi

B
¼

Z H=2

�H=2

ki
y

Ri
y dy ¼

kiH
3

12Ri
¼

kiH
2

6
"it: ð5Þ

In fact, the treatment of elastic bending does not require several
increments because the value of ki is constant. Let us thus consider a
single bending increment in the elastic regime: M1 now refers to the

o

C

H–C

D

F FR
–C R

l/4

Figure 3. Radius of curvature–deflection relationship.
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maximum bending moment for which "it and Di evolve linearly. When the
bending moment is raised above M1, the damage threshold is reached and
the composite becomes less stiff in tension than compression. Fulfillment
of Equation (2) requires that tensile stresses counterbalance compressive
stresses, which imposes upwards displacement of the neutral line (Figure 5).
The distribution of longitudinal stresses across the beam corresponds to:

�xx ¼ k1"xx if y 2 ½�C2,H1�,

�xx ¼ k1"1t þ k2 "xx � "1tð Þ if y 2 ½H1,H� C2�,
ð6Þ

where H1 is the value of y for which "xx¼ "1t:

H1 ¼ R2"1t: ð7Þ

After this first nonlinear step, Equation (2) becomes:

Z H1

�C2

k1
y

R2
dyþ

Z H�C2

H1

k1 � k2ð Þ"1t þ k2
y

R2

� �
dy ¼ 0, ð8Þ

and the bending moment equation i.e., Equation (3) becomes:

M2

B
¼

Z H1

�C2

k1
y

R2
y dyþ

Z H�C2

H1

k1 � k2ð Þ"1t þ k2
y

R2

� �
y dy: ð9Þ

Equations (8) and (9) form a set of coupled equations with two
unknowns: k2 and C2. This equation set is solved iteratively, before

H/2

H/2

y y

y k1

k1

N.A.

σ1t ε1t

ε1t

ε1c

ε1c

ε

ε

σ1c

σ1t

σ

σ1c

(a) (b)

Figure 4. Stress and strain states over a cross section of a bent beam and stress–strain
curve in the linear regime.
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moving on to the next bending increment. After the second nonlinear
increment, the expression of the longitudinal stress is:

�xx ¼ k1"xx if y 2 �C3,H1½ �,

�xx ¼ k1"1t þ k2 "xx � "1tð Þ if y 2 H1,H2½ �,

�xx ¼ k1"1t þ k2 "2t � "1tð Þ þ k3 "xx � "2tð Þ if y 2 H2,H� C3½ �,

ð10Þ

where H1¼R3"1t and H2¼R3"2t. The unknowns k3 and C3 are determined
by constructing an equation set similar to Equations (8) and (9) The same
treatment is then applied to the following bending increments, leading to the
uniaxial stress–strain curves shown in Figure 6. It is worth noting that these
curves have been constructed by relying solely on two types of measure-
ments: Di and Mi. Maximum tensile strains "it have been derived from
Di and Ci using Equations (3) and (4).

HOMOGENIZATION PROCEDURE

In this section, the authors present the key ideas behind the extension
of some homogenization models to the rate-independent inelastic regime.
For more details, see Doghri and Ouaar (2003).

Rate-independent Models

In the so-called incremental formulation proposed by Hill (1965),
homogenization schemes are extended from linear elasticity to

C2

y y

y k2

k1

k1N.A.

(a) (b)

σ1t

σ2c

σ2t
ε2t

ε1t

ε1t

ε2c

σ1t

σ2t

σ

ε2t

σ2c

ε2c

ε

ε

H–C2

H1

Figure 5. Stress and strain states over a cross section of a bent beam and stress–strain
curve in the nonlinear regime.
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rate-independent inelastic behavior by relating stress and strain rates
through an instantaneous tangent operator Ctg, i.e.,

_�ðx,tÞ ¼ Ctg
ð"ðx,tÞ,tÞ : _"ðx,tÞ: ð11Þ

Although form-similar to linear elasticity, the extension presents a major
difference with the former because in the nonlinear regime, even if a phase
is made of a homogeneous material its tangent operator is not uniform.
A workaround is to define for each phase (domain !r) a so-called reference
material such that its operator Ĉ

tg

r ðtÞ is uniform in space and varies only
with time. Consequently:

_�ðx,tÞ ¼ Ĉ
tg

r ðtÞ : _"ðx,tÞ 8x 2 !r: ð12Þ

In this work, the reference moduli Ĉ
tg

r ðtÞ in a phase r are computed by
calling the constitutive box of the phase’s real material with the phase-
averaged strains and strain rates as arguments.

Two-phase Composites

Consider a representative volume element (RVE) of a two-phase
composite (domain !) made of a matrix phase (!0) reinforced with
aligned inclusions (!1) having similar shape, orientation, and material.

Figure 6. Tensile stress–strain curves of bent plain concrete and SFRC samples.
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The RVE-averaged macro stress rate is obtained from the phase-averaged
stress rates as follows:

< _�>!¼ v0 < _�>!0
þv1 < _�>!1

, ð13Þ

where �0 and �1¼ 1��0 are the volume fractions of the matrix and inclusion
phases, respectively. The macro stress and strain rates can also be related
through the overall tangent operator �C

tg
:

< _�>!¼ �C
tg

:< _">!: ð14Þ

A given homogenization model can be defined by the corresponding
expression of a so-called strain concentration tensor A, which relates the
average strain rate in the inclusion phase to the RVE-averaged strain rate:

< _">!1
¼ A :< _">!: ð15Þ

The following expression of the overall tangent operator is then obtained:

�C
tg
¼ Ĉ

tg

0 þ v1 Ĉ
tg

1 � Ĉ
tg

0

� �
: A: ð16Þ

An efficient model is the one proposed by Mori and Tanaka (1973).
It is based on the well-known Eshelby (1957) equivalent inclusion problem
and can be interpreted as follows (Benveniste, 1987): each inclusion in
the composite behaves like an isolated inclusion in the matrix seeing the
average strain in the matrix as a far-field strain. The expression of A for
the Mori–Tanaka model is the following:

A ¼ 1� v1ð Þ Is þ S
I,Ĉ

tg

0

� � : Ĉ
tg

0

� ��1

: Ĉ
tg

1 � Is
� �	 


þ v1I
s

� ��1

, ð17Þ

where Is is the fourth-rank symmetric identity tensor and S Eshelby’s
tensor. The latter depends on the matrix reference tangent moduli
Ĉ

tg

0 and the shape and orientation of inclusions ðIÞ. For isotropic moduli
and a spheroid (an ellipsoid with a revolution axis), S depends only on the
instantaneous Poisson’s ratio and the aspect ratio Ar.

In the case of cavities instead of solid inclusions, A is obtained from the
limiting case Ĉ

tg

1 ! 0 :

A ¼ Is � v0SðI,Ĉ
tg

0 Þ

h i�1

: ð18Þ
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Multiphase Composites

As suggested by the experimental study, SFRC must be modeled as a
three-phase composite. The matrix phase is concrete including microcracks
and initial voids. Steel fibers constitute a second phase, while cavities
due to increased porosity represent the third phase. The method described
hereafter can be applied to a general multiphase composite (domain �)
made of a matrix material (�0) and N families of spheroidal inclusions or
cavities. Each family (i) is characterized by an aspect ratio, an orientation
distribution function (ODF) �i( p), and a material for solid inclusions.
The orientation of an individual spheroid is determined by a unit vector p
along the revolution axis. The volume fractions of the matrix phase
and the families of inclusions are designated by �0 and �i, respectively,
v0 þ

PN
i¼1 vi ¼ 1.

In this article, the multiphase RVE is homogenized using the
aggregate decomposition approach advocated by Camacho et al. (1990),
Lielens (1999), and Pierard et al. (2004) in linear thermoelasticity,
and Doghri and Tinel (2005) in elastoplasticity. The method starts with
a virtual decomposition step by defining so-called pseudo-grains �i,p,
each containing matrix material (in concentration �0) and all inclusions
of family (i) whose orientation is between p and pþdp (Figure 7 step 1).
Next (Figure 7 step 2) each pseudo-grain is homogenized using a

Step 1

Step 3

Step 2

Figure 7. Aggregate decomposition approach for multiphase composites.
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model suitable for two-phase composites, typically Mori–Tanaka
(the previous section). Finally, the set of homogenized pseudo-grains
is itself homogenized (Figure 7 step 3) using a simple Voigt model in
this work.

It can be shown that the volume average of the stress rate over the RVE
can be expressed as follows:

_�h i�¼
XN
i¼1

vi
1� v0

I
_�h i�i,p iðpÞ dp ¼ _�h i�i,p

� �
i, i
: ð19Þ

This can be rewritten as follows using the homogenized tangent operators
of the RVE and of each pseudo-grain:

�C
tg
:< _">�¼ �C

tg

�i,p :< _">�i,p

D E
i, i

: ð20Þ

Using the Voigt model in the final step supposes that the average strain
rates in all pseudo-grains are the same, which gives the RVE’s overall
tangent operator as follows:

�C
tg
¼ �C

tg

�i,p

D E
i, i

: ð21Þ

Eshelby’s Tensor Computation

For nonlinear models, tangent operators are anisotropic, therefore
Eshelby’s tensor (‘Two-phase composites’ section) has to be computed
numerically (Gavazzi and Lagoudas, 1990). However, it can be shown
that the resulting predictions of the effective response are too stiff.
A workaround is to compute Eshelby’s tensor with an isotropic part of
the matrix’ tangent operator. For an anisotropic operator Cani, its isotropic
part Ciso is defined by the tangent bulk and shear moduli �t and �t.
A general method used by Bornert et al. (2001) and Doghri and Ouaar
(2003) gives the following expressions:

�t ¼
1

9
Cani

lljj , �t ¼
1

10
Cani

illi � 3�t
� �

: ð22Þ

Actually, for a spheroid, Eshelby’s tensor depends on the tangent
Poisson’s ratio:

�t ¼
3�t � 2�t

6�t þ 2�t
: ð23Þ
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MICRO CONSTITUTIVE MODELS

In this work, two mechanical models are considered at the microlevel.
The authors assume that the matrix material (concrete) obeys the
anisotropic brittle damage model of Ju (1989) while the steel inclusions
follow a classical J2 elastoplastic model.

J2 Elastoplasticity

Hereafter the expressions of the tangent operators for J2 elastoplasticity
are given (see chapter 12 in Doghri (2000) for details). Two operators
are defined: an elastoplastic or ‘continuum’ Cep and an algorithmic or
‘consistent’ Calg. The former relates infinitesimal stress and strain rates,
while the latter is obtained from consistent linearization of the time-
discretization algorithm. The following expressions are found:

Cep
¼ Cel

�
ð2�Þ2

h
N�N, Calg

¼ Cep
� 2�ð Þ

2
ð�pÞ

�eq
�treq

@N

@�
, ð24Þ

where Cel is the isotropic Hooke’s stiffness defined by elastic bulk and shear
moduli � and �, and the following notation is used:

h ¼ 3�þ
dR

dp
, N ¼

@f

@�
, f ¼ �eq � Rð pÞ � �Y � 0, ð25Þ

with �Y being the initial yield stress, f the yield function, R( p) the isotropic
hardening stress, p the accumulated plastic strain, �eq the von Mises stress,
�p the increment of p, and �treq an elastic trial value of �eq. The tangent bulk
and shear moduli defining the isotropic part of Calg (‘Eshelby’s tensor
compulation’ section) are given by Doghri and Ouaar (2003):

�t ¼ �, �t ¼ ��
3

5
�2 1

h
þ 4

�p

�treq

" #
: ð26Þ

Ju’s Unilateral Damage Model

In this article, the behavior of the brittle matrix material is modeled
using the unilateral damage model of Ju (1989). In one-dimensional (1D)
model, it can be understood by considering uniaxial tensile loading
and unloading as displayed in Figure 8. The path OA is a straight line of
slope E, Young’s modulus of the material. Along this line, the material
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exhibits an elastic behavior. Along the path AB, the response becomes
nonlinear, stress and strain are not proportional and damage takes place.
If one unloads anywhere along AB, the response will be along the straight
line BO with a slope Ed called damaged elastic modulus. If one reloads,
the response will be along OB and damage will evolve again only when
point B is reached. For multiaxial stress states, the evolution of the pattern
of microcracks in brittle materials such as concrete or rocks is governed
primarily by the principal strains or stresses. When such materials undergo
tensile fields, microcracks are nucleated and propagated in planes which
are orthogonal to the principal tensile stresses (Krajcinovic, 1996). In Ju’s
model, damage evolution is governed by principal tensile strains. First,
one starts by computing the eigenvalues "i and eigenvectors ei (forming
an orthonormal and direct basis) of the total strain tensor ". Therefore,
the following spectral decomposition holds:

" ¼
X3
i¼1

"i ei � ei , ei � ej ¼ �ij, ð27Þ

where �ij designates Kronecker’s symbol. Next, the following positive
projection operators are defined:

Qþð"Þ ¼
X3
i¼1

Ĥ "ið Þ ei � ei , Pþ
ijkl Q

þ
� �

¼
1

2
Qþ

ikQ
þ
jl þQþ

il Q
þ
jk

� �
, ð28Þ

εd

ε (B) = εd+ εe

εe

A

E

O ε

σ

E

Ed

B

DC

Figure 8. Uniaxial stress–strain curve of a damaged material.
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where Qþ and Pþ are symmetric second- and fourth-rank tensors,
respectively, and Ĥð"iÞ represents the Heaviside ramp function: Ĥð"iÞ ¼ 1
if "i>0 and Ĥð"iÞ ¼ 0 otherwise. The positive or tensile part of the strain
tensor can now be defined as follows:

"þð"Þ ¼ Pþ : ": ð29Þ

Note that this relation is nonlinear, because Pþ depends on ". It is easily
checked that if all three principal strains "i are tensile, then Qþ

ij ¼ �ij,
Pþ ¼ Is, and "þ¼ ". However, if all "i are compressive then "þ ¼ 0 and
no damage will be predicted in the model described hereafter. For brittle
damage, Ju defines a characteristic damage measure �ð"þÞ as follows:

� "þ
� �

�
1

2
"þ : Cel : "þ, ð30Þ

where Cel is the initial (undamaged) elastic stiffness. The damage state is
governed by the following criterion:

g � ~Gð�Þ � r � 0: ð31Þ

The criterion can be viewed as a competition between available and
suitable energies for damage evolution. As long as ~Gð�Þ is smaller than
the damage threshold r, damage does not evolve. When damage evolves,
it is seen that:

_r ¼ _�Hð�Þ, Hð�Þ �
d ~Gð�Þ

d�
: ð32Þ

In this article, the following expression for the damage evolution function
H(�) is used:

H �ð Þ ¼ kþ
1

2

� �
AB exp B �0 � �ð Þ½ �, ð33Þ

where k represents the microcrack density, �0 the initial characteristic
damage measure; A and B are material-dependent parameters. The stress–
strain relation of a damaged material in a secant or total deformation
formulation is:

� ¼ Cd : ", ð34Þ
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where Cd is the secant anisotropic damaged operator. Its evolution equation
is proposed by Ju as follows:

_C
d
¼ � _�H �ð ÞPþ : Cel : Pþ: ð35Þ

This equation indicates that only principal tensile strains acting
in their associated directions contribute to damage evolution by
microcrack growth. However, as pointed out by Chaboche (1992),
under complex multiaxial loadings, Ju’s model may exhibit a stress
discontinuity in the stress–strain response, due to loss of symmetry of
the damaged operator.

From a numerical point of view, consider a time interval [tn, tnþ1].
The data are history variables at tn and the strain "nþ1 at time tnþ1.
Ju’s model was implemented with the algorithm described hereafter.

. Spectral decomposition of "nþ1 Equation (27).

. Second-rank positive projector Qþ("nþ1) Equation (28a).

. Fourth-rank positive projector Pþ(Qþ
nþ1) Equation (28b).

. Tensile strain tensor "þ("nþ1) Equation (29).

. Characteristic damage measure �("þnþ1) Equation (30).

. Damage evolution function H(�nþ1) Equation (33).

. Damage function ~G(�nþ1) Equation (32).

. If ~Gð�nþ1Þ � rn � 0, damage did not evolve: Cd
nþ1 ¼ Cd

n,
. Else, damage evolution: rnþ1 ¼ ~Gð�nþ1Þ and Cd

nþ1 is obtained by an
implicit backward-Euler time-discretization of Equation (35), i.e.,

Cd
nþ1 ¼ Cd

n � �nþ1 � �nð ÞHnþ1P
þ
nþ1 : Cel : Pþ

nþ1:

. Stress update: �nþ1 ¼ Cd
nþ1 : "nþ1:

Ju’s model defines a secant operator Cd while the incremental formulation
of homogenization schemes needs tangent moduli Cdtg (‘Homogenization
procedure’ section). The latter were approximated using a perturbation
method.

OVERALL MICRO–MACRO ALGORITHM

In this section, the authors show how the models presented in
‘Homogenization procedure’ and ‘Micro consistutive models’ sections are
combined together in an algorithmic procedure in order to homogenize a
three-phase composite, where the matrix obeys Ju’s brittle damage model,
the steel fibers follow J2 elastoplasticity, and there is also a cavity phase.
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For a time interval [tn, tnþ1], what one needs to compute are the macro
stress �� and the overall tangent stiffness �C

tg
. The data are �"n (macro strain at

tn), ��" (macro strain increment), and history variables for each solid phase
at tn. In the following, in order to simplify the notation, the domain of
a pseudo-grain �i,p is designated by ! and its constituents are denoted by !0

for the matrix and !1 for the inclusions.

. Loops overall pseudo-grains.
. Voigt in final homogenization step: <�">!¼ �":
. Initialization in inclusions: <�">!1

¼<�">! :
. Loop within each pseudo-grain (iteration index omitted for simpli-

city):
. Check if solid inclusions or cavities:

(a) if solid inclusions:
Call J2 elastoplasticity constitutive box with <�">!1

and
<"n>!1

as arguments. The box returns <�nþ1>!1
and

algorithmic tangent Ĉ
a lg

nþ1;
(b) if cavities, go directly to next step.

. Compute average strain increment in the matrix phase:

<�">!0
¼
<�"> �ð1� v0Þ <�">!1

v0
:

. Call constitutive box of Ju’s damage model with <�">!0
and

<"n>!0
as arguments. The box returns <�nþ1>!0

and secant
operator Ĉ

d

nþ1.
. Compute tangent operator for Ju’s model, Ĉ

dtg

nþ1.
. Compute the instantaneous Poisson’s ratio �t from the isotropic

part of Ĉ
dtg

nþ1:
. Compute Eshelby’s tensor Sð�t,ArÞ:
. Compute strain concentration tensor A using Mori–Tanaka. If

solid inclusions:

A ¼ v0 Is þ S : Ĉ
dtg

nþ1

� ��1

: Ĉ
alg

nþ1 � Is
� �	 


þ 1� v0ð ÞIs
� ��1

:

If cavities:

A ¼ Is � v0S½ �
�1:

. Check strain compatibility in the inclusions:

<�">!1
¼ ? A :<�">!

. If yes: no more iterations for this pseudo-grain,

244 A. OUAAR ET AL.



. Else, perform a new iteration with:

<�">!1
¼ A :<�">! :

. After convergence, compute effective tangent operator of the
pseudo-grain. If it contains solid inclusions then:

�C
tg

�i,p
¼ Ĉ

dtg

nþ1 þ 1� v0ð Þ Ĉ
alg

nþ1 � Ĉ
dtg

nþ1

� �
: A:

If the pseudo-grain contains cavities, then:

�C
tg

�i,p
¼ Ĉ

dtg

nþ1 � 1� v0ð ÞĈ
dtg

nþ1 : A:

Save pseudo-grain’s effective tangent and average stresses and
strains.

. Compute RVE’s effective tangent moduli and macro stresses

�C
tg
¼ �C

tg

�i,p

D E
i, i

, � �� ¼ �C
tg

: ��":

NUMERICAL SIMULATIONS

In all numerical simulations presented in this section, the steel fibers or
particles obey J2 elastoplasticity with Young’s modulus EI¼ 210GPa,
Poisson’s ratio �I¼ 0.3, initial yield stress �Y¼ 210MPa, and power-law
isotropic hardening (R( p)¼Kpm) with K¼ 416MPa and m¼ 0.3895.

Validation Against Experimental Results

From the experimentally obtained load–deflection curves of bent plain
concrete beams, a uniaxial tensile stress–strain curve was obtained with the
incremental method developed in ‘Conversion of the load–deflection
curve into a stress–strain curve’ section. This curve (plotted in Figure 6)
enabled the fitting of the parameters of Ju’s brittle damage model
(‘Micro constitutive models’ section). The following values were found:
E¼ 36.9GPa, �¼ 0.19, k¼ 0.3, A¼ 14.3, B¼ 15.8, and �0¼ 2.4� 10�5MPa.
The latter four values pertain to the damage evolution function H(�),
Equation (33). Figure 9 shows that the experimental curve is correctly
simulated with the fitted values. The agreement might be improved by
considering another expression of H(�) in a future work.

Next, the uniaxial macro response of concrete matrix reinforced with 1
and 3% of randomly oriented short fibers (Ar¼ 60) was numerically
simulated using homogenization. Porosity increase resulting from fibers
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addition in concrete mix was included as a third phase made of spherical
cavities of volume fraction equal to 0.5 and 0.85%, respectively. Those
values of porosity were obtained experimentally as follows: what one knows
are fibers and plain concrete densities �f and �pc, fibers mass mf, and the
total volume VT of SFRC specimen. The volumes Vf of fibers and Vpc of
plain concrete materials present in SFRC can then be easily computed
with: for fibers Vf ¼ mf=�f and for plain concrete material Vpc ¼ mpc=�pc
where plain concrete mass mpc is evaluated with: mpc ¼ mT �mf. The
volume of cavities is then deduced with: Vcav ¼ VT � Vpc � Vf.
The numerical predictions are validated against the experimental results
in Figures 10 and 11, and a good agreement can be observed.

In the version of Ju’s damage model implemented in this article, the
nonlinearity in the tensile stress–strain response of plain concrete is only
due to the damage evolution. Therefore, for a uniaxial stress state, a damage
measure d can be defined simply by the decrease in secant stiffness, similarly
to the well-known Lemaitre and Chaboche (1990) model:

d ¼ 1�
Ed

E
, d 2 ½0,1�: ð36Þ

The same definition can be applied to the composite material under
uniaxial macro stress. The evolution of d as a function of tensile strain
is plotted in Figure 12 for plain and reinforced concrete.

Figure 9. Ju’s damage model identification from experimental results.
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Unreinforced Concrete-like Material

The authors consider a fictitious plain concrete-like brittle material
whose parameters are: E¼ 25GPa, �¼ 0.2, k¼ 0.7, A¼ 14.3, B¼ 14.8,
and �0¼ 2.4� 10�5MPa.

Figure 10. SFRC with 1% of fibers under uniaxial tension: experiment vs numerical results.

Figure 11. SFRC with 3% of fibers under uniaxial tension: experiment vs numerical results.
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The first example simulates a uniaxial tension test with three different
strain increments: ��" ¼ �"=10, �" = 100, and �"=1000. The results are plotted in
Figure 13 and do not show a significant influence of the strain increment
values on the converged response.

The second example considers the same material data except
�0¼ 2.4� 10�2MPa and studies the uniaxial response under cyclic strain
history. After a first cycle, the peak strains are increased (in absolute values)
in the second cycle. The stress–strain response and the strain history are
displayed in Figures 14 and 15(a), respectively. Figure 14 shows that under
tensile loading, the material first displays an elastic behavior then undergoes
damage. Both in unloading and compressive stages, the material’s response
is linear with a slope corresponding to the elastic damaged modulus. The
material remains in the elastic domain until the previously reached damage
threshold is attained again in tension. Those features are also reproduced by
the scalar damage variable defined in Equation (36) whose time-evolution is
depicted in Figure 15(b). It is also interesting to point out that the initial
stiffness of the material is not recovered in the compression stage. This does
not totally correspond to the truly observed behavior since during the
unloading stage following the tension one, microcracks closure leads to a
partial recovery of the initial stiffness. Examination of damage operator
evolution expression (Equation (35)) and its time-discretization (equation in
step 9 of the algorithm proposed in ‘Ju’s unilateral damage model’ section)
of Ju’s model that the authors have implemented, clearly indicates that
the recovery of the initial stiffness is not accounted for. In other words,

Figure 12. Damage evolution of plain concrete and SFRC under uniaxial tensile loading.

248 A. OUAAR ET AL.



even if damage does not evolve there is no deactivation of damage
effects when the specimen undergoes compressive loading. Note that this
has the advantage of avoiding the possible discontinuities of the stress–strain
response.

−1

−0.8

−0.6

−0.4

−0.2

 
0

 0.2

 0.4

 0.6

 0.8

1

−6e-05 −4e-05 −2e-05 0  2e-05  4e-05  6e-05

σ 
(M

P
a)

ε (m/m)

Plain concrete

Figure 14. Concrete-like matrix under cyclic loading (traction/compression): strain–stress
curves.

Figure 13. Convergence of Ju’s model under various strain steps.
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Particle- and Fiber-reinforced Concrete-like Matrix Materials

The authors consider a fictitious concrete-like material which is reinforced
with either steel particles or fibers. These reinforcements lead to composite
materials designated as steel particle-reinforced concrete (SPRC) and SFRC,
respectively. The unreinforced matrix material has the same properties as in
the previous section except when indicated otherwise.

(a)

(b)

Figure 15. Damage evolution of concrete-like matrix under uniaxial cyclic loading (traction/
compression).
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In the first example, the authors study the influence of the matrix’
microcrack density parameter k – Equation (33) – which takes 3 values:
k¼ 0.3, 0.5, and 0.7. Spherical particles of volume fraction �1¼ 10% are
embedded in the matrix. The influence of k on the composite’s response
is displayed in Figure 16 which shows that the composite softens with
increasing values of k.

In the second example, the authors illustrate the influence of the
reinforcements’ shape. The matrix’ parameter k is set to k¼ 0.7 and elastic
steel inclusions (�1¼ 10%) are considered in three shapes: spherical (Ar¼ 1),
long (Ar>100), and short (Ar¼ 50) fibers. The fibers are aligned in
the macro tension direction. As expected, Figure 17 shows that the
composite stiffens with increasing values of the aspect ratio Ar.

In the third example, the authors investigate the influence of the matrix’
parameter A – Equation (33) – which takes three values: A¼ 10, 14.3,
and 17. The matrix is reinforced with spherical steel particles (�1¼ 10%).
Simulations of uniaxial tension tests show that the composite softens
considerably with increasing values of A (Figure 18).

The same composite is considered in the fourth example which illustrates
the influence of the matrix’ parameter B which now takes three values
B¼ 10, 14.8, and 17. Figure 19 shows that the composite softens
dramatically with increasing values of B.

In the fifth example, the response of SFRC under cyclic loading is
simulated. The parameters of the matrix material are: Em¼ 20GPa,

Figure 16. Influence of crack density factor ‘k’ on the macro-response of SPRC under
tensile loading.

Micromechanics of the Deformation and Damage of SFRC 251



�m¼ 0.2, A¼ 0.8, B¼ 0.16, k¼ 0.7, and �0¼ 2.4� 10�2MPa. The matrix
is reinforced with short steel fibers (Ar¼ 50 and �1¼ 20%) which are
elastoplastic with linear isotropic hardening (m¼ 1). The composite is
subjected to cyclic tension/compression in the fiber direction under imposed
macro strain. The resulting stress–strain response is plotted in Figure 20
together with those of the fibers and matrix taken separately. Both
elastoplastic and damage phenomena are illustrated. First, the composite
behaves elastically (step 1), then when the yield stress hardening of the fibers
is reached, the response of the composite becomes elastoplastic, step 2.
Under higher tensile strain, the composite undergoes damage, step 3. During
unloading and compressive loading phases, damage does not evolve,
the composite exhibits elastic and then elastoplastic behavior: steps 4
and 5, respectively. During step 6, the composite goes elastic, and then
elastoplastic under tension (step 7). No more damage develops in this step
since the damage threshold is not reached.

Validation Against Unit Cell FE Results

The mechanical response of a sphere-reinforced composite with a periodic
microstructure is studied. Figure 21 illustrates the different steps of the
transition from a 3D representation to a 2D axisymmetric unit cell model.
Zero displacements are imposed in the radial direction to the left vertical

Figure 17. Influence of the shape of the reinforcement on the response of reinforced
concrete matrix submitted to tension.
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side and in the vertical direction to the bottom horizontal side. The right
vertical side is constrained to have uniform radial displacement. Uniform
vertical displacement is imposed on the top horizontal side. The
unreinforced matrix material obeys Ju’s brittle damage model with the

Figure 19. Influence of material parameter B on the response of 10% steel sphere-
reinforced concrete submitted to tension.

Figure 18. Influence of material parameter A on the response of 10% steel sphere-
reinforced concrete submitted to tension.
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experimentally identified parameters of the ‘Validation against experimental
results’ section. The model was integrated into the ABAQUS FE
program via a user-defined UMAT subroutine. The matrix is reinforced
with �1¼ 10% of elastic steel particles of properties EI¼ 210GPa and
�I¼ 0.3. The unit cell was meshed with 646 axisymmetric CAX3R elements
and 357 nodes.

A uniaxial macro tension test is simulated with two completely different
methods: (i) a unit cell FE analysis and (ii) Mori–Tanaka homogenization.
Figure 22 shows a good agreement between the macro stress–strain curves
predicted by the two methods.

Validation of a Two-scale Approach Against

the Experimental Bending Test

The authors developed a two-scale approach which enables the numerical
simulation within reasonable CPU time, memory usage, and user time of
realistic structures made of composite materials and subjected to complex
loadings. For that purpose, the authors homogenization code was integrated
into ABAQUS throughout its UMAT interface. At each iteration of the
global equilibrium equations of the FE analysis and at each integration
point of the macro FE mesh, the homogenization module is called.

Step 6
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Figure 20. SFRC under cyclic loading: effect of damage and plasticity on the macroscopic
response of the composite.
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ABAQUS passes the macrostrain at time tn, the macrostrain increment,
material parameters and history variables at time tn. The homogenization
module computes the macro-stress �� and the homogenized macrotangent
modulus �C

tg
and returns them to ABAQUS.

The aim of the following example is to numerically simulate the four-
point bending test which was performed experimentally (the ‘Experimental
bending tests’ section). The SFRC beam contains 3% of randomly oriented
steel fibers and 0.85% of spherical cavities. The concrete matrix follows Ju’s
damage model with the experimentally identified parameter values of the
‘Validation against experimental results’ section. The beam was meshed with
400 brick elements of type C3D8R and 612 nodes (Figure 23). The
displacements (not the rotations) of the nodes located on the right support
are zero while only the vertical displacement of the node located on the
left support is imposed to be zero. At the upper face of the beam a vertical
displacement (0.02mm) is applied throughout a rigid body. The numerically
obtained load–deflection curve is plotted in Figure 24 and superposed to the
experimental curve. A fair agreement is observed although the linear elastic
slopes are somewhat different for the two curves and damage occurs much
later in the numerical simulation. A better agreement might be obtained
with a better identification of Ju’s model based on a damage evolution
function different from the one considered here – Equation (33). It should
be interesting to note that in some cases, simulations obtained using the
homogenization code could give results that are too stiff, compared to those

r

z

Figure 21. A 2D unit cell representation of a composite with periodic microstructure.
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obtained by FE computations (Figures 22 and 24). This is due to the fact
that the homogenization model is derived within the framework of the
mean-field approach which does not account for strain fluctuations in each
phase. The sole information used to compute the reference tangent moduli

Microstructure of the beam

Fibers Cavity

Figure 23. 3D modeling of a beam submitted to a four-point bending test: a two-scale
numerical approach.

Figure 22. Steel sphere-reinforced concrete under tension: unit cell FE computation vs
homogenization results.
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per phase is the average strain of the considered phase. The results predicted
by the authors’ model can be improved by the authors’ considering the
second-moment of strain for instance.

CONCLUSIONS

Experiments, micromechanical modeling, and numerical simulations of
SFRC were presented in this article. In the experimental part, four-point
bending tests were conducted on prismatic specimens made of plain concrete
and SFRC with different volume fractions of fibers. To be more useful,
the load–deflection curves were converted to stress–strain curves with the
help of a method based on an incremental formulation which the authors
have developed in the nonlinear regime. In a second part of this article,
the authors extended mean-field homogenization schemes to nonlinear
inelasticity following a Hill-type step-by-step formulation which enables the
simulation of various loading histories including unloading and nonradial
paths. Two rate-independent constitutive models were implemented at the
microlevel: Ju’s brittle damage model for the concrete matrix and J2
elastoplasticity for steel fibers. Eshelby’s tensor was computed by using
an isotropic part of the nonlinear tangent operator of the reference matrix
material. To take into account the porosity, SFRC was considered as a
three-phase composite and modeled using a two-step Mori–Tanaka/Voigt
homogenization procedure.

Figure 24. SFRC (3% of fibers) under bending: load–deflection curve, numerical vs
experimental results.
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Several discriminating tests on both plain concrete and SFRC composites
were simulated: monotonic tension, unloading, and cyclic loadings. The
accuracy of the proposed approach was validated against both direct FE
computations and experimental results. For FE simulations the authors
considered a periodic microstructure represented by an axisymmetric unit
cell. The homogenization code was also interfaced to the FE package
ABAQUS with the help of a user-defined material interface in order to
perform, the two-scale simulations of 3D realistic structures. In many cases,
the authors’ predictions show a good agreement with both FE simulations
and experimental results.

From the experimental point of view, it was found that adding
fibers to concrete matrix does not increase the stiffness of the composite
in a significant manner. However, the fibers improve the ductility, and
when analyzing the load–displacement curve of the SFRC specimen, one can
see a considerable increase of the area located between the curve and the
deflection axis. In addition, the authors have also observed that when
fibers are added to a concrete mix, porosity increases. This observation
strongly suggests limitation of the volume fraction of fibers in SFRC. It
seems that the apparition of porosity is responsible for the limited stiffness
improvement of SFRC. The porous phase must be seen as a component
of the microstructure of the composite, not as a consequence of load-
induced damage.

As future work, it will be interesting to develop a micromechanical
approach for macrocrack propagation which will facilitate study of the
ductile behavior of SFRC and contrast it with the brittle behavior of
unreinforced concrete. Fiber-matrix debonding is also an important aspect
to be investigated and taken into account in a micromechanical modeling.
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