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Broad boundaries are generally used to represent objects with fuzzy spatial 
extents. This concept is typically defined as a polygonal zone that should respect 
both connectedness and closeness conditions. Therefore, some real configurations, 
like regions with a partially broad boundary (e.g., a lake with rocker and swamp 

banks), are considered invalid. The main objective of this paper is to represent 
different levels of spatial fuzziness and consider these levels during the 
identification of topological relations. Then, we define a fuzzy spatial object as a 
minimal extent and a maximal extent. Topological relations are identified by a 4-
Intersection matrix that describes four subrelations between the minimal and the 
maximal extents. For fuzzy regions, 242 relations are distinguished and classified 
into 40 clusters. This approach permits the representation of partially fuzzy 
objects as well as the expression of integrity constraints and spatial queries with 
different levels of fuzziness. 

Keywords: Fuzzy spatial objects; topological relations; partial fuzziness; spatial 
query; integrity constraints; integration 

1.   Introduction 

To satisfy the requirements of several categories of users, Geographic Information Systems 
(GIS) and spatial databases provide tools to store, retrieve, analyze, and display spatial data. 
Ensuring their usability requires controlling the spatial data quality, which can be degraded by 
several types of imperfections. Several approaches (Smithson 1989, Fisher 1999, Mowrer 
1999, Duckham et al. 2001) proposed different categorizations of data imperfections that are 
generally caused by the complexity of reality and limitations of instruments and processes 
used in the measurements (Bédard 1987). Moreover, inappropriate spatial data representations 
can also be another source of data quality degradation (Yazici et al. 2001, Shu et al. 2003, 
Dilo 2006). Spatial reality is generally forced to be represented by crisp spatial object types 
(i.e., points, lines, and regions), whereas many spatial objects are inherently fuzzy (e.g., forest 

stand, pollution zone, valley, or lake). Fuzziness occurs when it is difficult to distinguish an 
object’s boundaries geometry components from other spatial objects. Using crisp spatial 
object types to represent fuzzy spatial objects entails a clear gap between the spatial reality 
and its formal representation in databases and GIS (Cheng et al. 2001, Yazici et al. 2001). 
 
Pertinent solutions were found to overcome the "classical" sources of spatial data quality 
degradation (Bédard 1987, Goodchild 1995, Guptill and Morisson 1995, Ubeda and 
Egenhofer 1997, Frank 2001, Van Oort 2006, Devillers et al. 2007, Duboisset et al. 2007). 
Several approaches (Burrough and Frank 1996, Cohn and Gotts 1996, Clementini and Di 
Felice 1997, Erwig and Schneider 1997, Schneider 2001, Xinming 2004, Pfoser et al. 2005, 
Dilo 2006) have studied specificities of fuzzy spatial objects to determine their appropriate 
representation. A review of the literature in this domain stresses that current GIS and spatial 
database systems do not offer the specific structure to formally represent this type of object 
(as pointed by Clementini and Di Felice 1997 ten years ago). With regard to this problem, 
researchers are increasingly more motivated to model spatial fuzziness in order to: (1) reduce 
the gap between the geographic reality and the spatial models (Cohn and Gotts 1996), (2) 
provide formal modeling tools to represent spatial fuzziness (Yazici et al. 2001), and (3) 
specify spatial queries involving fuzzy spatial objects (Erwig and Schneider 1997). In the 
same way, the spatial data integration requires the extraction of heterogeneous representations 
of the same objects from different data sources. The main difficulty lies in choosing one of 
them when no information exists about their quality (Rodriguez 2005). By using a spatial 



model that supports spatial fuzziness, it becomes possible to merge different representations 
in such a way that the integration result looks like a fuzzy spatial object. For example, figure 1 
shows a spatial object that has the representation A in a first source and the representation B in 
a second one. The integration result can correspond to one fuzzy geometry made up of A and 
B (figure 1). The intersection of A and B corresponds to the certain part (i.e., the part that 
exists in both representation A and representation B) or the minimal extent of the spatial 
object. However, the union is the maximal extent that the object can fill; it groups the certain 
and the uncertain parts (i.e., a geometry part is uncertain when it does not exist in all 
candidate representations for the integration) of the geometry. Indeed, there are strong and 
different motivations to present pertinent solutions in order to adequately model the spatial 
fuzziness.  
 
                              Representation A 
                                                                                                                    Integration result 
                                    Representation B 

  
 

Figure 1. Integration of different spatial representations of a same object (e.g., lake) 
 
To model fuzzy spatial objects, researchers were firstly inspired by the modeling of crisp 
spatial objects. In general point-set topology (Egenhofer and Herring 1990), crisp spatial 
objects are typically decomposed into three mutually disjoint topological invariants: an 
interior, a boundary, and an exterior. Several approaches (Clementini and Di Felice 1997, 
Xinming 2004, Reis et al. 2006) extend the crisp models by identifying other topological 
invariants for the fuzzy spatial objects. For example, Clementini and Di Felice (Clementini 
and Di Felice 1997) distinguish three topological invariants for fuzzy regions: an interior, a 
broad boundary (i.e., a two –dimensional boundary), and an exterior. In this approach, the 
fuzziness is correlated to the broad boundary, which should respect the closeness and the 
connectedness conditions (Clementini and Di Felice 1997, Xinming 2004). Thus, any 
representation that does not verify these conditions is considered invalid. Nonetheless, the 
fuzziness can also characterize only some parts of an object's geometry. For example, figure 2 
shows a lake surrounded by rocker and swamp banks at the same time (figure 2). We denote 
this kind of feature as partially fuzzy spatial objects that cannot be represented by existing 
models. Then, the main questions are: How is it possible to define an exact model where 
different levels of fuzziness could be considered? How can we retain this expressivity during 
the specification of topological relations between such objects? 
 
 
 
 

Figure 2. A lake with partially fuzzy boundaries 
 
The first objective of this paper is to allow the representation of three levels of fuzziness: 
crispness, partial fuzziness, and complete fuzziness. Modeling fuzzy spatial objects requires a 
framework for identifying topological relations.  The second objective is to consider the 
different levels of spatial fuzziness in the identification of topological relations between fuzzy 
spatial objects. In several studies (Clementini and Di Felice 1997, Xinming 2004, Reis et al. 
2006), topological relations can be identified by enumerating the intersections between the 
topological invariants of the fuzzy objects involved. For each model, the number of relations 
depends upon the number of topological invariants. In this work, we look for an expressive 
model in which it is possible to specify the fuzziness level of the topological relation 

Maximal extent 

Minimal extent 

Rocker banks 
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instances. We think that it would be pertinent for the user to know whether objects are weakly 
or strongly disjoint. Accordingly, the third specific objective of this work is to classify the 
topological relations according to their fuzziness level.   
 
The remainder of the paper is organized as follows. In section 2, we present previous work on 
the modeling of fuzzy spatial objects and their topological relations. In section 3, we present 
three fuzzy spatial object types: fuzzy point, fuzzy line, and fuzzy region. Then, section 4 gives 
a proposition based on the 9-Intersection model (Egenhofer and Herring 1990) in order to 
identify the topological relations among fuzzy spatial objects. The model is applied to fuzzy 
regions, and their topological relations are studied in detail in the appendix. As a result of this 
approach, 242 relations can be distinguished through a 4-Intersection matrix. Section 5 
proposes a hierarchical clustering of topological relations between fuzzy regions, and section 
6 explains how to use our approach to express spatial queries and integrity constraints. In 
section 7, our model is compared with existing approaches (Cohn and Gotts 1996, Clementini 
and Di Felice 1997, Xinming 2004).  Finally, section 8 presents our conclusions and discusses 
future research.         

2.   Previous work 

2.1   Spatial vagueness 

According to (Erwig and Schneider 1997, Hazarika and Gotts 2001, Pfoser et al. 2005), 
spatial vagueness can characterize the position or shape of an object’s spatial extent. From 
this perspective, the shape fuzziness refers to the difficulty of distinguishing one object's 
shape from other objects’ shapes. Fuzziness is an intrinsic property of an object that certainly 
has an extent in a known position but cannot or does not have a well-defined shape (Erwig 
and Schneider 1997). For instance, a region can be fuzzy when it is surrounded by broad 
instead sharp boundaries. Spatial vagueness can also characterize well-defined (or crisp) 
objects when there is uncertainty about object positions despite their sharp shapes; we refer to 
this scenario as positional vagueness. Figure 3 shows this categorization of spatial vagueness 
into "shape fuzziness" and "positional vagueness". In this paper, we only deal with the formal 
representation of fuzzy spatial objects (i.e., objects that have fuzzy shapes) and the 
topological relations between them. 
 
 
 
 
 
 
 

Figure 3. Categorization of spatial vagueness 
 
In general, we distinguish between at least two categories of models used to represent spatial 
vagueness. In the first category, crisp spatial concepts are transferred and extended to 
formally express spatial vagueness; we speak about exact models as explained in the next 
section (Cohn and Gotts 1996, Clementini and Di Felice 1997, Erwig and Schneider 1997). In 
the second category, three principal mathematical theories are generally used: (1) models 
based on the fuzzy logic (Zadeh 1965) (e.g., Altman 1987, Burrough 1989, Brown 1998, 
Schneider 2001, Xinming 2004, Hwang and Thill 2005, Dilo 2006), which can be used to 
represent continuous phenomena such as temperature, (2) models based on rough sets (e.g., 
Ahlqvist et al. 1998, Worboys 1998), which represent the fuzzy spatial objects as a pair of 
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approximations (upper and lower approximations), and (3) models based on probability 
theory (e.g., Burrough and Frank 1996, Pfoser et al. 2005), which is principally used to model 
errors of position and attributes. In the next section, we present works that formally define 
fuzzy spatial objects.  

2.2   Formal definitions of fuzzy spatial objects 

2.2.1   Definitions based on exact models. The Egg-Yolk theory (Cohn and Gotts 1996) is an 
extension of the RCC (Region Connection Calculus) model (Randell and Cohn 1989, Cohn et 
al. 1997), it introduces the concept of regions with large boundaries. In fact, a fuzzy region is 
composed of two crisp regions. The inner region called «yolk » (i.e., the certain part of the 
geometry), and it is surrounded by an outer region called “white” (i.e., the large boundary or 
the uncertain part of the geometry). The union of the “yolk” and the “white” corresponds to 
the “egg”. Because points and lines are ignored in RCC model, their fuzziness is not studied in 
this approach. In addition, fuzzy regions with empty “yolk” or empty “egg” are not admitted. 
Thus, the crisp regions cannot be represented through the Egg-Yolk theory. 
 
In the same way, Clementini and Di Felice (Clementini and Di Felice 1997) define the 
regions with broad boundaries based on the general point-set topology (Egenhofer and 
Herring 1990). Thus, a region with a broad boundary A is made up of two simple crisp regions 
A1 and A2, where A1 ⊆  A2. The broad boundary represents the fuzziness, and it is equal to the 
closure of their difference 21 AAA −=∆ .  In this approach, A1 and A2 should be topologically 

consistent; this means that they should be bounded, regular, and closed sets in 2
ℜ  

(Clementini and Di Felice 1997). Moreover, the authors distinguish two kinds of fuzzy lines: 
broad lines (i.e., all of the line is large) and lines with broad boundaries (i.e., the line's 
endpoints are ill-defined). Xinming (Xinming 2004) extends this approach and proposes a 
more detailed formal definition of fuzzy regions, where he distinguishes four mutually 
disjoint components: the interior, the boundary's interior, the boundary's boundary, and the 
exterior (figure 4). 
 
                                            Fuzzy region 

 
 

 
 

            (a) Interior              (b) Boundary's boundary        (c) Boundary's Interior 
 

Figure 4. Topological invariants of a simple fuzzy region in (Xinming 2004) 
  
The condition A1 ⊆  A2 in (Clementini and Di Felice 1997) does not exist in (Erwig and 
Schneider 1997). In fact, Erwig and Schneider (Erwig and Schneider 1997) are interested in 
another kind of vagueness, where a vague region is a composed geometry. The geometry's 
components belong to a pair of subsets. First, the kernel subset contains the subregions 
definitely belonging to the vague region. Second, the boundary subset contains the subregions 
possibly belonging to the vague region. Likewise, the vague points and the vague lines are 
respectively defined as a pair of subsets of points and lines. Crisp spatial objects can be 
expressed through this model when the boundary subset is empty. Figure 5 gives an example 
of a vague region A, in which the white subregions compose to the boundary subset and the 
gray ones compose the kernel.  
 
 



 
 
 
 
 

Figure 5. Vague region in (Erwig and Schneider 1997) 
 
2.2.2 Models based on mathematical approaches. Roy and Stell (Roy and Stell 2001) deal 
with indeterminacy, which is defined as knowledge vagueness. They define an indeterminate 

region through rough sets (Pawlak 1994). An indeterminate region is composed of a lower 
and an upper approximation. The difference between these approximations represents the 
fuzzy part of the region. When this difference is empty, the region is crisp because the two 
approximations are equal (Roy and Stell 2001).  
 
Fuzzy sets theory is also used to represent fuzzy spatial objects (Robinson and Thongs 1986, 
Altman 1987, Burrough 1989, Zhan 1997, Schneider 2001, Yongming and Sanjiang 2004, 
Dilo 2006). Zhan (Zhan 1997) and Dilo (Dilo 2006) interpret a fuzzy spatial object as a fuzzy 
subset. In (Zhan 1997), the membership function of the fuzzy spatial object is decomposed to 
n cuts−α  (an cut−α  is the set of points with a membership value α or higher (e.g. 
Godjjevac 1999)) in order to facilitate its interpretation. Xinming (Xinming 2004) defines the 
fuzzy spatial objects in two different ways. The first definition should respect the properties of 
the crisp topological space. The second definition should respect topological properties in a 
fuzzy topological space. In this context, the concept of fuzzy topology is a generalization of 
crisp topology, in which the sets belonging to the universe are fuzzy (i.e., the membership 
value is α, where 10 ≤≤ α ). Schneider (Schneider 2001) presents formal definitions of fuzzy 
spatial object types through fuzzy subsets. For example, a fuzzy region is defined as a 
generalization of a crisp region in which an arbitrary point of space has a partial membership 
to the region (Schneider 2001).  
 
In the next section, we highlight some approaches that study the specificities of the 
topological relations between fuzzy spatial objects.  

2.3   Topological relations between fuzzy spatial objects 

Topological relations are very important in GIS, especially in the specification of integrity 
constraints (Ubeda and Egenhofer 1997) and spatial queries. These relations are based only on 
the shape of objects and are totally independent of both the coordinates system and geometric 
transformations. The use of special shapes to express shape fuzziness should imply a different 
approach for identifying their topological relations. In the crisp context, several models 
(Egenhofer and Herring 1990, Egenhofer and Franzosa 1991, Mark and Egenhofer 1994, 
Cohn et al. 1997) studied the specification of topological relations in GIS and spatial 
databases. These models are based on two main approaches: general point-set topology 
(Egenhofer and Herring 1990) and mereology

1
 (Varzi 2004). First, the 9-interesections model 

(Egenhofer and Herring 1990) is an extension of the 4-Intersection model (Egenhofer 1989). 
Based on point-set topology, the 9-Intersection model distinguishes 8 relations between two 
simple regions (Disjoint, Meet, Overlap, Contains, Inside, Equal, Covers, Covered by), 36 
between two simple lines, 19 between a simple region and a simple line, 2 between two 
points, 3 between a point and a simple line, and 3 between a point and a simple region. In the 
context of mereology, a first model called RCC-5 (Randell and Cohn 1989) distinguished 5 

                                                 
1 The region is defined as the elementary component of the space, i.e. points and lines are not considered 

 
 A 



topological relations among two simple crisp regions. This model was then extended to 
distinguish 8 topological relations, and it became known as RCC-8 (Cohn et al. 1997).  
 
In the fuzzy context, topological relations can be specified by extending the RCC and 9-
Intersection models (Cohn and Gotts 1996, Clementini and Di Felice 1997, Erwig and 
Schneider 1997, Roy and Stell 2001, Xinming 2004). Erwig and Schneider (Erwig and 
Schneider 1997) use a three-valued logic to underline the spatial fuzziness. Then, an 
intersection between two topological invariants can be true, false, or maybe (i.e., when the 
boundary subset participates in the relation). In (Cohn and Gotts 1996), a topological relation 
between two Egg-Yolk regions A and B is specified through a 2*2-matrix that enumerates 
four subrelations: Egg(A) - Egg(B), Egg(A) - Yolk(B), Yolk(B) - Egg(A), and Yolk(A) - Yolk(B) 
(figure 4). These four subrelations are those defined in the RCC-5 model: Partially 

Overlapping (PO), Proper Part (PP), Equal (E), Proper Part Inverse (PPI), and Distinct (D). 
With this approach, only 46 combinations correspond to the 46 possible topological relations 
drawn in (Cohn and Gotts 1996). Figure 6 presents the relation number 15 in (Cohn and Gotts 
1996). The main advantage of this approach is its simplicity in identifying the topological 
relations. However, point, lines, and crisp regions are not covered.  
 
 
 
 
 

Figure 6. Identification of topological relations in (Cohn and Gotts 1996) 
 
Clementini and Di Felice (Clementini and Di Felice 1997) studied approximate topological 

relations, which correspond to the topological relations between regions with broad 
boundaries. In fact, they use a 3*3-matrix, in which the sharp boundary is replaced by a broad 
boundary. After considering a set of consistency rules for the matrix (i.e., twelve rules to 
eliminate a matrix that cannot be drawn) (Clementini and Di Felice 1997), only 44 relations 
can be distinguished and drawn among two simple fuzzy regions. These relations can then be 
grouped into 17 clusters, for which a conceptual-neighborhood graph was drawn. This 
approach can be very interesting when it is necessary to coarsely identify the topological 
relations between fuzzy regions. However, the model is not sufficient when the needs are 
more specific and the user has a clear idea regarding the relation between fuzzy regions. For 
example, figure 7 shows an example of two different relations absorbed by the same cluster 
and identified through the same matrix.     
  
 
 
                          
                                                                     

Figure 7. Identification of topological relations in (Clementini and Di Felice 1997) 
 
In the same way, Reis et al. (Reis et al. 2006) use Clementini's model (Clementini and Di 
Felice 1997) in order to identify the topological relations between fuzzy lines. After 
considering the same 12 conditions defined in (Clementini and Di Felice 1997), 5 topological 
relations are identified between two broad lines and 77 between two lines with broad 

boundaries.  
 
Xinming (Xinming 2004) presents an extension of the 9-Intersection model that identifies 
more topological relations than that of (Clementini and Di Felice 1997). He identifies 

PO (Egg(A), Egg(B)) PPI (Egg(A), Yolk(B)) 

PO (Yolk(A), Egg(B)) PO (Yolk(A), Yolk(B)) 

0 0 1 
0 1 1 
1 1 1 

A B 

Meet 
(2) 

(1) 



topological relations through a 4*4-matrix. Indeed, he distinguishes 152 topological relations 
and presents their correspondent matrices (see the example in the figure 8). The absence of 
relation clustering is the main limitation of the model.  The model becomes useless in 
practice, however, since it is very difficult to easily and intuitively distinguish all of these 
relations. Furthermore, Xinming (Xinming 2004) does not distinguish between the inner and 
outer boundaries. Hence, many relations cannot be specified through a 4*4-matrix. 
 

               
  
 
                                                                                                   
 

Figure 8. Identification of topological relations in (Xinming 2004) 
 
Fuzzy sets’ theory is also used to identify the topological relations between fuzzy spatial 
objects (Zhan 1997, Schneider 2001, Dilo 2006). A topological relation in (Zhan 1997) is 
called R (i.e., a parameter used to replace the eight relations of the 4-Intersection model 
(Egenhofer 1989)). For each pair of cuts−α  of considered regions, a subrelation r is 
identified. Then, the possibility of the global relation R is deduced from the number of 
subrelations r that arise between the different cuts−α . This approach is easy to use in 
practice, but it presents some complexity when the cuts−α  are non-uniformly distributed 
between 0 and 1.  In the same way, Dilo (Dilo 2006) identifies six possible topological 
relations (i.e. Disjoint, Touches, Crosses, Overlaps, Within, and Equal) between two vague 
spatial objects. A topological relation is defined based on fuzzy operations (e.g., union, 
intersection, absolute difference, and bounded difference) applied to fuzzy subsets that 
represent vague spatial objects. According to Dilo (Dilo 2006), many topological relations 
may exist at the same time with different Truth degrees  (e.g., Overlap(A, B) with the Truth 

degree = 0,2; Meet(A,B) with the Truth degree = 0,3; Disjoint(A, B) with the Truth degree =  
0,5).  

2.4   Problem statement 

The exact models presented earlier (Cohn and Gotts 1996, Clementini and Di Felice 1997, 
Erwig and Schneider 1997, Xinming 2004, Reis et al. 2006) have the advantage of explicitly 
distinguishing objects’ topological invariants. Through this discrete viewpoint of space, the 
specification of topological relations can be improved (Clementini and Di Felice 1997). For 
these reasons, we propose an exact model in order to achieve objectives. Nevertheless, we 
think that the existing models do not distinguish between different levels of fuzziness and are 
not sufficiently expressive to represent partial fuzziness. In reality, a fuzzy spatial region is 
not always surrounded by a large boundary everywhere. For example, a lake boundary can be 
broad in some locations and sharp in some others.  This situation cannot be represented by 
existing exact models, because the connectedness condition is violated. The same problem is 
present for lines.  Only two cases of fuzziness are distinguished in lines (cf. section 2.2.1), but 
a line can easily have a partially fuzzy interior. Moreover, the studied models are not 
sufficiently expressive in terms of topological relations since there is no distinction between 
the inner and outer boundaries for a fuzzy region. Some work tries to offer more expressivity 
by increasing the number of topological invariants (Xinming 2004). Nevertheless, the absence 
of relation clustering limits their practical use. Indeed, the main research questions of our 
paper are the following: 
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1- How can we obtain more expressive definitions of the fuzzy spatial object types 
through an exact model? How can we represent partial fuzziness? 

2- What are the topological relations between fuzzy spatial objects? How is it possible to 
identify topological relations between objects that have different levels of fuzziness? 
How can we formally identify these relations? 

3- How can we classify the topological relations between fuzzy regions in order to 
facilitate their use in practice? How could resulting clusters reflect the fuzziness level 
of a topological relation?  

3.   Fuzzy spatial objects 

In general, there is no agreement regarding the appropriate formal definition of fuzzy spatial 
objects, because fuzziness can be interpreted in different ways. It is not the objective of this 
work to unify these interpretations. We are interested in proposing an expressive and easy 
definition of fuzzy spatial objects through an exact model. In our approach, we transfer the 
Egg-Yolk’s model into point-set topology context in order to both consider points and lines 
and permit the representation of partially fuzzy objects. From this perspective, we distinguish 
three fuzzy spatial object types: fuzzy points, fuzzy lines, and fuzzy regions. Each one of these 
is composed of n crisp object types (i.e., point, line, and region) distributed into a pair of sets 
called (1) the minimal extent and (2) the maximal extent (figure 9). Figure 9 presents an 
example of fuzzy points, fuzzy lines, and fuzzy regions. A fuzzy point is a zone that we 
approximate to a crisp region containing all of positions that the point can possibly fill. The 
minimal extent of point is equal to its maximal extent because the fuzziness concerns a unique 
topological invariant: the interior (cf. section 3.1 for more details). For a fuzzy line (cf. 
section 3.2), the minimal extent is the union of the linear parts. However, its maximal extent 
can contain some fuzzy parts (i.e., presented as fuzzy points in figure 9 (b)) at which the line 
can have any shape. For a fuzzy region (cf. section 3.3), the fuzziness concerns the boundary. 
The minimal extent refers to the geometry when the boundary is as close as possible (i.e. it is 
drawn around the area which certainly belongs to the region). The maximal extent is the 
geometry of the object when the boundary is as far away as possible (i.e. it is drawn around 
the area which contains all of points possibly belonging to the region).  
    
 
 
 
 
 
 

 
Figure 9. Minimal and maximal extents for (a) a fuzzy point, (b) a fuzzy line and (c) a fuzzy region 

 
Generally, the minimal extent refers to the geometry's parts definitely belonging to the spatial 
object. The maximal extent corresponds to the object's geometry when fuzziness is taken into 
account and added to the minimal extent. Outside of the maximal extent, there are no spatial 
points that can possibly belong to the object. The number n of crisp object types composing 
the fuzzy spatial object type is 1 for a fuzzy point (i.e., a zone that we represent as a crisp 
region composed of the quasi-totality of possible positions of the point (cf. section 3.1)), 2 for 
a fuzzy region (i.e., two crisp regions (cf. section 3.3)), and n for fuzzy lines (i.e., 1 or n points 
of the line are fuzzy (cf. section 3.4)). For example, a fuzzy region corresponds to a pair of 
crisp regions that respectively represent the minimal and maximal extents. This general 
definition of fuzzy spatial objects is based on the following principles: 

(a) Fuzzy point (b)Fuzzy line (c) Fuzzy region 

Minimal extent = maximal extent Minimal extent  

Maximal extent  

Maximal extent  Minimal extent  



1- A fuzzy spatial object is a generalization of a crisp spatial object. 
2- The minimal and the maximal extents are made up of crisp spatial object types. Only 

the combination of two extents corresponds to the fuzzy spatial object.  
3- For the minimal and the maximal extents, the topological invariants should be 

mutually disjoint.   
 
The first principle means that the spatial extent of a fuzzy object is crisp when its minimal 
extent is equal to its maximal one. The second principle requires that the minimal and 
maximal extents verify the topological consistency conditions of the crisp spatial object types 
(e.g., a crisp region should be connected). Finally, the third principle permits the 
identification of topological relations based on the intersections between the topological 
invariants of the minimal and maximal extents of two fuzzy spatial objects. In the next 
sections, we present our definitions of fuzzy point, fuzzy line, and fuzzy region. 

3.1   Fuzzy point 

In the crisp context, a point p(x, y) is a 0-dimensional object type that represents one position 
(x, y) in space. The only topological invariant composing the shape of a crisp point is its 
interior. Because a point does not have a boundary (the boundary of an object with N 
dimensions has N-1 dimensions), the fuzziness can characterize only the interior and thus the 
point itself. Semantically, a fuzzy point occurs when an intrinsic property of the point or a 
lack of knowledge does not permit certainty regarding its position. For such a case, the spatial 
extent of the object is typically replaced by a zone that we represent as a crisp region 
composed of the family of positions that the point can fill (figure 10). The closure2 of the 
crisp region represents an infinity of possible positions for the point. Consequently, a fuzzy 
point does not have a minimal extent; it only has a maximal extent.  
 

Simple Crisp point Fuzzy point 

  

 
Figure 10. Fuzzy point 

 
Since a simple fuzzy point corresponds, in fact, to a simple crisp region, it should verify the 
following conditions: 

1- The closure is a non-empty connected regular closed set. 
2- The interior is a non-empty connected regular open set. 
3- The boundary and exterior are connected. 

 
To provide an example of a fuzzy point, consider an application to help the fire brigades in 
their interventions. Generally, a fireman cannot precisely localize the fire source. However, he 
can draw an area in which the fire source should exist. This intervention area corresponds to a 
fuzzy point and can be represented through our model. It is clear that the size of the region 
representing the fuzzy point depends on the fuzziness level (i.e., a larger region refers to a 

fuzzier point).  

3.2   Fuzzy line 

A simple crisp line is a one-dimensional object type made up of an interior limited by two 
endpoints. The boundary of a crisp line corresponds to its endpoints, whereas the interior is 
                                                 
2 The closure, in point set topology, is the union of the interior and the boundary. 



the set of points connecting them. The fuzziness can characterize any point of the line. 
Consequently, the line boundary can be partially or completely fuzzy while the interior 
remains well-defined; we then speak about lines with fuzzy boundaries. In the same way, the 
interior can be partially or completely fuzzy while the endpoints are well-defined; we then 
speak about lines with partially and completely fuzzy interiors, respectively (figure 11). The 
extreme case of line fuzziness arises when all topological invariants of the line (i.e. the 
interior and the boundary) are fuzzy (figure 11). Thus, a completely fuzzy line corresponds to 
a crisp region that represents the set of positions that the line can fill. However, a completely 
crisp line is a particular case of fuzzy lines, for which all of the interior and both endpoints are 
well defined. The different cases of line fuzziness can be combined as presented in figure 11. 
To underline the different levels of line fuzziness, we use four adverbs: (1) weakly, (2) fairly, 
(3) strongly, and (4) completely. The term "weakly" indicates that one of the topological 
invariants is partially fuzzy. The term "fairly" reflects either complete fuzziness of one of 
topological invariants or the case where the interior and endpoints are partially fuzzy at the 
same time. The term "strongly" specifies complete fuzziness for one of topological invariants 
and partial fuzziness for the second one. Finally, the term "completely" is used to express total 
fuzziness of the line's components. Figure 11 shows a symmetrical matrix, in which fuzziness 
increases from "none" in the upper-left cell to "completely" in the lower-right cell through a 
progression including "weakly", "fairly," and "strongly". 
 

 Crisp interior Partially fuzzy interior Completely fuzzy interior 

Crisp boundary            none  weakly fuzzy fairly fuzzy 

Partially fuzzy 
boundary 

weakly fuzzy fairly fuzzy strongly fuzzy 

Completely 
fuzzy boundary 

fairly fuzzy strongly fuzzy completely fuzzy 

 
Figure 11. Fuzzy lines 

 
In our model, a fuzzy line is typically composed of two-dimensional parts that correspond to 
the line's fuzzy points and one-dimensional parts that represent the minimal extent of the line. 
Thus, the maximal extent is the union of the one-dimensional and two-dimensional parts. The 
interior of maximal extent corresponds to the union of the interiors of the one-dimensional 
and two-dimensional parts. In the same way, the boundary of the maximal extent is the union 
of the boundary of the one-dimensional and two-dimensional parts. Figure 12 presents the 
different cases of fuzzy line decomposition. We should note that the different representations 
of a line, in figure 12, indicate a set of pictograms that we use to show different types of 
fuzziness for lines. In other terms, these representations are not based on a mathematical 
model that allows to consider error component of spatial data as in (Chrisman 1991). 
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Figure 12. Topological invariants according to the line fuzziness 

 

More formally, a fuzzy line L
~

is the union of a maximal extent max

~
L and a minimal extent min

~
L . 

In our approach, we look for the most expressive model possible in terms of specification of 
the topological relations. Consequently, we focus on the definition of the topological 

invariants for the maximal max

~
L  and the minimal min

~
L  extents. For each one, we distinguish 

an interior and a boundary that can be empty according to the configuration of the line (figure 
12). From a point-set topology view point, a simple fuzzy line should verify the following 
conditions: 

1- Each one-dimensional part of the simple fuzzy line is connected. 
2- Each one-dimensional part of the simple fuzzy line is not self-intersecting. 
3- Each one-dimensional part of the simple fuzzy line does not form a loop. 
4- Each two-dimensional part verifies the conditions defined for a fuzzy point (section 

3.1). 
5- If the endpoints are fuzzy, they do not overlap with each other.  

 
The three first conditions are those defined for a crisp line in the general point-set topology. 
Then, we apply these conditions to each linear part of the fuzzy line. The fourth condition 
requires that every fuzzy point on the interior or the endpoints of a line respect the topological 
conditions of a crisp region applied to a fuzzy point (section 3.1). The last condition is defined 
to eliminate any risk of self-intersection or loop configurations. Figure 13 shows some cases 
of lines that are invalid according to our model. 
 
 
 
         Non regular interior of maximal extent        Self-intersecting line              The line forms a loop 
 
 
     
                             The endpoints can be identical 
 

Figure 13. Examples of invalid lines 
 
In the next cases, we give two examples of fuzzy lines:   
 

• A strongly fuzzy line with only one crisp end point                 : 
The Bermuda triangle is a region in the Atlantic Ocean where some aircrafts and surface 
vessels have disappeared. We suppose that we have been appointed to redraw the trajectory of 
an engine that has disappeared. We will quickly discover that the only certain information is 
the last position of the engine before the communication interruption. In fact, this point refers 
to the minimal extent of the line. Far from this point, the trajectory can have any shape and 
position inside the fuzziness area. Indeed, our model is sufficiently expressive to represent 
this fuzziness case. 



• A fairly fuzzy line with two crisp endpoints                       : 
We suppose that an aircraft disappeared for some time from radar screens. After that, the 
communication with the aircraft returns to normal and the engine arrives at its destination. In 
this case, the aircraft trajectory is composed of two crisp endpoints. However, the interior is 
partially fuzzy, because the trajectory can take any unpredictable shape inside the dangerous 
zone.  

3.3   Fuzzy region 

A crisp region is a two-dimensional spatial object type in which the shape is typically 
composed of an interior, a boundary, and an exterior. For a region, shape fuzziness occurs 
when there is difficulty in precisely distinguishing between the interior and the exterior via a 
sharp boundary. From this perspective, shape fuzziness is generally correlated with the 
boundary, which can itself be crisp, partially fuzzy, or completely fuzzy. It is possible to draw 
a minimal spatial extent by considering the boundary to be as close as possible (i.e. it is drawn 
around the area which certainly belongs to the region). In the same way, a maximal spatial 

extent can be drawn by considering the boundary to be as far as possible (i.e. it is drawn 
around the area which contains all of points possibly belonging to the region). Figure 14 
represents an example of a fuzzy region in which the boundary is partially fuzzy. The spatial 
extent of a fuzzy region is composed of a portion called the minimal extent (i.e., all of the 

points definitely belonging to the spatial object) and covered by a maximal extent (i.e., all of 

the points possibly belonging to the spatial object).  
 
 
 
 

Figure 14. Region with partial fuzzy boundary 
 
We consider that a simple fuzzy region is made up of two crisp regions: (1) the maximal 

extent, which can be "Equal", "Contains", or "Covers" (2) the minimal extent (figure 14). 
When the boundary is totally sharp (i.e. it does not contain any fuzzy point), the region is 
called completely crisp. This is a particular case of fuzzy region for which the maximal extent 
is equal to the minimal extent. In the second case, the region's boundary is fuzzy only in some 
locations. We speak about partially fuzzy regions, where the maximal extent covers the 
minimal extent. For example, a forest stand or a lake can have sharp boundaries (e.g., rocker 

borders for a lake and a total cut for a forest stand) and fuzzy boundaries (e.g., swamp 

borders for a lake) at the same time. The third case represents a typical fuzzy region for 
which the boundary is entirely fuzzy. For example, the boundary of a pollution zone is fuzzy 
everywhere since the pollution decreases from its kernel to the region's exterior. In the figure 
15, we present an example of each of these three cases. 
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Figure 15. Fuzzy regions 

 
Since the minimal and maximal extents are crisp regions, we distinguish three mutually 
disjoint topological invariants for each of them: an interior, a boundary, and an exterior. 

Thus, a fuzzy region A
~

 is made up of six topological invariants: the interior of the minimal 

extent °
min

~
A , the boundary of the minimal extent min

~
A∂ , the exterior of the minimal extent −

min
~
A , 

the interior of the maximal extent °
max

~
A , the boundary of the maximal extent max

~
A∂ , and the 

exterior of the maximal extent −
max

~
A  (figure 15). 

 
• Definition 1: A simple fuzzy region A

~  is composed of two simple crisp regions max
~
A  

and min
~
A , where Equal

3
( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ), or Covers( max

~
A , min

~
A ). min

~
A is 

the minimal extent of A
~

, min
~
A∂  is the inner boundary of A

~ , max
~
A  is the maximal extent 

of A
~

, and max
~
A∂ is the outer boundary of A

~ . min
~
A is the set of points certainly 

belonging to A
~ . However, the maximal extent max

~
A  is the union of the minimal extent 

and the set of points possibly belonging to the fuzzy region.   
 
The following conditions should be respected for any fuzzy region: 

1- The closures of the maximal and the minimal extents are non-empty regular connected 
closed subsets. 

2- The interiors of the maximal and minimal extents are non-empty regular open sets. 
3- The boundaries and exteriors of the maximal and minimal extents are connected. 

 
Figure 16 presents some examples of invalid fuzzy regions. In case (a), the region is invalid 
because its closure is non-regular, i.e. there is an isolated line that belongs to the closure. In 
case (b), the interior of the region is non-connected because it is composed of two disjoint 
subregions. In the case (c), the exterior does not respect the connectedness condition since the 
interior contains a hole.  
 
 
         
      (a) Non-regular closed closure               (b) Non-connected interior               (c) Non-connected exterior 

 
Figure 16. Examples of invalid fuzzy regions 

 

This general definition covers the crisp regions occurring when Equal( max
~
A , min

~
A ). Hereafter, 

we only focus on the typical fuzzy regions where Contains( max
~
A , min

~
A ) or Covers( max

~
A , min

~
A ). 

                                                 
3 The spatial relations (i.e., Equal, Contains, Covers) used in this definition are those defined in (Egenhofer and 
Herring 1990). 



4.   Topological relations between fuzzy spatial objects 

4.1   Principles 

To identify the topological relations between two fuzzy objects, we interpret their maximal 
and minimal extents as independent crisp geometries. In fact, our methodology consists of 
identifying four specific topological relations between the minimal and maximal extents of 
the fuzzy spatial objects. For that, we define a 4-Intersection matrix containing the following 
four topological subrelations: R1( min

~
A , min

~
B ), R2( min

~
A , max

~
B ), R3( max

~
A , min

~
B ), and 

R4( max
~
A , max

~
B )(see example in figure 17). The topological subrelations assigned to the matrix's 

cells are those defined in the 9-Intersection model (Egenhofer and Herring 1990). For 
example, if we study the topological relations between two fuzzy regions, each cell receives 
one of the eight possible topological relations between two simple crisp regions (i.e., Disjoint, 
Overlap, Meet, Equal, Contains, Inside, Covers, Covered by). Then, the 4-Intersection matrix 
corresponds to the following representation: 

           min

~
B                   max

~
B  

     min
~
A  R1( min

~
A , min

~
B ), R2( min

~
A , max

~
B ) 

       max
~
A     R3( max

~
A , min

~
B ), R4( max

~
A , max

~
B ) 

 
Figure 17 shows the content of the matrix that describes the topological relation between a 
partially fuzzy region A

~  and a completely fuzzy region B
~ . In the matrix (b), the letters O and C 

are used to denote the relations Overlap and Contains, respectively.   
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
Figure 17. Description of the topological relation between two fuzzy regions: (a) visual content of the matrix, (b) 

formal identification of the relations between the minimal and maximal extents of the objects involved 
 
The content of the matrix corresponds to the topological subrelations relating the minimal and 
maximal extents. We use the topological subrelation between the maximal extents 
R4( max

~
A , max

~
B ) to label the global topological relation. For example, if R4( max

~
A , max

~
B ) is 

Overlap, we consider that the fuzzy spatial objects globally Overlap each other. If 
R4( max

~
A , max

~
B ) is Contains, we consider that the global topological relation is Contains. 

 
In figure 18, we present examples of the identification of topological relations between fuzzy 
spatial objects. The first example presents a description of the topological relation between 
two completely fuzzy regions A

~  and B
~ . The second example concerns a fairly fuzzy line L

~  

A
~

B
~

                  min

~
B                            max

~
B  

 min

~
A   O ( min

~
A , min

~
B ), O ( min

~
A , max

~
B ) 

 max

~
A   C ( max

~
A , min

~
B ), O ( max

~
A , max

~
B ) 

(a) 

(b) 

min
~
B  

max
~
B  

min
~
A 

max
~
A  

max
~
A  

min
~
A 

max
~
B  min

~
B  



and a completely fuzzy region A
~ . The third example shows the identification of the 

topological relation between two fairly fuzzy lines L
~ and K

~ . Finally, the last example concerns 
a completely fuzzy region A

~ and a fuzzy point P
~ . 

 
Spatial representation Correspondent matrix  

Global topological relation : Overlap 

 
 
 
 

     min

~
B                            max

~
B  

min

~
A   Overlap ( min

~
A , min

~
B ), Overlap ( min

~
A , max

~
B ) 

max

~
A       Contains ( max

~
A , min

~
B ), Overlap ( max

~
A , max

~
B ) 

Global topological relation : Contains                              min

~
L                            max

~
L  

min

~
A   Overlap ( min

~
A , min

~
L ), Overlap ( min

~
A , max

~
L ) 

max

~
A     Contains ( max

~
A , min

~
L ), Contains ( max

~
A , max

~
L ) 

Global topological relation : Overlap                         min

~
L                            max

~
L  

min

~
K  Disjoint ( min

~
K , min

~
L ), Disjoint ( min

~
K , max

~
L ) 

max

~
K Disjoint ( max

~
K , min

~
L ), Overlap ( max

~
K , max

~
L ) 

Global topological relation : Disjoint             max

~
P  

                            min

~
A   Disjoint ( min

~
A , max

~
P ) 

  max

~
A  Disjoint ( max

~
A , max

~
P ) 

 
Figure 18. Examples of identification of topological relations through a 4-Intersection matrix 

4.2   Topological relations between a fuzzy region and a crisp one 

In our approach, the 4-Intersection matrix highlights the subrelations that exist between the 
components of the fuzzy geometries. Indeed, this expressivity is highlighted when the 
maximal extent of the fuzzy spatial object is different from the minimal extent. In the other 
cases, some cells in the matrix will have the same values. For example, figure 19 shows a 
fuzzy region that overlaps a crisp region. The topological relation can be reduced to a 2-
Intersections matrix, because the region B

~  is crisp and so its minimal extent equals its 
maximal one. Hereafter, we do not study topological relations that involve crisp regions. 
 
 
                                                                           

                       min

~
B                            max

~
B              min

~
B  

min

~
A   Overlap ( min

~
A , min

~
B ), Overlap ( min

~
A , max

~
B )  min

~
A   Overlap ( min

~
A , min

~
B ) 

max

~
A     Overlap ( max

~
A , min

~
B ), Overlap ( max

~
A , max

~
B ) max

~
A   Overlap ( max

~
A , min

~
B ) 

 
Figure 19. Example of a topological relation between a fuzzy region and a crisp region 
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The values assigned to the different cells of the matrix should not be arbitrarily chosen. In 
general, the value of R ( max

~
A , max

~
B ) enforces the other values. In the next section, we study 

these aspects specifically for the topological relations between fuzzy regions.  

4.3   Topological relations between fuzzy regions 

Eight topological relations are possible between two simple crisp regions. By considering 
these as the possible values in the four cells of the matrix, there are 409684

=  possible 
matrices. However, definition 1 imposes a condition mandating that the extents of a fuzzy 
region should be related by one of the following relations: Equal( max

~
A , min

~
A ), 

Contains( max
~
A , min

~
A ), or Covers( max

~
A , min

~
A ). Indeed, a 4-Intersection matrix cannot identify a 

topological relation between two fuzzy regions when this condition is violated. Thus, the 
contents of the matrix's cells are not independent. For example, if the maximal extents are 
disjoint, it is impossible for an Overlap to exist between the minimal extents (figure 20). In 

figure 20, the subrelation O ( min

~
A , min

~
B ) is grey to denote that is not allowed whereas D ( min

~
A , 

min

~
B )  is black to show that is permitted. Consequently, several of the 4096 possible matrices 
are invalid because the dependency between the matrix's cells is not respected.  
                                              min

~
B                    max

~
B  

                            min
~
A   O ( min

~
A , min

~
B )           --   

                            max
~
A              --               D ( max

~
A , max

~
B ) 

 
 
 
            
                       
                                   (a) Invalid Disjoint' relation                         (b) Valid Disjoint' relation 

 
Figure 20. Controlling the validity of a Disjoint relation 

 
In order to enumerate the valid 4-Intersection matrices, we firstly studied the possible values 
in the other three cells for each of the eight possible values of R( max

~
A , max

~
B ). For example, if 

Contains ( max
~
A , max

~
B ), the only possible relation between max

~
A and min

~
B is Contains; otherwise, 

the expected relation cannot respect the general definition of a fuzzy region. The figure 20 
shows an example of an inconsistent matrix in which Disjoint ( max

~
A , max

~
B ) and Contains 

( min
~
A , min

~
B ).  This matrix is inconsistent because R ( max

~
B , min

~
B ) ∉{Contains, Covers, Equal}. 

In the second step, we also fix the relation between min
~
A and min

~
B to deduce the possible values 

of R ( min
~
A , max

~
B ). For example, when Contains ( max

~
A , max

~
B ) and Contains ( min

~
A , min

~
B ), R 

( min
~
A , max

~
B ) should not be Meet or Equal. In this way, 31 rules (see table 4 in the appendix) 

are defined in order to ensure the consistency of matrices. In the rules' premises, we specify 
either R ( max

~
A , max

~
B ) or (R ( max

~
A , max

~
B ) and R ( min

~
A , min

~
B )).   Then, we deduce the possible 

values in the remaining cells. In figure 20, the matrix on the left is not valid because it 
requires the minimal extent to be disjoint to the minimal extent (i.e., the definition of the 

fuzzy region is not respected, because R( max
~
A , max

~
B ) should be Contains, Covers, or Equal). 

 
This study proves that only 242 topological relations are possible between two simple fuzzy 
regions (see the appendix). More specifically, only one matrix is valid when Disjoint 

A
~

 B
~

 A
~

 B
~

 

 



( max
~
A , max

~
B ), 29 matrices are valid when Contains ( max

~
A , max

~
B ), 29 for Inside ( max

~
A , max

~
B ), 46 

for Covers ( max
~
A , max

~
B ), 46 for Covered by ( max

~
A , max

~
B ), 65 for Overlap ( max

~
A , max

~
B ), 4 for 

Meet ( max
~
A , max

~
B ), and 22 when Equal ( max

~
A , max

~
B ). The topological relations are numbered 

from 1 to 242 according to the relation between max
~
A and max

~
B . Table 1 shows this numbering 

(see the appendix to explore the relations). 

5.   Clustering of topological relations between fuzzy regions 

5.1   Principles 

In our work, the proposed model is expressive in terms of the topological relations between 
fuzzy regions. In this context, 242 topological relations are distinguished. Consequently, the 
clustering of relations into larger groups of relations is an important step, because it is very 
difficult to keep in the mind this great number of relations.  It is additionally very difficult to 
find a name for each one of these regions, and so the user will have difficulty choosing the 
appropriate operator in order to express a query or integrity constraint. Mark and Egenhofer 
(Mark and Egenhofer 1994) studied the clustering of the topological relations between simple 
crisp regions and simple crisp lines both through a formal basis and by taking into account 
cognitive aspects. Clementini and Di Felice (Clementini and Di Felice 1997) defined a 
topological distance to classify the approximate topological relations between regions with 
broad boundaries. In this way, they deduced 17 clusters that they represent in a conceptual 
neighborhood graph.  
In our approach, most of the distinguished topological relations are not completely different 
from each other. For example, two simple fuzzy regions can weakly or completely overlap 

each other depending on the content of the matrix. In the first case, only the maximal extents 
overlap. In the second case, however, Overlap is the unique value in the matrix's four cells. 
Thus, it is possible to deduce the relation's fuzziness level from the content of the 4-
Intersection matrix. The objective of this section is to group the 242 topological relations into 
a limited number of clusters based on their fuzziness levels.  

5.2    Clustering results  

In section 4, we showed that the global topological relation is identified through a 4-
Intersection matrix that enumerates four subrelations. Thus, a topological relation becomes 
possible if it appears at least once in the matrix. This possibility increases according to the 
number of similar subrelations. For example, a Covers topological relation in which Covers 

( max
~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) is stronger than another where only Covers ( max

~
A , max

~
B ). 

Because there are eight possible values for the matrix's cells, we distinguish eight basic 
clusters that we call: DISJOINT, CONTAINS, INSIDE, COVERS, COVERED BY, EQUAL, 
MEET, and OVERLAP. Each cluster contains all of the topological relations for which at least 
one of the four subrelations has the same name. For example, figure 21 shows a topological 
relation that belongs to the following clusters: DISJOINT, CONTAINS, and COVERS. 
Nevertheless, it belongs to the DISJOINT cluster more strongly than to the CONTAINS and 

COVERS clusters. 

 

 

 

 

 

 



 

 
                                                                         

 
 
 
 

 
 

Figure 21. Example of clustering of a topological relation 
       
For each one of the eight basic clusters, we identify four levels of relation membership: (1) 
completely, (2) strongly, (3) fairly, and (4) weakly (table 2).  A topological relation belongs to 
the cluster completely when the four subrelations are similar.  It belongs to the cluster strongly 
when only three subrelations have the same name as the cluster. The level labeled fairly 
contains all relations for which two subrelations have the same name as the cluster. Finally, 
the level called weakly contains the relations for which only one subrelation has the same 
name as the cluster. Figure 22 presents some relations that belong to different levels of 
CONTAINS and DISJOINT clusters, respectively, according to the contents of their 
correspondent matrices.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 22. Evaluation of topological relation's fuzziness 

5.3   Overlapping clusters 

The main result of this clustering process is a hierarchical classification of the topological 
relations (figure 23). The top level is made up of eight basic clusters that each contains 
typically four levels: completely, strongly, fairly, and weakly. The resulting 32 subclusters 
overlap each other because a topological relation typically belongs to different levels of 1, 2, 
3, or 4 clusters at the same time. For example, topological relation number 56 (see the 
appendix and the table 2) belongs fairly to the CONTAINS cluster and weakly to the COVERS 
and INSIDE clusters. The bottom level of the classification contains the 242 topological 
relations that appear in different subclusters.  
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Figure 23. Hierarchical classification of the topological relations 

6.   Specification of spatial queries and integrity constraints 

In the previous sections, we presented a framework for identifying topological relations 
between fuzzy regions. Because it uses the 9-Intersection model (Egenhofer and Herring 
1990), our model can be easily integrated in a spatial database system. Indeed, the SQL 
language can be extended in order to retrieve fuzzy regions based on the qualitative 
information given by the user regarding their topological relation. In fact, a topological 
relation between two fuzzy regions can be recognized through the combination of four crisp 
spatial operators. For example, relation number 56 corresponds to (Disjoint, Disjoint, 
Contains, Covers). Hereafter, we suppose that we integrated our spatial model in a relational 
engine in order to give an example of its possible use in spatial queries involving fuzzy 
regions. We suppose that the spatial database stores pollution zones, which are represented as 
fuzzy regions. In the first query example, the user gives a coarse description of the topological 
relation when he introduces the specification fairly DISJOINT. The query’s results should 
contain the pollution zones related to zone A by a topological relation belonging to this 
subcluster. In the second example, the query is more specific because the user identifies all 
topological subrelations that relate ( min

~
A , min

~
B ),  ( min

~
A , max

~
B ), ( max

~
A , min

~
B ), and ( max

~
A , max

~
B ). 

The third example shows another use of our model, in which it is possible to display the 
different fuzziness levels of a relation (e.g., Overlap) that occurs between two fuzzy regions 
(cf. table 3). Table 3 shows a possible result for the query presented in example 3. 
 

Example 1: Select Pollution_Zone.geometry From Pollution_Zone Where  
                   Fuzzy_Relate (pollution_zone.geometry, A.geometry, fairly DISJOINT); 
 
Example 2: Select Pollution_Zone.geometry From Pollution_Zone Where  

                               Fuzzy_Relate (Pollution_Zone.geometry, A.geometry, Disjoint, Meet, 

                                                        Contains, Contains); 
 

Example 3: Select P1.id, P2.id, determine (P1.geometry, P2.geometry, "Overlap")  

                                From  Pollution_Zone P1, P2 Where P1.id<>P2.id; 
 
In the same way, it is possible to use the model to formally express spatial integrity 
constraints in a fuzzy context. For example, let the constraint saying that ‘two different lakes 

242 relations in the bottom level 

Inside 

Weakly Fairly Completely Strongly 

Covers 

Root 

Disjoint Contains Covered by Overlap Equal Meet 

Weakly Fairly Strongly Completely 



can be only fairly meet or completely disjoint'. This constraint can be formally expressed by 
integrating new spatial operators (e.g., completely Contains, weakly Covers, etc.) in a formal 
constraint language like the Object Constraint Language (OCL) (Duboisset et al. 2007). The 
database storing the lakes is consistent only if the topological relations between the different 
entities belong to fairly MEET or completely DISJOINT subclusters (see example 4).  
 

Example 4: Context Lake inv:  
        Lake.allInstances � forAll (a, b| a<>b implies fairly MEET(a,b) or     
        completely DISJOINT(a,b)); 

7.   Discussion 

Clementini and Di Felice (Clementini and Di Felice 1997) propose an extension of the 9-
Intersection model (Egenhofer and Herring 1990) that uses a broad boundary to replace the 
sharp boundary. In this approach, 44 topological relations are distinguished between two 
regions with broad boundaries. By considering topological distance, Clementini and Di Felice 
(Clementini and Di Felice 1997) draw a conceptual neighborhood graph that shows similarity 
degrees between relations classified into 17 clusters. The main advantage of this approach is 
the ability to support a coarser spatial reasoning involving regions with broad boundaries. 
When the needs are more specific, it becomes more difficult to use this model. Furthermore, 
the identification of a broad boundary as a two-dimensional topological invariant requires 
respecting consistency conditions related to closeness and connectedness. Xinming (Xinming 
2004) presents a more expressive model than that of (Clementini and Di Felice 1997), because 
he decomposes the large boundary into the boundary's interior and the boundary's boundary. 
Based on this definition, Xinming (Xinming 2004) presents another extension of 9-
Intersection model, in which topological relations are identified through a 4*4-Intersection 
matrix. He distinguishes 152 topological relations presented as variants of the 44 relations 
from (Clementini and Di Felice 1997). Nonetheless, this model does not distinguish between 
the boundaries of the minimal and maximal extents. Thus, many topological relations cannot 
be distinguished. Moreover, regions with partially fuzzy boundaries (figure 11) are 
considered invalid and cannot be presented through this model. In our approach, we resolve 
this problem by considering a simple fuzzy region as a maximal extent and a minimal extent, 
in which either Equal (

max

~
A ,

min

~
A ) (i.e., a crisp region) or Contains (

max

~
A ,

min

~
A ) or Covers 

( max
~
A , min

~
A ). We do not define a large boundary as a topological invariant of fuzzy regions. 

Our main motivations for adopting this framework are (1) to consider partially fuzzy regions 
and (2) to present a more expressive model in terms of the identification of topological 
relations between simple fuzzy regions. In this work, topological relations are specified 
through a 4-Intersection matrix that enumerates the topological subrelations between ( min

~
A , 

min
~
B ),  ( min

~
A , max

~
B ), ( max

~
A , min

~
B ), and ( max

~
A , max

~
B ). The topological relations used here are 

those defined by the 9-Intersection model (Egenhofer and Herring 1990). We distinguish 242 
topological relations that we classify into 8 overlapping basic clusters.  Each cluster has four 
membership levels (or subclusters): completely, strongly, fairly, and weakly. Nevertheless, our 
model is not able to quantify the gradual change inside the maximal extent in the same way as 
the fuzzy approaches do (Zhan 1997, Schneider 2001, Dilo 2006).  
 
The Egg-Yolk model (Cohn and Gotts 1996) was our main inspiration to develop this 
framework for identifying topological relations. However, there are some fundamental 
differences between our model and that of (Cohn and Gotts 1996). For instance, the 
topological relations used in (Cohn and Gotts 1996) are those defined in the RCC-5 model 
(Randell and Cohn 1989, Cohn et al. 1997). In contrast, our model is based on point-set 



topology, in which points and lines are considered as the basic crisp spatial object types. In 
(Cohn and Gotts 1996), a conceptual neighborhood graph was drawn with 44 topological 
relations are classified into 13 clusters. In our model, we define a hierarchical classification 
based on the content of the matrices we use to identify the topological relations. 

8.   Conclusions and future work 

Shape fuzziness is an inherent property of many spatial objects like lakes, valleys, and 
mountains. In GIS and spatial databases, it is a general practice to neglect shape fuzziness and 
formally represent fuzzy spatial objects as crisp geometries. Using such inappropriate 
representations can provide a source of spatial data quality degradation, because the reliability 
of spatial data is decreased. With emergence of prediction applications, data integration, and 
strategic decisional needs, researchers are increasingly more motivated to propose different 
methods for the formal representation of spatial fuzziness. A review of the literature regarding 
this topic proves that existing exact models do not permit the representation of partially fuzzy 

objects.  For such objects, shape fuzziness partially characterizes one or several of its 
topological invariants. For example, a lake can have rocker and swamp banks at the same 
time; the boundary is fuzzy only for the swamp part. In this work, we have proposed an exact 
model in order to represent spatial objects that can be: crisp, partially fuzzy, or completely 

fuzzy.  We have considered this categorization of fuzziness during the identification of 
topological relations.  
 
More specifically, this paper contributes in three main ways. Based on point-set topology, we 
firstly define three basic fuzzy spatial object types: fuzzy point, fuzzy line, and fuzzy region. 
Each one of them is typically defined as a minimal extent min

~
A and a maximal extent max

~
A , and 

these extents must verify some topological conditions in order to be valid. This model permits 
the representation of partially fuzzy spatial objects considered as invalid in the existing 
models of (Clementini and Di Felice 1997, Xinming 2004, Reis et al. 2006). Then, we 
identify a topological relation through use of a 4-Intersection matrix that permits the 
enumeration of four subrelations: R1 ( min

~
A , min

~
B ), R2 ( min

~
A , max

~
B ), R3 ( max

~
A , min

~
B ), and R4 

( max
~
A , max

~
B ). By using this formalism for simple fuzzy regions, 242 relations can be 

distinguished (cf. appendix). In order to retain our propositions useful in practice, we propose 
the clustering of these topological relations. A topological relation can belong to one or 
several clusters with various levels of membership: completely, strongly, fairly, and weakly. 
The objective of this qualitative clustering is to improve the specification of spatial queries 
and integrity constraints involving fuzzy spatial objects. 
      
The main perspective of this work aims to improve the logical consistency of spatial 
databases involving fuzzy spatial objects. More specifically, we are interested in the 
specification of integrity constraints in spatial databases storing fuzzy spatial objects. We 
hope to identify both integrity constraint categories and the requirements for their formal 
expression. The framework presented earlier can provide a basis for the extension of a formal 
constraint language like OCL (Duboisset et al. 2007) to express tolerant integrity constraints 
for fuzzy spatial objects. In the same way, decisional applications require the integration of 
spatial data from heterogeneous sources before they are stored in a spatial data warehouse 
(Bédard et al. 2007). The main difficulty lies in choosing one of the available representations. 
We suggest merging the different representations in such way that the result looks like a fuzzy 
spatial object. The fuzzy integrity constraints can be used to increase the logical consistency 
of such data. 
 



Appendix: 242 topological relations between fuzzy regions and required rules to deduce 

them 
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69 70 71 72 

73 74 75 76  
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Figure 24. 242 topological relations between fuzzy regions 
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Table 4. Required rules for topological relations between fuzzy regions 

Rule 1: Let A
~

 and B
~

 are two simple fuzzy regions, if Disjoint 

( max

~
A , max

~
B ) then Disjoint ( min

~
A , min

~
B ). 

 

                      min

~
B                  max

~
B  

min

~
A   D ( min

~
A , min

~
B )             -- 

max

~
A      --                       D ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Disjoint ( max

~
A , max

~
B ). Now, we suppose that Disjoint ( min

~
A , 

min

~
B ) ≠ Disjoint. In this case, the relation between minimal extent min

~
A  and maximal extent max

~
A  of a fuzzy 

region A
~

 or that between max

~
B  and min

~
B does not correspond to Contains, Covers, Equal. 

                Thus, there is a contradiction with definition 1. 

Rule 2:  Let A
~

 and B
~

 two fuzzy regions, if 

Meet ( max

~
A , max

~
B ) then 

R( min

~
A , min

~
B )∈{D, M}. 

 

                           min

~
B                             max

~
B  

min

~
A      R( min

~
A , min

~
B )∈{D, M}              -- 

max

~
A                      --                           M ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Meet ( max

~
A , max

~
B ). Now, we suppose that R( min

~
A , min

~
B ) 

∉{Disjoint, Meet}. In this case, relation between minimal extent min

~
A  and maximal extent max

~
A , R’ 

( max

~
A , min

~
A ) or that between max

~
B  and min

~
B , R’’( max

~
B , min

~
B ) does not correspond to Contains, Covers, 

Equal. Thus, there is a contradiction with definition 1. 
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Rule 3: Let A
~

 and B
~

 two fuzzy regions, if Contains 

( max

~
A , max

~
B ) then Contains ( max

~
A , min

~
B ) and vice 

versa. 
 

                       min

~
B                     max

~
B  

min

~
A                 --                            -- 

max

~
A     C ( max

~
A , min

~
B )      C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ). According to definition 1, any fuzzy 

region A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ) or 

Covers( max

~
A , min

~
A ). Moreover, Contains is a transitive topological relation according to Proposition 1. Then, 

since Contains ( max

~
A , max

~
B ) and R ( max

~
B , min

~
B ) = {Contains, Covers, Equal} then Contains ( max

~
A , min

~
B ) 

and vice versa. 

Rule 4: Let A
~

 and B
~

 two fuzzy regions, if Covers 

( max

~
A , max

~
B ) then R ( max

~
A , min

~
B ) ∈  

{Contains, Covers} and vice versa. 

                  min

~
B                                     max

~
B  

min

~
A             --                                           -- 

max

~
A  R( max

~
A , min

~
B )∈{C, CV}     C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers ( max

~
A , max

~
B ). According to definition 1, any fuzzy 

region A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ) or 

Covers( max

~
A , min

~
A ). Moreover, Covers is a transitive topological relation according to Proposition 1. By 

considering Proposition 2, if Contains ( max

~
B , min

~
B ) then Contains ( max

~
A , min

~
B ) else if R 

( max

~
B , min

~
B )∈{Covers, Equal} then Covers ( max

~
A , min

~
B ) and vice versa. 

Rule 5: Let A
~

 and B
~

 two fuzzy regions, if Equal 

( max

~
A , max

~
B ) then R ( max

~
A , min

~
B ) ∈  

{Contains, Covers, Equal} and vice versa. 

                      min

~
B                                          max

~
B  

min

~
A                  --                                                -- 

max

~
A  R ( max

~
A , min

~
B ) ∈{C, CV, E}       E ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Equal ( max

~
A , max

~
B ). According to definition 1, any fuzzy region 

A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ) or 

Covers( max

~
A , min

~
A ). Moreover, Equal is a transitive topological relation according to Proposition 1. By 

considering Proposition 2, if Contains ( max

~
B , min

~
B ) then Contains ( max

~
A , min

~
B ) (1) else if R 

( max

~
B , min

~
B )∈{Covers, Equal} then R( max

~
A , min

~
B )∈{Covers, Equal} (2). Then, R ( max

~
A , 

min

~
B )∈{Contains, Covers, Equal}. 

Rule 6: Let A
~

 and B
~

 two fuzzy regions, if Contains 

( max

~
A , max

~
B ) and Contains ( min

~
A , min

~
B ) then 

R ( min

~
A , max

~
B )∉{Meet, Equal} and vice versa. 

                     min

~
B                              max

~
B  

min

~
A     C( min

~
A , min

~
B )      R ( min

~
A , max

~
B )∉{D, M} 

max

~
A               --                         C ( max

~
A , max

~
B )               

    

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ) and Contains ( min

~
A , min

~
B ). According 

to definition 1, we have Equal( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ) or Covers( max

~
A , min

~
A ). We suppose now 

that Disjoint ( min

~
A , max

~
B ) or Meet ( min

~
A , max

~
B ) (1). By considering definition 1 and proposition 2, since R 

( max

~
B , min

~
B ){Contains, Covers, Equal} then Contains ( max

~
A , min

~
B ) (2). In addition, since Contains ( min

~
A , 



min

~
B ) and (1) then R ( max

~
B , min

~
B )  ≠ {Contains, Covers, Equal}. Thus, there is a contradiction with 

definition 1. 

Rule 7: Let A
~

 and B
~

 two fuzzy regions, if Contains 

( max

~
A , max

~
B ) and Inside( min

~
A , min

~
B )  then 

Inside ( min

~
A , max

~
B ) and vice versa.   

 
     

                  min

~
B                      max

~
B  

min

~
A    I ( min

~
A , min

~
B )      I ( min

~
A , max

~
B ) 

max

~
A                   --            C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ) and Inside ( min

~
A , min

~
B ). We suppose 

now that R ( min

~
A , max

~
B ) ∉{Inside} (1). By considering definition 1 and proposition 2, since R 

( max

~
B , min

~
B )∈{Contains, Covers, Equal} and Inside ( min

~
A , min

~
B ) then Inside ( min

~
A , max

~
B ) (2). Thus, there 

is contradiction among (1) and (2). 

Rule 8: Let A
~

 and B
~

 two simple fuzzy regions, if 

Contains ( max

~
A , max

~
B ) and Meet( min

~
A , min

~
B )  

then R ( min

~
A , max

~
B )∉{Contains, Equal, 

Covers, Disjoint} and vice versa. 
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~
B                            max

~
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~
A   M( min
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A , min

~
B )     R ( min

~
A , max

~
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~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ) and Meet ( min

~
A , min

~
B ) (1). We suppose 

now that R ( min

~
A , max

~
B ) ∈{Contains, Equal, Covers, Disjoint} (2). By considering definition 1 and 

proposition 2, if Contains ( min

~
A , max

~
B ) then there is a contradiction because R ( max

~
B , min

~
B )∈{Contains, 

Covers, Equal} and (1). If Equal ( min

~
A , max

~
B ) then there is a contradiction because R 

( max

~
B , min

~
B )∈{Contains, Covers, Equal} and (1). If Covers( min

~
A , max

~
B ) then R ( max

~
B , min

~
B )∉{Contains, 

Covers, Equal}or (1) is false. Finally, if Disjoint ( min

~
A , max

~
B ) then there is a contradiction because R 

( max

~
B , min

~
B )∈{Contains, Covers, Equal} and (1).  Thus, (2) cannot be true. 

Rule 9: Let A
~

 and B
~

 two fuzzy regions, if Contains 

( max

~
A , max

~
B ) and Covers( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∉{Meet, Disjoint} and vice versa.  

              min

~
B                                 max

~
B  

min

~
A   CV( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{M, D}           

max

~
A           --                          C ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ) and Covers ( min

~
A , min

~
B ). We suppose 

now that Disjoint ( min

~
A , max

~
B ) or Meet ( min

~
A , max

~
B ) (1). By considering definition 1 and proposition 2, since 

R ( max

~
B , min

~
B )∈{Contains, Covers, Equal} then Contains ( max

~
A , min

~
B ) (2). In addition, since Covers 

( min

~
A , min

~
B ) and (1) then R ( max

~
B , min

~
B ) ∉{Contains, Covers, Equal}. Thus, there is a contradiction with 

definition 1. 

Rule 10: Let A
~

 and B
~

 two fuzzy regions, if 

Contains ( max

~
A , max

~
B ) and Equal 

( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∉{Contains, Covers, 

Disjoint, Meet, Overlap}and vice versa.  

    min

~
B                           max

~
B  

min

~
A  E ( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{C, CV, D, M, O}           

 max

~
A                  --                      C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ) and Equal ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∈{Contains, Covers, Disjoint, Meet, Overlap} (2). If (2) then R 



( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 

contradiction and (2) cannot be true. 

Rule 11: Let A
~

 and B
~

 two fuzzy regions, if Contains 

( max

~
A , max

~
B ) and Covered by( min

~
A , min

~
B )  

then R ( min

~
A , max

~
B )∈{Covered by, Inside} and 

vice versa.  

                      min

~
B                             max

~
B  

 min

~
A      E ( min

~
A , min

~
B )    R ( min

~
A , max

~
B )∈{CVB, I}           

 max

~
A             --                           C ( max

~
A , max

~
B )  

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains ( max

~
A , max

~
B ) and Covered by( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Covered by, Inside} then R ( min

~
A , max

~
B )∈{Contains, Covers, Disjoint, 

Meet, Overlap, Equal} (2). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By 

considering definition 1 and (1), there is a contradiction and (2) cannot be true. 

Rule 12: Let A
~

 and B
~

 two fuzzy regions, if 

Contains ( max

~
A , max

~
B ) and Overlap( min

~
A , 

min

~
B )  then R ( min

~
A , max

~
B )∈  {Covered 

by, Inside, Overlap} and vice versa.  

                        min

~
B                                max

~
B  

min

~
A      O( min

~
A , min

~
B )      R ( min

~
A , max

~
B ) ∈{CVB, I, O}           

 max

~
A             --                            C( max

~
A , max

~
B )  

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Contains( max

~
A , max

~
B ) and Overlap ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∈{Contains, Covers, Disjoint, Meet, Equal} (2). If (2) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 

contradiction and (2) cannot be true. 

Rule 13: Let A
~

 and B
~

 two fuzzy regions, if Covers 

( max

~
A , max

~
B ) and Contains( min

~
A , min

~
B )  

then R ( min

~
A , max

~
B )∉{Disjoint, Meet} and 

vice versa.  

                   min

~
B                               max

~
B  

min

~
A    C( min

~
A , min

~
B )      R ( min

~
A , max

~
B )∉{D, M}           

max

~
A             --                        CV ( max

~
A , max

~
B )                                  

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers ( max

~
A , max

~
B ) and Contains ( min

~
A , min

~
B ) (1). We 

suppose now that Disjoint ( min

~
A , max

~
B ) or Meet ( min

~
A , max

~
B ) (2). If (2) then R ( max

~
B , min

~
B )∉{Contains, 

Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction and (2) cannot be 
true. 

Rule 14: Let A
~

 and B
~

 two fuzzy regions, if Covers 

( max

~
A , max

~
B ) and Inside( min

~
A , min

~
B ) then 

Inside( min

~
A , max

~
B ) and vice versa. 

                    min

~
B                     max

~
B  

 min

~
A      I ( min

~
A , min

~
B )        I ( min

~
A , max

~
B )           

 max

~
A                    --              CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers ( max

~
A , max

~
B ) and Inside ( min

~
A , min

~
B ). We suppose now 

that R ( min

~
A , max

~
B ) ∉  {Inside} (1). By considering definition 1 and proposition 2, since R 

( max

~
B , min

~
B )∈{Contains, Covers, Equal} and Inside ( min

~
A , min

~
B ) then Inside ( min

~
A , max

~
B ) (2). Thus, (1) 

cannot be true. 

Rule 15: Let A
~

 and B
~

 two simple fuzzy regions, 

if Covers ( max

~
A , max

~
B ) and R( min

~
A , 

min

~
B )∈{Disjoint, Meet} then R 

( min

~
A , max

~
B )∉{Contains, Covers, 

Disjoint, Equal} and vice versa. 

                    min

~
B                                 max

~
B  

min

~
A  R( min

~
A , min

~
B )∈{D, M}    R( min

~
A , max

~
B )∉{C,CV,D, E}       

max

~
A                    --                                CV ( max

~
A , max

~
B ) 

 
                



Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers ( max

~
A , max

~
B ) and {Meet, Disjoint} ( min

~
A , min

~
B ) (1). 

We suppose now that R ( min

~
A , max

~
B )∈{Contains, Covers, Disjoint, Equal} (2). If (2) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 

contradiction and (2) cannot be true. 

Rule 16: Let A
~

 and B
~

 two simple fuzzy 

regions, if Covers ( max

~
A , max

~
B ) and 

R( min

~
A , min

~
B )∈{Equal, Covered by} 

then R( min

~
A , max

~
B )∈{Covered by, 

Inside} and vice versa. 

                            min

~
B                                       max

~
B  

min

~
A  R ( min

~
A , min

~
B )∈{E, CVB}     R ( min

~
A , max

~
B )∈{CVB, I}           

max

~
A               --                                           CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers( max

~
A , max

~
B ) and R ( min

~
A , max

~
B )∈{Covered by, 

Inside} (1). We suppose now that R ( min

~
A , max

~
B )∉{Covered by, Inside} (2). If (2) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 

contradiction and (2) cannot be true. 

Rule 17: Let A
~

 and B
~

 two simple fuzzy regions, if 

Covers ( max

~
A , max

~
B ) and Overlap ( min

~
A , 

min

~
B ) then R( min

~
A , max

~
B )∈{Covered by, 

Inside, Overlap} and vice versa. 

                               min

~
B                          max

~
B  

min

~
A    O ( min

~
A , min

~
B )       R( min

~
A , max

~
B )∈{CVB, I, O}          

 max

~
A              --                              CV ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers ( max

~
A , max

~
B ) and Overlap ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Covered by, Inside, Overlap} (2). If (2) then R ( max

~
B , min

~
B )∉{Contains, 

Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction and (2) cannot be 
true. 

Rule 18: Let A
~

 and B
~

 two simple fuzzy regions, if Meet 

( max

~
A , max

~
B ) and Meet ( min

~
A , min

~
B ) then 

Meet( min

~
A , max

~
B ) and Meet( max

~
A , min

~
B ) and vice versa. 

 
 

                       min

~
B                   max

~
B  

min

~
A    M ( min

~
A , min

~
B )    M ( min

~
A , max

~
B )           

max

~
A    M ( max

~
A , min

~
B )      M ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Meet ( max

~
A , max

~
B ) and Meet ( min

~
A , min

~
B ) (1). We suppose 

now that R ( min

~
A , max

~
B ) ≠ Meet (2) and R ( max

~
A , min

~
B ) ≠ Meet (3). If (2) then R ( max

~
B , min

~
B )∉{Contains, 

Covers, Equal} or (1) is false. Thus, (2) cannot be true. In the same way, if (3) then there is a contradiction 

because R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there 

is a contradiction and (3) cannot be true. 

Rule 19: Let A
~

 and B
~

 two simple fuzzy regions, if 

Meet ( max

~
A , max

~
B ) and Disjoint ( min

~
A , min

~
B ) 

then R( min

~
A , max

~
B )∈{Meet, Disjoint} and 

R( max

~
A , min

~
B )∈{Meet, Disjoint} and vice 

versa. 

                     min

~
B                                max

~
B  

 min

~
A        D ( min

~
A , min

~
B )         R( min

~
A , max

~
B )∈{M, D}           

 max

~
A   R( max

~
A , min

~
B )∈{M, D}      M ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Meet ( max

~
A , max

~
B ) and Disjoint ( min

~
A , min

~
B ) (1). We suppose 

now that R ( min

~
A , max

~
B )∉{Meet, Disjoint} (2) and R ( max

~
A , min

~
B )∉{Meet, Disjoint} (3). If (2) then there R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 



contradiction and (2) cannot be true. In the same way, if (3) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} 

or (1) is false. By considering definition 1 and (1), there is a contradiction and (3) cannot be true. 

Rule 20 : Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) then R 

( max

~
A , min

~
B )∉{Equal, Inside, Covered by} 

and vice versa. 

                             min

~
B                                      max

~
B  

min

~
A                        --                                           --           

max

~
A    R ( max

~
A , min

~
B )∉{E, I, CVB}     O ( max

~
A , max

~
B )               

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ). According to definition 1, any fuzzy 

region A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ) or 

Covers( max

~
A , min

~
A ) (1). We suppose now that      R ( max

~
A , min

~
B )∈{Equal, Inside, Covered by} (2). By 

considering definition 1 and proposition 2, if (1) and (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal}. 

Thus, there is a contradiction with definition 1. 

Rule 21: Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) and Contains ( min

~
A , 

min

~
B ) then R ( min

~
A , max

~
B ) ∈{Overlap, Inside, 

Covered by} and Contains( max

~
A , min

~
B ) and  

vice versa. 

                   min

~
B                            max

~
B  

min

~
A   C ( min

~
A , min

~
B )    R ( min

~
A , max

~
B )∈{O, I, CVB }       

max

~
A   C( max

~
A , min

~
B )             O ( max

~
A , max

~
B )                   

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Contains ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Overlap, Inside, Covered by}  (2) and R ( max

~
A , min

~
B ) ≠ Contains (3). By 

considering definition 1 and proposition 2, if (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is 

false. Thus, (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, (3) 

cannot be true because there is also a contradiction. 

Rule 22 : Let A
~

 and B
~

 two simple fuzzy 

regions, if Overlap ( max

~
A , max

~
B ) and  

R ( min

~
A , min

~
B )∈{Overlap, Meet} then  

R( min

~
A , max

~
B )∈{Overlap, Inside, Covered by} 

and R( max

~
A , min

~
B )∈{Overlap, 

Covers, Contains} and  vice versa. 

                                        min

~
B                                        max

~
B  

  min

~
A   R ( min

~
A , min

~
B )∈{O, M}   R ( min

~
A , max

~
B )∈{O, I, CVB}      

  max

~
A   R ( max

~
A , min

~
B )∈{O, CV, C}          O ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and R ( min

~
A , min

~
B )∈{Overlap, Meet} 

(1). We suppose now that R ( min

~
A , max

~
B )∉{Overlap, Inside, Covered by} (2) R( max

~
A , min

~
B )∉{Overlap, 

Covers, Contains} (3). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering 

definition 1 and proposition 2, there is a contradiction and (2) cannot be true. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, there 

is contradiction and (3) cannot be true. 

Rule 23: Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) and Equal ( min

~
A , 

min

~
B ) then R ( min

~
A , max

~
B )∈{Overlap, Inside, 

Covered by} and R( max

~
A , min

~
B )∈{Overlap, 

Covers, Contains} and  vice versa. 

                        min

~
B                                max

~
B  

min

~
A       E( min

~
A , min

~
B )      R ( max

~
A , min

~
B )∈{ I, CVB }      

max

~
A   R( max

~
A , min

~
B )∈{CV, C}        O( max

~
A , max

~
B ) 



Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Equal ( min

~
A , min

~
B ) (1). We suppose 

now that R( min

~
A , max

~
B )∉{Inside, Covered by} (2) R( max

~
A , min

~
B )∉{Covers, Contains} (3). If (2) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, there 

is contradiction and (2) cannot be true. In the same way, if (3) then R ( max

~
B , min

~
B )∉{Contains, Covers, 

Equal} or (1) is false. By considering definition 1 and proposition 2,  (3) cannot be true because there is also a 
contradiction. 

Rule 24: Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) and Inside ( min

~
A , min

~
B ) 

then R ( min

~
A , max

~
B ) ∈{Inside} and 

( max

~
A , min

~
B )∈{Overlap, Covers, Contains} and  

vice versa. 

                       min

~
B                                      max

~
B  

min

~
A          I ( min

~
A , min

~
B )                   I ( max

~
A , min

~
B )       

max

~
A   R( max

~
A , min

~
B )∈{C, CV, O}    O ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Inside ( min

~
A , min

~
B ) (1). We suppose 

now that R ( min

~
A , max

~
B )∉{Inside}(2) R( max

~
A , min

~
B )∉{Covers, Contains, Overlap} (3). If (2) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, there 

is a contradiction and (2) cannot be true. In the same way, if (3) then R ( max

~
B , min

~
B )∉{Contains, Covers, 

Equal} or (1) is false. By considering definition 1 and proposition 2, (3) cannot be true because there is also a 
contradiction. 

Rule 25: Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) and Covers ( min

~
A , 

min

~
B ) then R ( min

~
A , max

~
B ) ∈{Inside, 

Covered by, Overlap} and 

R( max

~
A , min

~
B )∈{Covers, Contains} and  

vice versa. 

                        min

~
B                                      max

~
B  

min

~
A        CV ( min

~
A , min

~
B )   R ( min

~
A , max

~
B ) ∈{I, CVB, O}      

max

~
A   R( max

~
A , min

~
B )∈{CV, C}     O ( max

~
A , max

~
B )                           

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Inside, Covered by, Overlap} (2) R( max

~
A , min

~
B )∉{Covers, Contains} 

(3). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and 

proposition 2,  (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, (3) 

cannot be true because there is also a contradiction. 

Rule 26: Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) and Disjoint 

( min

~
A , min

~
B ) then R ( min

~
A , max

~
B )∉{Equal, 

Contains, Covers} and 

R( max

~
A , min

~
B )∉{Equal, Covered by, Inside} 

and  vice versa. 

                         min

~
B                                  max

~
B  

min

~
A           D ( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{E, C, CV}        

max

~
A   R( max

~
A , min

~
B )∉{E, CVB, I}   O ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Disjoint ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Equal, Contains, Covers} (2) R( max

~
A , min

~
B )∉{Equal, Covered by, 

Inside} (3). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 

and proposition 2, (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, (3) 



cannot be true because there is also a contradiction. 

Rule 27: Let A
~

 and B
~

 two simple fuzzy regions, 

if Overlap ( max

~
A , max

~
B ) and Covered by 

( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∈{Inside, Covered by} and 

R( max

~
A , min

~
B )∈{Covers, Contains, 

Overlap} and  vice versa.                            

                         min

~
B                                           max

~
B  

min

~
A         CV ( min

~
A , min

~
B )            R ( min

~
A , max

~
B ) ∈{CVB, O}      

max

~
A   R( max

~
A , min

~
B )∈{CV, C, O}        Overlap ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Inside, Covered by} (2) R( max

~
A , min

~
B )∉{Covers, Contains, Overlap} 

(3). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and 

proposition 2, (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and proposition 2, (3) 

cannot be true because there is also a contradiction. 

Rule 28: Let A
~

 and B
~

 two simple fuzzy regions, if 

Overlap ( max

~
A , max

~
B ) and Covers ( min

~
A , 

min

~
B ) then R ( min

~
A , max

~
B )∈{Inside} and 

R( max

~
A , min

~
B )∈{Covers, Contains, 

Overlap} and  vice versa. 
 

                       min

~
B                                      max

~
B  

min

~
A        CV ( min

~
A , min

~
B )         R ( min

~
A , max

~
B ) ∈{CVB, O}      

max

~
A   R( max

~
A , min

~
B )∈{CV, C, O}      O ( max

~
A , max

~
B ) 

                         
 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Overlap ( max

~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) (1). We 

suppose now that R ( min

~
A , max

~
B )∉{Inside, Covered by} (2) R( max

~
A , min

~
B )∉{Covers, Contains, Overlap} 

(3). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), 

(2) cannot be true because there is a contradiction. In the same way, if (3) then R ( max

~
B , min

~
B )∉{Contains, 

Covers, Equal} or (1) is false. By considering definition 1 and (1), (3) cannot be true because there is also a 
contradiction. 

Rule 29: Let A
~

 and B
~

 two simple fuzzy regions, 

if Covers ( max

~
A , max

~
B ) and Covers 

( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∈{Inside, Covered by, 

Equal, Overlap, Covers} and 

R( max

~
A , min

~
B )∈{Covers, Contains} and  

vice versa.                       

                   min

~
B                                        max

~
B  

min

~
A   CV ( min

~
A , min

~
B )    R ( min

~
A , max

~
B ) ∈{CVB, O, E, CV, I}      

max

~
A   R( max

~
A , min

~
B )∈{CV, C}        O( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Covers ( max

~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) (1). We suppose 

now that R ( min

~
A , max

~
B )∉{Covered by, Overlap, Equal, Covers, Inside} (2) R( max

~
A , min

~
B )∉{Covers, 

Contains} (3). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. ). By considering 

definition 1 and (1), (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. ). By considering definition 1 and (1),  (3) cannot be 

true because there is also a contradiction. 
 

 

 



Rule 30: Let A
~

 and B
~

 two simple fuzzy regions, 
if Ru1e 29 and R 

( min

~
A , max

~
B )∈{Covered by} Then 

R( max

~
A , min

~
B )∈{Covers} and  vice 

versa. 

                        min

~
B                                     max

~
B  

min

~
A         CV( min

~
A , min

~
B )           R ( min

~
A , max

~
B ) ∈{CVB}       

max

~
A   R( max

~
A , min

~
B )∈{CV, C}           CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Rule 29  and R ( min

~
A , max

~
B ) ∈{Covered by} (1). We suppose 

now that R( max

~
A , min

~
B )∉{Covers} (2). By considering definition 1 and proposition 2, if (2) then R 

( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. Thus, (2) cannot be true because there is a 

contradiction. 

Rule 31: Let A
~

 and B
~

 two simple fuzzy regions, if Ru1e 

30 and R ( min

~
A , max

~
B )∈{Inside}  then 

R( max

~
A , min

~
B )∈{Contains} and  vice versa. 

 

                        min

~
B                         max

~
B  

min

~
A   CV ( min

~
A , min

~
B )      R ( min

~
A , max

~
B ) ∈{I}       

max

~
A   R( max

~
A , min

~
B )∈{ C}     CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple fuzzy regions where Rule 30 and R ( min

~
A , max

~
B ) ∈{Inside} (1). We suppose now 

that R( max

~
A , min

~
B )∉{Contains} (2). If (2) then R ( max

~
B , min

~
B )∉{Contains, Covers, Equal} or (1) is false. 

By considering definition 1 and (1), (2) cannot be true because there is a contradiction. 
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Table 1. Relations' numbers 
 

The relation between ( max

~
A , max

~
B ) Correspondent matrices 

Disjoint ( max

~
A , max

~
B )  1 

Contains ( max

~
A , max

~
B ) 2�30 

Equal ( max

~
A , max

~
B ) 31�52 

Covers ( max

~
A , max

~
B ) 53�98 

Covered by ( max

~
A , max

~
B ) 99�144 

Inside ( max

~
A , max

~
B ) 145�173 

Meet ( max

~
A , max

~
B ) 174�177 

Overlap ( max

~
A , max

~
B ) 178�242 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2. Clustering results 

Cluster's name Fuzziness 
level 

Topological relations' numbers (cf. appendix) 

Weakly 13, 14, 15, 17, 41, 42, 43, 44, 67, 69, 70, 71, 72, 74, 75, 80, 
113, 115, 116, 117, 118, 120, 121, 126, 157, 159, 161, 162, 
193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 205, 208,  
213, 214, 215, 216 

Fairly 16, 73, 76, 119, 122, 158, 175, 176, 202, 203, 206, 207, 
209, 210, 211, 212 

Strongly 174, 217 

DISJOINT 

Completely 1 

Weakly 31, 34, 36, 39, 43, 44, 45, 48, 51, 52, 57, 59, 61, 63, 67, 68, 
69, 71, 73, 76, 77, 79, 80, 82, 85, 86, 88, 91, 93, 94, 95, 96, 
102, 105, 110, 113, 118, 125, 128, 130, 135, 137, 140, 145, 
146, 153, 157, 163, 167, 173, 181, 184, 186, 189, 193, 195, 
198, 210, 213, 218, 219, 221, 223, 226, 230, 232, 234, 238, 
240 

Fairly 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25, 26, 27, 28, 29, 32, 33, 37, 53, 54, 55, 56, 60, 103, 
104,  152, 178, 179, 180 

Strongly 2, 3, 4, 5, 7  

CONTAINS 

Completely 6 

Weakly 4, 25, 26, 29, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 55, 77, 78, 79, 84, 91, 101, 
123, 124, 125, 131, 138, 145, 148, 170, 171, 230, 231, 232, 
233 

Fairly 24, 30, 31, 169 

Strongly  

EQUAL 

Completely  

Weakly 7, 18, 19, 21, 25, 30, 35, 38, 40, 41, 42, 46, 47, 50, 52, 53, 
55, 56, 57, 59, 60, 61, 63, 67, 68, 69, 71, 73, 76, 77, 79, 80, 
88, 93, 94, 95, 96, 99, 107, 108, 115, 116, 123, 124, 129, 
132, 135, 137, 139, 141, 147, 156, 159, 160, 166, 167, 171, 
183, 185, 187, 192, 194, 196, 201, 211, 215, 218, 219, 221, 
223, 225, 227, 228, 231, 233, 235, 239, 241 

Fairly 20, 49, 54, 58, 62, 64, 65, 66, 70, 72, 74, 75, 78, 82, 85, 86, 
89, 90, 91, 92, 97, 98, 136, 142, 168, 220, 222  

Strongly 83, 84, 87 

COVERS 

Completely 81 

Weakly 3, 12, 14, 21, 22, 23, 26, 30, 33, 37, 39, 40, 42, 44, 45, 47, 
49, 51, 53, 61, 62, 69, 70, 77, 78, 83, 85, 88, 90, 92, 94, 99, 
101, 102, 103, 105, 106, 107, 109, 113, 114, 115, 117, 122, 
123, 125, 126, 135, 140, 141, 142, 143, 151, 163, 164, 166, 
170, 180, 186, 187, 191, 195, 196, 200, 212, 216, 219, 220, 
223, 225, 226, 227, 229, 232, 233, 234, 235, 242  

Fairly 50, 89, 95, 100, 104, 108, 110, 111, 112, 116, 118, 119, 
120, 121, 124, 128, 130, 132, 133, 136, 137, 138, 139, 144, 
165, 224, 228 

Strongly 129, 131, 134 

COVERED BY 

Completely 127 



Weakly 2, 9, 13, 18, 22, 23, 28, 29, 31, 32, 36, 38, 41, 43,  46, 48, 
51, 52, 56, 59, 64, 67, 72, 79, 82, 88, 90, 93, 98, 103, 105,  
107, 109, 113, 114, 115, 117, 122, 123, 125, 126, 128, 132, 
133, 135, 138, 140, 141, 142, 143, 178, 184, 185, 188, 193, 
194, 197, 209, 214, 218,  225, 226, 227, 229, 230, 231, 236, 
240, 241 

Fairly 8, 34, 35, 57, 58, 99, 100, 101, 102, 106, 145, 152, 153, 
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 
166, 167, 168, 169, 170, 171, 172, 173, 181, 182, 183 

Strongly 146, 147, 148, 149, 151 

INSIDE 

Completely 150 

Weakly 9, 11, 12, 15, 36, 38, 39, 40, 59, 61, 62, 63, 64, 66, 74, 80, 
105, 107, 108, 109, 110, 112, 120, 126, 153, 155, 156, 161, 
174, 184, 185, 186, 187, 188, 189, 190, 191, 192, 204, 205, 
206, 207, 213, 214, 215, 216 

Fairly 10, 65, 68, 111, 114, 154, 175, 176, 208 

Strongly  

MEET 

Completely 177 

Weakly 5, 11, 17, 19, 28, 33, 45, 46, 47, 48, 60, 63, 66, 71, 75, 86, 
87, 92, 93, 94, 98, 109, 112, 117, 121, 130, 133, 134, 139, 
140, 141, 149, 155, 160, 162, 164, 173, 178, 180, 181, 183, 
184, 185, 186, 187, 193, 194, 195, 196, 206, 207, 208, 209, 
210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 223, 
225, 226, 227, 228, 230, 231, 232, 233 

Fairly 27, 96, 97, 143, 144, 172, 179, 182, 188, 189, 191, 192, 
197, 198, 200, 201, 202, 203, 204, 205, 221, 222, 224, 229, 
234, 235, 240, 241  

Strongly 190, 199, 236, 238, 239, 242 

OVERLAP 

Completely 237 

 
 
 

 

 

 

 

 

 

 



Table 3. Result of query 3 

P1.id P2.id determine 

11 23 Weakly overlap 

45 14 --- 
18 26 Strongly Overlap 

 
    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of figure captions: 

Figure 1. Integration of different spatial representations of a same object (e.g., lake) 
Figure 2. A lake with partially fuzzy boundaries 
Figure3. Categorization of spatial vagueness 
Figure 4. Topological invariants of a simple fuzzy region in (Xinming 2004) 
Figure 5. Vague region in (Erwig and Schneider 1997) 
Figure 6. Identification of topological relations in (Cohn and Gotts 1996) 
Figure 7. Identification of topological relations in (Clementini and Di Felice 1997) 
Figure 8. Identification of topological relations in (Xinming 2004) 
Figure 9. Minimal and maximal extents for (a) a fuzzy point, (b) a fuzzy line and (c) a fuzzy region 
Figure 10. Fuzzy point 
Figure 11. Fuzzy lines 
Figure 12. Topological invariants according to the line fuzziness 
Figure 13. Examples of invalid lines 
Figure 14. Region with partial fuzzy boundary 
Figure 15. Fuzzy regions 
Figure 16. Examples of invalid fuzzy regions 
Figure 17. Description of the topological relation between two fuzzy regions: (a) visual content of the matrix, (b) 
formal identification of the relations between the minimal and maximal extents of the objects involved 
Figure 18. Examples of identification of topological relations through a 4-Intersection matrix 
Figure 19. Example of a topological relation between a fuzzy region and a crisp region 
Figure 20. Controlling the validity of a Disjoint relation 
Figure 21. Example of clustering of a topological relation 
Figure 22. Evaluation of topological relation's fuzziness 
Figure 23. Hierarchical classification of the topological relations 
Figure 24. 242 topological relations between fuzzy regions 


