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We have investigated the excitation process of hydrogen-like multicharged ions by impact of different
charged projectiles such as electrons, positrons, protons, and antiprotons. The universal scaling behaviour for
the differential and total cross sections is deduced within the framework of the non-relativistic perturbation
theory, taking into account the one-photon exchange diagrams. Special emphasis is laid on the description of
the reaction in the near-threshold energy domain, which requires the accurate account for interactions between
all particles in the colliding system.

(Some figures in this article are in colour only in the electronic version)

PACS numbers: 34.80.Dp

. INTRODUCTION

Investigations of excitation processes of atomic targets by impact of charged particles are of fundamental importance. Duri
last decades, the problem has been intensively investigated within the framework of different theoretical approaches (see,
example, the works [1-11] and references there). The deduction of the universal scaling behaviour of the differential and to
cross sections is of particular interest, because it allows one to establish the most generic features of the excitation processe
a wide family of atomic systems. This problem can be solved within the framework of the non-relativistic perturbation theory
taking into account the one-photon exchange diagrams.

In the present paper, we shall consider the excitation of hydrogen-like multicharged ions by impact of different charge
particles, such as electrons, positrons, protons, and antiprotons. The nuclear£ismsypposed to be large enoudh & 1),
but it is assumed thatZ < 1, wherea ~ 1/137.036 is the fine-structure constarit € 1, ¢ = 1). The parameterZ gives the
characteristic velocity of the bound K-shell electron. Since the atomic nucleus is much heavier than the projectiles, the forr
can be treated as a fixed source of the external field. Accordingly, to zeroth approximation, the particles are described by
Coulomb wavefunctions. The inter-particle interaction can be taken into account within the framework of the perturbation theo
with respect to the correlation parametgfZ. The accuracy of the theoretical calculations on the level of one-photon exchange
diagrams is restricted by terms of the orden¢¥ andaZ. The relativistic corrections, which are of the order(a2)?, are
neglected.

The stationary states of hydrogen-like atomic system are characterized by the principal quantummutinéeralue of
angular momenturhy and projection of the orbital angular momentum. The energy of.thevel is given by

I n?
Ey=—-——=—-" 1
1= 5 1)
wheren,, = n/n, I = n?/(2m) is the Coulomb potential for single ionizatiop= maZ is the average momentum of a K-shell
electron, andn is the electron mass. In the following, we shall focus on excitation of the bawisthtes only (= 0).

II. ELECTRON IMPACT

Let us consider first the inelastic scattering of an electron. We shall derive formulas for differential and total cross sectiol
of the excitation procesks — ns within the framewaork of the non-relativistic perturbation theory with respect to the electron-
electron interaction. To leading order, the amplitude of the process under consideration is described by two Feynman diagre
depicted in Fig. 1. In the initial and final continuum states, the single-electron wavefunctions are dengig@nxyi),,,
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respectively. The incident electron is characterized by the enBpgy= p*/(2m) and the momentunp at infinitely large
distances from the nucleus, while the scattered electron has the dfgrgyp?/(2m) and the asymptotic momentupi. The
energy-conservation law impligs, + £y, = E,, + E,,. In the momentum representation, the amplitude of the process reads

"4 = ‘A 57’ T. 67'27' ‘Ab 67' T 67'17'2 ) (2)
[ df dfi dfs

Aa - /(27'[')3 (271_) ( ) <"/Jp1|f1><f1 +f|1/’p> ( )<¢ns|f2><.f2—f|¢1s>7 (3)
df df, dfs

Ay = [ Gt G bl P U+ PP i £ 62 = Flin). @

The quantities; , andry , denote the spin projections of the Pauli spinors in the initial and final states, respectively. The photor
propagatoD( f) = 4w/ f? describes the instantaneous exchange by a Coulomb photon with the momyertamamplitude
A, corresponds to the direct diagram, while the amplitutleis due to the exchange diagram. The latter results due to the
identity of electrons.

Let us focus first on the asymptotic non-relativistic enerdigswithin the rangel(1 — n=?) < E, < m. In this case,
E, ~ E, and the asymptotic momentum of the scattered electron is estimafed &sp > 7. Accordingly, one needs
to take into account only the Feynman diagram depicted in Rig).. IThe contribution of the exchange diagram turns out to
be significantly suppressed and, therefore, can be neglected. The wavefunctions of the incident and scattered electrons ce
approximated by the plane waves (Born approximation):

(fu+ Flp) =~ (fr+ flp) = @m)*(p — f — f1), ()
Wp, [ f1) = (p1]f1) = (27)°6(p1 — f1). (6)
Then the amplitude (3) is simplified and can be cast into the following analytic form [12]
A, = 4nan S NiN,T,(z), %)
_2m f (iw — )t (i)t
ne) = S e () ©

wherex = q/n, 7+ = 1+ n"1, N2 = n3/m, m = n = maZ, andq = p — p; is the momentum transfer. Although the
dimensionless function (8) is written in the complex form, it is a real function depending actuatf; on
The total cross section for the excitation process is given by [12]

T = %@n@, (n>2), (©)
Qule) = 2 (10)
»x, = /d:c:er2 (12)

0

6 2n+1 7T n 2 2\n—1
A an(az—n_)?“ A |G 7 (12)
(27’l + )' d$2"+1 .135 ‘x=i7’+ n! dz™ '1:5 (l‘ + z7-+)n+1 ‘x:117'+
whereoy = ma3 ~ 87.974 Mb andag = 1/(m«) is the Bohr radius. Here we have introduced the dimensionless energy of
the incident electrom = E,/I, which is related with the dimensionless energy of the scattered elegtrenE,, /I and the
threshold energy of the process = 1 —n~2 as followss = &1 +&w. In Eq. (12), the regular branch of the logarithm is chosen,
which assumes real values on the upper edge of the cut made along the positive semi-axis. After taking the derivatives w
respect tor, one should set = i7,.. The function@,,(¢) does not depend on the nuclear chafgehat is, it is universal. The
numerical coefficients,, are presented for few values of the principal quantum numbar§able I. The formulas (9)-(12) are
justified in the asymptotic high-energy domain characterizetl &y e < 2(aZ)~2. Itis easy to see that the integral in Eq. (11)
is saturated within the range< = < 1. This means that in the process of excitation of the K-shell electron by fast projectiles
the characteristic momentum transies of the order ofy.

In the limitn — oo, Egs. (8) and (11) take the form

Too(z) = 47ry2x_3e_2y{233 cos(2zxy) + (:102 -1) sin(2xy)} , y=(1+ 1‘2)_1 , (13)

Yoy = 26*4{16[5(4) e 1n4] 179 — e4} ~ 1.798. (14)



Here E{z) is the exponential integral functiong ~ 0.5772 is the Euler's constant, and~ 2.71828.

In the near-threshold energy domain characterized(by- n=2) < E,, the theoretical description of the problem becomes
more complicated, because it requires an accurate account for both the electron-electron and electron-nucleus interaction:
this casef,, ~ E, ~ I and the asymptotic momenta of the incident and scattered electrons are estimatedas- n. The
direct and exchange amplitudes give rise to comparable contributions to the cross section.

In the following, we shall evaluate the amplitudes (3) and (4) without further simplifications. The Coulomb wavefunctions fol
bound states are given by the integral representations

(= Flne) = Ni(= 50 ) FalVanlf). (15)
_ Np dy (y+77n)n 0 .
(Flns) = P %m<—a)<ﬂvm\0>|hy7 (16)
(1)
N 4

In Eq. (16), after taking the derivative with respecttmne should sex = y and then perform the contour integration enclosing
the pole aty = n,, in the positive direction. In coordinate space, an integral representation similar to formula (16) was suggeste
in work [2].

Taking into account Egs. (15) and (16), the integration over the intermediate momgntarthe amplitude (3) yields

d d )" 0
[ Gl 2= flon) = NNy I S v as)
(nd)
after the closure relation for the complete system of plane waves
df B
| alslnui=1 (19)

has been used.
The Coulomb functions of the continuous spectrum can be represented as follows [13]

- 0
(Flon) = NpZe(t) (= 52 ) (FVorsielp( = ), (20)
. 1 [dt; —t \i& 2mé
L) = 5n  Tig) - M=o (1)

where¢ = n/p. The integration contouy in the integral operatoi’g(t) is a closed curve enclosing the poiitand 1 once
anti-clockwise. After taking the derivative in Eq. (20), the parametould be tend to zero.
The integrations ovef and f; in the amplitude (3) can be evaluated by using Eq. (19) and the identity
F2FIViAl0) = A72(£1(Vo = Vin)0) . (22)
The contour integrations arising from the functiafg andv,, are performed according to the theorem about residues. Then
one obtains

9 (N

A = () aNNwNy N Dy 53 537 i )
_ ol —p(L—1))? — (pt+ A2
PN = Ot bt e
n—1
_ (n—D!2m)* o o _ _ 216
o= ;;J (n—k— 1)k!(k+ 1) 0Nk’ N = T oomer (29)

where¢; = n/p1, N3 = n/m,andN?2 = n3 /. After taking the derivatives with respect ¥p one should sex = 7 + 7,,. The
contour integration in Eq. (24) is reduced to the hypergeometric function [14, 15]

A2 4 (p— 2i+ic1—1 o
_ 2[(p - p1) — pp1]
P CEN PR @)
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Since the exchange amplitude (4) is evaluated in the similar manner, we shall present here its explicit expression only. In-
following, it is convenient to introduce the dimensionless amplituti€s (< = a, b), which are related with amplitudes (3) and
(4) via

A; = (47)2aN NN, Ny, ™ ° M, . (28)

In M;, all momenta are expressed in unitsiof= maZ, while the energies are measured in unitd of 7?/(2m). The
dimensionless momenta of the incident and scattered electrons are given-by/n andk, = p;/n, respectively. The
corresponding dimensionless energies- k2 = ¢-2 ande; = kI = &2 are related with each other due to the energy-
conservation law as, = ¢ — ey, Wheresy, = 1 — n 2.

The explicit expressions for the dimensionless amplitudes read

9 d(N)

Ma = D)‘aj 22 ‘)\:1+n*1’ (29)
)\2+ k—k 211€+1€1—1 o
BO) = o T e P 6 L), (30)
(k- k1) — kk
v = W =
— (n—1)! 2\! 0
DA:;(n—l—l'l'H—l) (E)W’ (32)
k=ve=¢"1, k=a=vVe—en=¢&", (33)
1
B y 251
My = ZDA@)«?) /T —= Aznt (34)
0
A = [k(1-t)y* —ki)? — (yA +iv)?, (35)
B = E*(1—t)*y* — (k1 +yA +iv)?, (36)
A = /(kt +iN2 —k2(1 —1)2(1 —y2). (37)

The differential cross section for tHe — ns excitation is related to the amplitude (2) via

. 2r— dp1
do*, = 22| A @)y §(Ey — Ep, + B1s — Ens), (38)
A = (4m)*aNiNyNyNp,n *(Mad_, 6, —Mys_, 6, ). (39)

Herev = p/m is the absolute value of velocity of the incident electron. The line @4¢t implies averaging over the polari-
zations of the initial electrons and summation over the polarizations of the final electrons. This can be done by the followir
relation

AP =15 S, (40)

where summations are performed over the electron polarizations in both the initial and final states. The phase-space volt
element for electrons scattered into the solid an§le can be written as

dp1 = mp1 dE1 dQl = 27Tmp1 dE1 sin 0d¢9, (41)

wheref is the angle between the vectgrandp; .
Performing integration over the energy yields the angular distribution of the scattered electrons

do’, 09
0, ~ 7 Fo(e,0), (42)
28 2
Fo(e,0) = =1 M| (43)

3g (1 — e 278)(1 — e=2761)
1 3
M = S IM P+ S IMP, (44)



whereoy = 1a3, agp = 1/(ma), andMy = M, + M,.
The total cross section reads
go

Ops = ﬁ@n(‘g)? (45)

Qnl(e) = QWAFFn(ﬁ,Q) sin 6d# . (46)

The functions (43) and (46) do not depend on the nuclear chardgre contrast with the Born approximation, Eqgs. (42)—(46) are
valid for arbitrary non-relativistic energies characterizedhy< ¢ < 2(aZ)~2,

In Fig. 2, the universal function (43) is calculated for the principal quantum number within the near-threshold energy
domain. Forey, < € < 24, the electron backward scattering is more preferable than the forward scattering. With increasing
energye, the electrons are scattered predominantly in the forward direcigns/4). For small values. > 2, the dependence
of n3F, (g, 0) onn is rather weak. With increasing the curves:®F,, (¢, §) tend to the unique limiting surface.

In Fig. 3, the universal functions (46) are calculated for several values @fithough the Born approximation is formally
legitimate only in the high-energy range< ¢ < 2(a.Z)~2, it turns out to be in a fair agreement with exact results also within
the near-threshold domain. The limiting values of the functions (46) at the threshold peinig are given in Table I.

In the case of helium-like multicharged ions, the inelastic electron scattering followed by the excitation of a K-shell electro
into the2s state is considered in work [16]. For targets characterized by the small paramé&feasid «Z, our calculations
performed within the framework of the non-relativistic perturbation theory are in good agreement with those obtained by tt
relativistic distorted-wave method [17]. For example, according to K.L. Wetrgg [17], the cross sections for near-threshold
excitation of the forbidden line (1s2s3S; — 1s5215p) in helium-like ions Ti, V, Cr, Mn, and Fe are known to be 118 b, 101 b,

85 b, 73 b, and 64 b, respectively. These values should be compared with our predictions, which are equal to 117 b, 98 b, 8
70 b, and 60 b, respectively.

Ill. POSITRON IMPACT

As in the case of the electron impact, the incident positron can be characterized by the Bpergyp?/(2m) and the
asymptotic momenturp, while the scattered positron is characterized by the enélgy= p?/(2m) and the asymptotic
momentump,. The energy-conservation law keeps the same form, namgly- £, = E,, + E,s. Since the interacting
particles are not identical, the exchange effect is absent. Accordingly, the ionization process is represented merely by
diagram depicted in Fig.(2). The transition to the dimensionless quantities can be performed in the same manner as in the ca
of the electron impact. The formulas (29)—(33) hold true with the only exception that in Eq. (30) one has to make the followin
substitutions: ¢ — —¢ and¢; — —&;. The differential cross section, which describes the universal angular distributions for
scattered positrons, is given by Eqgs. (42) and (43), wiidre- M,,.

In Fig. 4, the universal function (43) is calculated for= 2 within the near-threshold energy domaip < ¢ < 7.5. The
characteristic behaviour off F, (¢, §) with respect to the variablesandd remains similar also for other values of the principal
quantum number. The positron scattering occurs preferably in the forward céng (7/4), while backward scattering is
suppressed. The dominant contribution to the total cross section arises from the smalp @iggeso zero.

In Fig. 5, the universal functions (46) are calculated for a few values 8f can be seen, the function3Q,, (<) are quickly
degenerated into the unique curve with increasingor the energies ~ ey, the cross sections are strongly suppressed. Since
the high-energy Born asymptotes do not depend on the signature of charge of the projectiles, Egs. (9)—(12) are applicable for
positron scattering in the energy ranges ¢ < 2(aZ)~2.

IV. ANTIPROTON IMPACT

In comparison with the electron, the antiproton has the same electric charge, but much largkf mrass We shall use the
notationsE,, = p?/(2M) andp = M for the energy and asymptotic momentum of the projectile, respectively. The scattered
antiproton is characterized by the eney, = p?/(2M) and the asymptotic momentum. Then the energy-conservation
law reads as usualE, + Ei; = E,, + E,,. However, now it is convenient to express the energies of the incident and
scattered particles by the characteristic binding enérgy M (aZ)?/2, namely,c = E,/I ande; = E,, /I. In this case, the
dimensionless energy= v?/(aZ)? does not depend on the mass of the incident particle. The energy-conservation law for the
dimensionless quantities is given by= ¢; + e, Wheresy, = p(1 — n~2) is the threshold energy and= m/M is the mass
ratio.

In the near-threshold energy domaig, <y, the antiproton momenta can be estimated as followsp, ~ n/,/i > 7. Due
to significant difference in masses ¢ 1/1836.15), the momentum of the antiproton is much larger than the average momentum
of the K-shell electron. However, the velocity of the antiproton is much smaller than the characteristic velocity of the boun
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electron:v ~ aZ,/i < aZ. This situation corresponds to the quasi-classical regime [18]. However, we describe it within the
framework of the consistent quantum approach.

Since the interacting particles are not identical, the exchange effect is absem and\1,,. The formulas (29)—(32) apply
analogously for the case of the antiproton impact. However, the dimensionless variables should be understood now as follow

1 1 1 1 1

=—=—, G=7—=—==—7——, en=p(l-n"?. 47
Ve Y The vE Ve ot @n
The angular distribution of the scattered antiprotons is given by Eq. (42), but the futtiery) now reads
8 -2 2
Foe,0) = 27 M| . (48)

nde (1 —e=278)(1 — e=27¢1)

The total cross sectios’, is again reduced to Egs. (45) and (46).

For very slow collisionsd ~ &), the functions (48) exhibit the well-pronounced maximum in the backward scattering
(0 ~ 7) (see Fig. 6). For energies> 10ey, the antiprotons are scattered predominantly at small anglesq < «/4). With
increasing the incident energies, the domain of the scattering angles, at which the excitation cross section is exhausted, narr
The scattering at the angle= 0 becomes significant far = 150ey,, while it dominates foe > 160ep.

In Fig. 7, the universal functions*Q,, () are calculated for a few values of The asymptotic high-energy range, where one
can justify application of the Born approximation, is characterized ky ¢ < 2(aZ)~2. Itis easy to check that the formulas
(9)—(12) are also valid for the case of fast projectiles with the arbitrary mass, in particular, for antiproton impact. The exa
functions (46) approach the high-energy limits (10), when 10. Near the threshold, the total cross section has the maximum,
which originates from the backward scattering. The limiting values of the functions (46) at the threshold:psintg are
calculated in Table I.

V. PROTON IMPACT

The proton has the same electric charge as positron and the samé/hasantiproton §/ > m). In order to keep the
usual expression for the energy-conservation law, we shall use the standard notations for the energies and asymptotic momr
of incident and scattered particles. As in the case of the antiproton impact, the energies are scaled by the characteristic bin
energyl = M(aZ)?/2, namely,e = E,/I ande; = E,, /I. The excitation procesks — ns can occur due to impact of
particle with the energy > en = u(1 — n=2), where the mass ratip = m/M. The formulas (29)—(32) can be used for
the case of the proton impact, but in Eq. (30) one needs to make the following substitgtiens-¢ and¢; — —&;. The
dimensionless variablgsand¢; are defined by Eq. (47). The angular distribution for scattered protons is given by Egs. (42) and
(48), together with\t = M,,.

For the low-energy collisionss(~ ey,), the functions (48) are strongly suppressed. For enetgigs ¢y, the angular
distributions for the proton impact have similar behaviour as those for the antiproton impact (compare Figs. 8 and 6). In Fig.
the universal functions®Q,,(¢) are calculated exactly (according to Egs. (46) and (48)) and within the Born approximation
(according to Egs. (10)—(12)). The latter is applicable for the asymptotically high energies charactetizeds 2(aZ) 2.

VI. CONCLUSIONS

We have investigated the excitation procéss— ns of hydrogen-like multicharged ions by impact of different charged
particles, such as electrons, positrons, protons, and antiprotons. The atomic targets are assumed to be characterized by
parameterd /Z and«Z. The universal scaling behaviour for the differential and total cross sections is deduced within the
framework of the perturbation theory, taking into account the one-photon exchange diagrams. The results obtained are valid
the non-relativistic energies, including the near-threshold energy domain.
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FIG. 1: Feynman diagrams for excitation of the K-shell electron by electron impact. Solid lines denote electrons in the external Coulomb fie
of the nucleus, while dashed line denotes the electron-electron Coulomb interaction.
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FIG. 2: The universal function (43) is calculated for= 2. The variables is the energy of incident electron, which is scattered at the a&hgle
with respect to direction of the initial momentym (Colour online.)
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FIG. 3: The universal functions®Q, (¢) for the case of the electron impact. The solid lines are the exact calculations, dashed lines are the
Born approximations. (Colour online.)
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FIG. 4: The universal function (43) is calculated for= 2. The variable is the energy of incident positron, which is scattered at the ahgle
(Colour online.)
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FIG. 5: The universal functions®Q,, () for the case of the positron impact. The solid lines are the exact calculations, dashed lines are the
Born approximations. (Colour online.)
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FIG. 9: The universal functions®Q,, (¢) for the case of the proton impact. The solid lines are the exact calculations, dashed lines are the Bort
approximations. (Colour online.)
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TABLE I: For various principal quantum numbers the numerical coefficients (12), the threshold energig$or electron (positron) and
(anti)proton impact, and the threshold values of the functions (46) for the electron and antiproton impact are tabulated.

n oy, et = pu(l — nig) nan(am)
uw=1 pu=1/1836.15 electron antiproton
2 35515 3/4 0.40846-10"° 3.855 0.01256
3 2.3798 8/9 0.48410-107° 2.326 0.00430
4 2,097115/16 0.51058-10~® 1.992  0.00308
5 1.981924/25 0.52283-107° 1.860 0.00267
6 1.923035/36 0.52949-107% 1.794 0.00245
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