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We have investigated the excitation process of hydrogen-like multicharged ions by impact of different
charged projectiles such as electrons, positrons, protons, and antiprotons. The universal scaling behaviour for
the differential and total cross sections is deduced within the framework of the non-relativistic perturbation
theory, taking into account the one-photon exchange diagrams. Special emphasis is laid on the description of
the reaction in the near-threshold energy domain, which requires the accurate account for interactions between
all particles in the colliding system.

(Some figures in this article are in colour only in the electronic version)

PACS numbers: 34.80.Dp

I. INTRODUCTION

Investigations of excitation processes of atomic targets by impact of charged particles are of fundamental importance. During
last decades, the problem has been intensively investigated within the framework of different theoretical approaches (see, for
example, the works [1–11] and references there). The deduction of the universal scaling behaviour of the differential and total
cross sections is of particular interest, because it allows one to establish the most generic features of the excitation processes for
a wide family of atomic systems. This problem can be solved within the framework of the non-relativistic perturbation theory,
taking into account the one-photon exchange diagrams.

In the present paper, we shall consider the excitation of hydrogen-like multicharged ions by impact of different charged
particles, such as electrons, positrons, protons, and antiprotons. The nuclear chargeZ is supposed to be large enough (Z À 1),
but it is assumed thatαZ ¿ 1, whereα ' 1/137.036 is the fine-structure constant (~ = 1, c = 1). The parameterαZ gives the
characteristic velocity of the bound K-shell electron. Since the atomic nucleus is much heavier than the projectiles, the former
can be treated as a fixed source of the external field. Accordingly, to zeroth approximation, the particles are described by the
Coulomb wavefunctions. The inter-particle interaction can be taken into account within the framework of the perturbation theory
with respect to the correlation parameter1/Z. The accuracy of the theoretical calculations on the level of one-photon exchange
diagrams is restricted by terms of the order of1/Z andαZ. The relativistic corrections, which are of the order∼ (αZ)2, are
neglected.

The stationary states of hydrogen-like atomic system are characterized by the principal quantum numbern, the value of
angular momentuml, and projection of the orbital angular momentum. The energy of thenl level is given by

Enl = − I

n2
= − η2

n

2m
, (1)

whereηn = η/n, I = η2/(2m) is the Coulomb potential for single ionization,η = mαZ is the average momentum of a K-shell
electron, andm is the electron mass. In the following, we shall focus on excitation of the boundns states only (l = 0).

II. ELECTRON IMPACT

Let us consider first the inelastic scattering of an electron. We shall derive formulas for differential and total cross sections
of the excitation process1s → ns within the framework of the non-relativistic perturbation theory with respect to the electron-
electron interaction. To leading order, the amplitude of the process under consideration is described by two Feynman diagrams
depicted in Fig. 1. In the initial and final continuum states, the single-electron wavefunctions are denoted byψp andψp1 ,
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respectively. The incident electron is characterized by the energyEp = p2/(2m) and the momentump at infinitely large
distances from the nucleus, while the scattered electron has the energyEp1 = p2

1/(2m) and the asymptotic momentump1. The
energy-conservation law impliesEp + E1s = Ep1 + Ens. In the momentum representation, the amplitude of the process reads

A = Aa δ
τ ′1τ1

δ
τ ′2τ2

−Ab δ
τ ′2τ1

δ
τ ′1τ2

, (2)

Aa =
∫

df

(2π)3
df1

(2π)3
df2

(2π)3
〈ψp1 |f1〉〈f1 + f |ψp〉D(f)〈ψns|f2〉〈f2 − f |ψ1s〉 , (3)

Ab =
∫

df

(2π)3
df1

(2π)3
df2

(2π)3
〈ψns|f1〉〈f1 + f |ψp〉D(f)〈ψp1 |f2〉〈f2 − f |ψ1s〉 . (4)

The quantitiesτ1,2 andτ ′1,2 denote the spin projections of the Pauli spinors in the initial and final states, respectively. The photon
propagatorD(f) = 4πα/f2 describes the instantaneous exchange by a Coulomb photon with the momentumf . The amplitude
Aa corresponds to the direct diagram, while the amplitudeAb is due to the exchange diagram. The latter results due to the
identity of electrons.

Let us focus first on the asymptotic non-relativistic energiesEp within the rangeI(1 − n−2) ¿ Ep ¿ m. In this case,
Ep1 ∼ Ep and the asymptotic momentum of the scattered electron is estimated asp1 ∼ p À η. Accordingly, one needs
to take into account only the Feynman diagram depicted in Fig. 1(a). The contribution of the exchange diagram turns out to
be significantly suppressed and, therefore, can be neglected. The wavefunctions of the incident and scattered electrons can be
approximated by the plane waves (Born approximation):

〈f1 + f |ψp〉 ' 〈f1 + f |p〉 = (2π)3δ(p− f − f1) , (5)

〈ψp1 |f1〉 ' 〈p1|f1〉 = (2π)3δ(p1 − f1) . (6)

Then the amplitude (3) is simplified and can be cast into the following analytic form [12]

Aa = 4πα η−5N1NnTn(x) , (7)

Tn(x) =
2π

ix3

{
(ix− τ−)n−1

(ix− τ+)n+1
− (ix + τ−)n−1

(ix + τ+)n+1

}
, (8)

wherex = q/η, τ± = 1 ± n−1, N2
n = η3

n/π, η1 = η = mαZ, andq = p − p1 is the momentum transfer. Although the
dimensionless function (8) is written in the complex form, it is a real function depending actually onx2.

The total cross section for the excitation process is given by [12]

σ∗ns =
σ0

Z4
Qn(ε) , (n > 2) , (9)

Qn(ε) =
κn

n3ε
, (10)

κn =
8
π2

∞∫

0

dxx T 2
n(x) (11)

=
26

(2n + 1)!
d2n+1

dx2n+1

[
ln x

x5
(x− iτ−)2n−2

]
∣∣∣ x=iτ+

− 27

n!
dn

dxn

[
ln x

x5

(x2 + τ2
−)n−1

(x + iτ+)n+1

]
∣∣∣ x=iτ+

, (12)

whereσ0 = πa2
0 ' 87.974 Mb anda0 = 1/(mα) is the Bohr radius. Here we have introduced the dimensionless energy of

the incident electronε = Ep/I, which is related with the dimensionless energy of the scattered electronε1 = Ep1/I and the
threshold energy of the processεth = 1−n−2 as followsε = ε1 + εth. In Eq. (12), the regular branch of the logarithm is chosen,
which assumes real values on the upper edge of the cut made along the positive semi-axis. After taking the derivatives with
respect tox, one should setx = iτ+. The functionQn(ε) does not depend on the nuclear chargeZ, that is, it is universal. The
numerical coefficientsκn are presented for few values of the principal quantum numbersn in Table I. The formulas (9)–(12) are
justified in the asymptotic high-energy domain characterized by1 ¿ ε ¿ 2(αZ)−2. It is easy to see that the integral in Eq. (11)
is saturated within the range0 6 x . 1. This means that in the process of excitation of the K-shell electron by fast projectiles
the characteristic momentum transferq is of the order ofη.

In the limit n →∞, Eqs. (8) and (11) take the form

T∞(x) = 4πy2x−3e−2y
{

2x cos(2xy) + (x2 − 1) sin(2xy)
}

, y = (1 + x2)−1 , (13)

κ∞ = 2e−4
{

16
[
Ei(4)− γE − ln 4

]
− 179− e4

}
' 1.798 . (14)
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Here Ei(z) is the exponential integral function,γE ' 0.5772 is the Euler’s constant, ande ' 2.71828.
In the near-threshold energy domain characterized byI(1 − n−2) . Ep, the theoretical description of the problem becomes

more complicated, because it requires an accurate account for both the electron-electron and electron-nucleus interactions. In
this case,Ep1 ∼ Ep ∼ I and the asymptotic momenta of the incident and scattered electrons are estimated asp1 ∼ p ∼ η. The
direct and exchange amplitudes give rise to comparable contributions to the cross section.

In the following, we shall evaluate the amplitudes (3) and (4) without further simplifications. The Coulomb wavefunctions for
bound states are given by the integral representations

〈f2 − f |ψ1s〉 = N1

(
− ∂

∂η

)
〈f2|Viη|f〉 , (15)

〈f |ψns〉 =
Nn

2η

∮

(η+
n )

dy

2πi

(y + ηn)n

(y − ηn)n

(
− ∂

∂λ

)
〈f |Viλ|0〉∣∣∣ λ=y

, (16)

〈f |Viλ|f ′〉 =
4π

(f − f ′)2 + λ2
. (17)

In Eq. (16), after taking the derivative with respect toλ, one should setλ = y and then perform the contour integration enclosing
the pole aty = ηn in the positive direction. In coordinate space, an integral representation similar to formula (16) was suggested
in work [2].

Taking into account Eqs. (15) and (16), the integration over the intermediate momentumf2 in the amplitude (3) yields
∫

df2

(2π)3
〈ψns|f2〉〈f2 − f |ψ1s〉 = N1Nn(2η)−1

∮

(η+
n )

dy

2πi

(y + ηn)n

(y − ηn)n

(
− ∂

∂λ

)
〈f |Viλ|0〉∣∣∣ λ=η+y

, (18)

after the closure relation for the complete system of plane waves
∫

df

(2π)3
|f〉〈f | = 1 (19)

has been used.
The Coulomb functions of the continuous spectrum can be represented as follows [13]

〈f |ψp〉 = NpÎξ(t)
(
− ∂

∂ε

)
〈f |Vpt+iε|p(1− t)〉∣∣ε→0

, (20)

Îξ(t) =
1

2πi

∮

γ

dt

t

( −t

1− t

)iξ

, N2
p =

2πξ

1− e−2πξ
, (21)

whereξ = η/p. The integration contourγ in the integral operator̂Iξ(t) is a closed curve enclosing the points0 and1 once
anti-clockwise. After taking the derivative in Eq. (20), the parameterε should be tend to zero.

The integrations overf andf1 in the amplitude (3) can be evaluated by using Eq. (19) and the identity

f−2〈f |Viλ|0〉 = λ−2〈f |(V0 − Viλ)|0〉 . (22)

The contour integrations arising from the functionsψns andψp1 are performed according to the theorem about residues. Then
one obtains

Aa = (4π)2αN1NnNpNp1Dλ
∂

∂λ

Φ(λ)
λ2

∣∣∣ λ=η+ηn
, (23)

Φ(λ) = Îξ(t)
[(p1 − p(1− t))2 − (pt + iλ)2]iξ1−1

[p2(1− t)2 − (p1 + pt + iλ)2]iξ1
, (24)

Dλ =
n−1∑

k=0

(n− 1)!(2ηn)k

(n− k − 1)!k!(k + 1)!
∂k

∂λk
, N2

p1
=

2πξ1

1− e−2πξ1
, (25)

whereξ1 = η/p1, N2
1 = η3/π, andN2

n = η3
n/π. After taking the derivatives with respect toλ, one should setλ = η + ηn. The

contour integration in Eq. (24) is reduced to the hypergeometric function [14, 15]

Φ(λ) =
[λ2 + (p− p1)2]iξ+iξ1−1

[(λ− ip)2 + p2
1]iξ[(λ− ip1)2 + p2]iξ1

2F1(iξ, iξ1, 1, x) , (26)

x =
2[(p · p1)− pp1]
λ2 + (p− p1)2

. (27)
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Since the exchange amplitude (4) is evaluated in the similar manner, we shall present here its explicit expression only. In the
following, it is convenient to introduce the dimensionless amplitudesMi, (i = a, b), which are related with amplitudes (3) and
(4) via

Ai = (4π)2αN1NnNpNp1η
−5Mi . (28)

In Mi, all momenta are expressed in units ofη = mαZ, while the energies are measured in units ofI = η2/(2m). The
dimensionless momenta of the incident and scattered electrons are given byk = p/η and k1 = p1/η, respectively. The
corresponding dimensionless energiesε = k2 = ξ−2 and ε1 = k2

1 = ξ−2
1 are related with each other due to the energy-

conservation law asε1 = ε− εth, whereεth = 1− n−2.
The explicit expressions for the dimensionless amplitudes read

Ma = Dλ
∂

∂λ

Φ(λ)
λ2

∣∣∣ λ=1+n−1
, (29)

Φ(λ) =
[λ2 + (k − k1)2]iξ+iξ1−1

[(λ− ik)2 + k2
1]iξ[(λ− ik1)2 + k2]iξ1

2F1(iξ, iξ1, 1, x) , (30)

x =
2[(k · k1)− kk1]
λ2 + (k − k1)2

, (31)

Dλ =
n−1∑

l=0

(n− 1)!
(n− l − 1)!l!(l + 1)!

( 2
n

)l ∂l

∂λl
, (32)

k =
√

ε = ξ−1 , k1 =
√

ε1 =
√

ε− εth = ξ−1
1 , (33)

Mb = iDλ
∂2

∂λ∂ν
Îξ(t)

1∫

0

dy

AΛ

(A

B

)iξ1∣∣λ=n−1

ν=1

, (34)

A = [k(1− t)y2 − k1]2 − (yΛ + iν)2 , (35)

B = k2(1− t)2y4 − (k1 + yΛ + iν)2 , (36)

Λ =
√

(kt + iλ)2 − k2(1− t)2(1− y2) . (37)

The differential cross section for the1s → ns excitation is related to the amplitude (2) via

dσ∗ns =
2π

v
|A|2 dp1

(2π)3
δ(Ep − Ep1 + E1s − Ens) , (38)

A = (4π)2αN1NnNpNp1η
−5(Ma δ

τ ′1τ1
δ
τ ′2τ2

−Mb δ
τ ′2τ1

δ
τ ′1τ2

) . (39)

Herev = p/m is the absolute value of velocity of the incident electron. The line over|A|2 implies averaging over the polari-
zations of the initial electrons and summation over the polarizations of the final electrons. This can be done by the following
relation

|A|2 =
1
4

∑

τ1,τ ′1

∑

τ2,τ ′2

|A|2 , (40)

where summations are performed over the electron polarizations in both the initial and final states. The phase-space volume
element for electrons scattered into the solid angledΩ1 can be written as

dp1 = mp1 dE1 dΩ1 = 2πmp1 dE1 sin θdθ , (41)

whereθ is the angle between the vectorsp andp1.
Performing integration over the energy yields the angular distribution of the scattered electrons

dσ∗ns

dΩ1
=

σ0

Z4
Fn(ε, θ) , (42)

Fn(ε, θ) =
28π

n3ε

|M|2
(1− e−2πξ)(1− e−2πξ1)

, (43)

|M|2 =
1
4
|M+|2 +

3
4
|M−|2 , (44)
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whereσ0 = πa2
0, a0 = 1/(mα), andM± = Ma ±Mb.

The total cross section reads

σ∗ns =
σ0

Z4
Qn(ε) , (45)

Qn(ε) = 2π

∫ π

0

Fn(ε, θ) sin θdθ . (46)

The functions (43) and (46) do not depend on the nuclear chargeZ. In contrast with the Born approximation, Eqs. (42)–(46) are
valid for arbitrary non-relativistic energies characterized byεth 6 ε ¿ 2(αZ)−2.

In Fig. 2, the universal function (43) is calculated for the principal quantum numbern = 2 within the near-threshold energy
domain. Forεth 6 ε . 2εth, the electron backward scattering is more preferable than the forward scattering. With increasing
energyε, the electrons are scattered predominantly in the forward direction (θ . π/4). For small valuesn & 2, the dependence
of n3Fn(ε, θ) onn is rather weak. With increasingn, the curvesn3Fn(ε, θ) tend to the unique limiting surface.

In Fig. 3, the universal functions (46) are calculated for several values ofn. Although the Born approximation is formally
legitimate only in the high-energy range1 ¿ ε ¿ 2(αZ)−2, it turns out to be in a fair agreement with exact results also within
the near-threshold domain. The limiting values of the functions (46) at the threshold pointsε = εth are given in Table I.

In the case of helium-like multicharged ions, the inelastic electron scattering followed by the excitation of a K-shell electron
into the2s state is considered in work [16]. For targets characterized by the small parameters1/Z andαZ, our calculations
performed within the framework of the non-relativistic perturbation theory are in good agreement with those obtained by the
relativistic distorted-wave method [17]. For example, according to K.L. Wonget al [17], the cross sections for near-threshold
excitation of the forbidden linez (1s2s 3S1 → 1s21S0) in helium-like ions Ti, V, Cr, Mn, and Fe are known to be 118 b, 101 b,
85 b, 73 b, and 64 b, respectively. These values should be compared with our predictions, which are equal to 117 b, 98 b, 82 b,
70 b, and 60 b, respectively.

III. POSITRON IMPACT

As in the case of the electron impact, the incident positron can be characterized by the energyEp = p2/(2m) and the
asymptotic momentump, while the scattered positron is characterized by the energyEp1 = p2

1/(2m) and the asymptotic
momentump1. The energy-conservation law keeps the same form, namely,Ep + E1s = Ep1 + Ens. Since the interacting
particles are not identical, the exchange effect is absent. Accordingly, the ionization process is represented merely by the
diagram depicted in Fig. 1(a). The transition to the dimensionless quantities can be performed in the same manner as in the case
of the electron impact. The formulas (29)–(33) hold true with the only exception that in Eq. (30) one has to make the following
substitutions:ξ → −ξ andξ1 → −ξ1. The differential cross section, which describes the universal angular distributions for
scattered positrons, is given by Eqs. (42) and (43), whereM = Ma.

In Fig. 4, the universal function (43) is calculated forn = 2 within the near-threshold energy domainεth 6 ε 6 7.5. The
characteristic behaviour ofn3Fn(ε, θ) with respect to the variablesε andθ remains similar also for other values of the principal
quantum numbern. The positron scattering occurs preferably in the forward cone (θ . π/4), while backward scattering is
suppressed. The dominant contribution to the total cross section arises from the small anglesθ close to zero.

In Fig. 5, the universal functions (46) are calculated for a few values ofn. As can be seen, the functionsn3Qn(ε) are quickly
degenerated into the unique curve with increasingn. For the energiesε ∼ εth, the cross sections are strongly suppressed. Since
the high-energy Born asymptotes do not depend on the signature of charge of the projectiles, Eqs. (9)–(12) are applicable for the
positron scattering in the energy range1 ¿ ε ¿ 2(αZ)−2.

IV. ANTIPROTON IMPACT

In comparison with the electron, the antiproton has the same electric charge, but much larger massM À m. We shall use the
notationsEp = p2/(2M) andp = Mv for the energy and asymptotic momentum of the projectile, respectively. The scattered
antiproton is characterized by the energyEp1 = p2

1/(2M) and the asymptotic momentump1. Then the energy-conservation
law reads as usual:Ep + E1s = Ep1 + Ens. However, now it is convenient to express the energies of the incident and
scattered particles by the characteristic binding energyĨ = M(αZ)2/2, namely,ε = Ep/Ĩ andε1 = Ep1/Ĩ. In this case, the
dimensionless energyε = v2/(αZ)2 does not depend on the mass of the incident particle. The energy-conservation law for the
dimensionless quantities is given byε = ε1 + εth, whereεth = µ(1 − n−2) is the threshold energy andµ = m/M is the mass
ratio.

In the near-threshold energy domainε & εth, the antiproton momenta can be estimated as followsp ∼ p1 ∼ η/
√

µ À η. Due
to significant difference in masses (µ ' 1/1836.15), the momentum of the antiproton is much larger than the average momentum
of the K-shell electron. However, the velocity of the antiproton is much smaller than the characteristic velocity of the bound
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electron:v ∼ αZ
√

µ ¿ αZ. This situation corresponds to the quasi-classical regime [18]. However, we describe it within the
framework of the consistent quantum approach.

Since the interacting particles are not identical, the exchange effect is absent andM = Ma. The formulas (29)–(32) apply
analogously for the case of the antiproton impact. However, the dimensionless variables should be understood now as follows

ξ =
1
kµ

=
1√
ε

, ξ1 =
1

k1µ
=

1√
ε1

=
1√

ε− εth
, εth = µ(1− n−2) . (47)

The angular distribution of the scattered antiprotons is given by Eq. (42), but the functionFn(ε, θ) now reads

Fn(ε, θ) =
28π

n3ε

µ−2|M|2
(1− e−2πξ)(1− e−2πξ1)

. (48)

The total cross sectionσ∗ns is again reduced to Eqs. (45) and (46).
For very slow collisions (ε ∼ εth), the functions (48) exhibit the well-pronounced maximum in the backward scattering

(θ ' π) (see Fig. 6). For energiesε & 10εth, the antiprotons are scattered predominantly at small angles (0 < θ . π/4). With
increasing the incident energies, the domain of the scattering angles, at which the excitation cross section is exhausted, narrows.
The scattering at the angleθ = 0 becomes significant forε & 150εth, while it dominates forε & 160εth.

In Fig. 7, the universal functionsn3Qn(ε) are calculated for a few values ofn. The asymptotic high-energy range, where one
can justify application of the Born approximation, is characterized by1 ¿ ε ¿ 2(αZ)−2. It is easy to check that the formulas
(9)–(12) are also valid for the case of fast projectiles with the arbitrary mass, in particular, for antiproton impact. The exact
functions (46) approach the high-energy limits (10), whenε & 10. Near the threshold, the total cross section has the maximum,
which originates from the backward scattering. The limiting values of the functions (46) at the threshold pointsε = εth are
calculated in Table I.

V. PROTON IMPACT

The proton has the same electric charge as positron and the same massM as antiproton (M À m). In order to keep the
usual expression for the energy-conservation law, we shall use the standard notations for the energies and asymptotic momenta
of incident and scattered particles. As in the case of the antiproton impact, the energies are scaled by the characteristic binding
energyĨ = M(αZ)2/2, namely,ε = Ep/Ĩ andε1 = Ep1/Ĩ. The excitation process1s → ns can occur due to impact of
particle with the energyε > εth = µ(1 − n−2), where the mass ratioµ = m/M . The formulas (29)–(32) can be used for
the case of the proton impact, but in Eq. (30) one needs to make the following substitutions:ξ → −ξ andξ1 → −ξ1. The
dimensionless variablesξ andξ1 are defined by Eq. (47). The angular distribution for scattered protons is given by Eqs. (42) and
(48), together withM = Ma.

For the low-energy collisions (ε ∼ εth), the functions (48) are strongly suppressed. For energiesε À εth, the angular
distributions for the proton impact have similar behaviour as those for the antiproton impact (compare Figs. 8 and 6). In Fig. 9,
the universal functionsn3Qn(ε) are calculated exactly (according to Eqs. (46) and (48)) and within the Born approximation
(according to Eqs. (10)–(12)). The latter is applicable for the asymptotically high energies characterized by1 ¿ ε ¿ 2(αZ)−2.

VI. CONCLUSIONS

We have investigated the excitation process1s → ns of hydrogen-like multicharged ions by impact of different charged
particles, such as electrons, positrons, protons, and antiprotons. The atomic targets are assumed to be characterized by small
parameters1/Z andαZ. The universal scaling behaviour for the differential and total cross sections is deduced within the
framework of the perturbation theory, taking into account the one-photon exchange diagrams. The results obtained are valid for
the non-relativistic energies, including the near-threshold energy domain.
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FIG. 1: Feynman diagrams for excitation of the K-shell electron by electron impact. Solid lines denote electrons in the external Coulomb field
of the nucleus, while dashed line denotes the electron-electron Coulomb interaction.

FIG. 2: The universal function (43) is calculated forn = 2. The variableε is the energy of incident electron, which is scattered at the angleθ
with respect to direction of the initial momentump. (Colour online.)

FIG. 3: The universal functionsn3Qn(ε) for the case of the electron impact. The solid lines are the exact calculations, dashed lines are the
Born approximations. (Colour online.)
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FIG. 4: The universal function (43) is calculated forn = 2. The variableε is the energy of incident positron, which is scattered at the angleθ.
(Colour online.)

FIG. 5: The universal functionsn3Qn(ε) for the case of the positron impact. The solid lines are the exact calculations, dashed lines are the
Born approximations. (Colour online.)
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FIG. 6: The universal function (48) is calculated forn = 2 in the case of the antiproton impact. (Colour online.)

FIG. 7: The universal functionsn3Qn(ε) for the case of the antiproton impact. The solid lines are the exact calculations, dashed lines are the
Born approximations. (Colour online.)
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FIG. 8: The universal function (48) is calculated forn = 2 in the case of the proton impact. (Colour online.)

FIG. 9: The universal functionsn3Qn(ε) for the case of the proton impact. The solid lines are the exact calculations, dashed lines are the Born
approximations. (Colour online.)
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TABLE I: For various principal quantum numbersn, the numerical coefficients (12), the threshold energiesεth for electron (positron) and
(anti)proton impact, and the threshold values of the functions (46) for the electron and antiproton impact are tabulated.

n κn εth = µ(1− n−2) n3Qn(εth)
µ = 1 µ = 1/1836.15 electron antiproton

2 3.5515 3/4 0.40846 · 10−3 3.855 0.01256
3 2.3798 8/9 0.48410 · 10−3 2.326 0.00430
4 2.097115/16 0.51058 · 10−3 1.992 0.00308
5 1.981924/25 0.52283 · 10−3 1.860 0.00267
6 1.923035/36 0.52949 · 10−3 1.794 0.00245
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