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Abstract. The magnetic diagnostics subsystem of the LISA Technology
Package (LTP) on board the LISA PathFinder (LPF) spacecraft includes a set
of four tri-axial fluxgate magnetometers, intended to measure with high precision
the magnetic field at their respective positions. However, their readouts do not
provide a direct measurement of the magnetic field at the positions of the test
masses, and hence an interpolation method must be designed and implemented
to obtain the values of the magnetic field at these positions. However, such
interpolation process faces serious difficulties. Indeed, the size of the interpolation
region is excessive for a linear interpolation to be reliable while, on the other
hand, the number of magnetometer channels does not provide sufficient data to go
beyond the linear approximation. We describe an alternative method to address
this issue, by means of neural network algorithms. The key point in this approach
is the ability of neural networks to learn from suitable training data representing
the behaviour of the magnetic field. Despite the relatively large distance between
the test masses and the magnetometers, and the insufficient number of data
channels, we find that our artificial neural network algorithm is able to reduce
the estimation errors of the field and gradient down to levels below 10%, a quite
satisfactory result. Learning efficiency can be best improved by making use of
data obtained in on-ground measurements prior to mission launch in all relevant
satellite locations and in real operation conditions. Reliable information on that
appears to be essential for a meaningful assessment of magnetic noise in the LTP.

PACS numbers: 02.60.Ed, 02.90.+p, 07.05.Mh, 07.05.Fb, 07.87.+v, 04.30.-w,
04.80.Nn, 06.30.Ka
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1. Introduction

LISA Pathfinder (LPF) is a science and technology demonstrator programmed by the
European Space Agency (ESA) within its LISA mission activities [1]. LISA (Laser
Interferometer Space Antenna) is a joint ESA-NASA mission which will be the first
low frequency (milli-Hz) gravitational wave detector, and also the first space-borne
gravitational wave observatory. LPF’s payload is the LISA Technology Package (LTP),
and will be the highest sensitivity geodesic explorer flown to date. The LTP is designed
to measure relative accelerations between two test masses (TM) in nominal free fall
(geodesic motion) with a noise budget of
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in the frequency band between 1 mHz and 30 mHz [2].
Noise in the LTP arises as a consequence of various disturbances, mainly generated

within the spacecraft itself, which limit the performance of the instrument. A number
of these disturbances are monitored and dealt with by means of suitable devices,
which form the so-called Diagnostics Subsystem [3]. In LPF, this includes thermal and
magnetic diagnostics, plus the radiation monitor, which provides counting and spectral
information on ionising particles hitting the spacecraft. The magnetic diagnostics
system will be the subject of our attention here.

One of the most important functions of the LTP magnetic diagnostics is the
determination of the magnetic field and its gradient at the positions of the TMs. For
this, it includes a set of four tri-axial fluxgate magnetometers, intended to measure
with high precision the magnetic field at the positions they occupy in the spacecraft
—see figure 1. Their readouts do not however provide a direct measurement of the
magnetic field at the positions where the TMs are, and an interpolation method must
therefore be implemented to calculate it. In the circumstances we face, this is a difficult
problem, mostly because the magnetometers layout is such that they are too distant
from the locations of the TMs compared with the typical scales of the distribution of
magnetic sources in the satellite. Its solution is however imperative since magnetic
noise can be as high as 40 % of the total budget [2] given by Eq. (1), and hence it
must be properly quantified.

In order to design a suitable interpolation scheme, information on the actual
distribution of magnetic sources is necessary. Data from the spacecraft manufacturer
(EADS Astrium Stevenage, UK) have kindly been handed to us [4] for this purpose.
According to these data, magnetic sources can be characterised as magnetic dipoles,
whose positions are known and whose magnetic moments are only known in modulus
—not in orientation. Most of these dipoles are associated to electronic boxes, with
a few genuinely magnetic elements. An exception to this rule is the solar panels,
which cover the entire spacecraft and can hardly be considered as a dipole as seen
by the magnetometers. They are however designed so that their cells are arranged to
minimise magnetic effects by having their rim wires wound contiguous and in opposite
senses.

Astrium data are based on system design, so validation with the real spacecraft
must be done by means of experiment, which is of course included in the
planned activities before launch. Actually, though, the structure of the magnetic
source distribution and their properties will not be directly visible either to the
magnetometers or to the interpolation algorithms, which will just work with magnetic



Theory and modelling of the magnetic field measurement in LISA PathFinder 3

Figure 1. Artist view of the LPF science-craft. The LCA is in the centre,
surrounded by a double cylindrical shield. Outside it, a number of electronic
boxes are represented, most of which are sources of magnetic field. The four
magnetometers are the white little boxes indicated by the arrows (magnetometer
#3 is however not visible), and are mounted on the outer cylindrical shell.

field values no matter how they are generated. Nevertheless, we think that the
information available so far, though not final, qualifies very well as a guide to the
elaboration of a magnetic model which will be needed to define and verify the
performance of the analysis algorithms which will eventually be applied to the data
delivered by the satellite in flight.

In this paper we will make use of the dipole model of the sources to assess the
performance of two different types of interpolation methods: multipole interpolation
and neural network algorithms. The first is the more immediate one to try, but as
we will show below it is not as efficient as one might expect a priori. To overcome
this problem we propose a novel method, based on neural networks. Based on the
results obtained with the same dipole source model, our solution looks promising
since the errors of the interpolated fields and gradients are significantly smaller than
those obtained with the multipole approach. The paper is structured as follows. In
Sect. 2 we provide a general description of the problem. It follows Sect. 3, where we
discuss the multipole interpolation, whereas in Sect. 4 we explain our neural network
approach. The results of applying this algorithm are presented in Sect. 5, while in
Sect. 6 we summarise our major findings and we draw our conclusions.

2. General description of the problem

Magnetic noise in the LTP is allowed to be a significant fraction of the total mission
acceleration noise: 1.2 × 10−14 m s−2 Hz−1/2 can be apportioned to magnetism, i.e.,
40 % of the total noise, 3×10−14 m s−2 Hz−1/2, see Eq. (1). This noise occurs because
the residual magnetisation and susceptibility of the TMs couple to the surrounding
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magnetic field, giving rise to a force

F =
〈[(

M +
χ

µ0
B
)
·∇
]

B
〉
V (2)

in each of the TMs. In this expression B is the magnetic field in the TM, χ and
M are its magnetic susceptibility and density of magnetic moment (magnetisation),
respectively, and V is the volume of the TM; µ0 is the vacuum magnetic constant,
4π × 10−7 m kg s−2 A−2), and 〈· · ·〉 indicates TM volume average of the enclosed
quantity. Moreover, the magnetic field and its gradient randomly fluctuate in the
regions occupied by the test masses, thus resulting in a randomly fluctuating force:
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·δ∇

]
B +

χ

µ0
[δB·∇] B

〉
V (3)

where δB represents the fluctuation of the magnetic field, and δ∇ stands for the
fluctuation of the gradient [5].

Quantitative assessment of magnetic noise in the LTP clearly requires real-time
monitoring of the magnetic field, which in LPF is done by means of a set of four tri-
axial fluxgate magnetometers [6]. These devices have a high-permeability magnetic
core, which drives a design constraint to keep them somewhat far from the TMs. The
price to be paid for this is that the measured field is not directly useful (we need
to know it at the positions of the TMs). Hence, a procedure to estimate it at these
positions, based on the data delivered by the magnetometers, must be set up.

As previously mentioned, the sources of magnetic field are essentially electronics
boxes plus a few genuinely magnetic components inside the spacecraft. The
interplanetary magnetic field is orders of magnitude weaker, hence of little relevance
to the effects considered here, and solar panel effects will not be considered —see
section 1. There are no sources of magnetic field inside the LTP Core Assembly
(LCA), all being placed outside its walls. The number of Astrium identified sources
is around 40, and can be modelled as point magnetic dipoles [4]. Figure 2 gives an
overview of the geometry, see caption for details.

3. Multipole interpolation theory

Perhaps the most immediate (and obvious) procedure to interpolate the magnetic
field is to resort to its multipole structure. This is known to be the best option
in some mathematical sense [7]. Consequently, we first describe the details of its
implementation, and then we assess its practical merit.

We will treat the LCA region as a vacuum. This is a reasonable hypothesis, as
the materials inside it are essentially non-magnetic. Accordingly, the magnetic field
has zero divergence and rotational ‡:

∇·B(x, t) = 0 ∇×B(x, t) = 0 (4)

Since ∇×B(x, t) = 0, we thus have

B(x, t) =∇Ψ(x, t) (5)

‡ Given the distances in the spacecraft, in the order of 1 m, propagation effects will be neglected.
Time dependence will therefore be purely parametric, i.e., the time variable will just label the value
the field takes on at that time.
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Figure 2. Conceptual diagram: magnetic sources (green dots, size proportional
to the modulus of the magnetic moment of the source), Test Masses (red dots),
and the four magnetometers (black triangles). Also represented (in dark blue) is
the wall of the LCA.

where Ψ(x, t) is a scalar function. Additionally, since ∇·B(x, t) = 0, too, it
immediately follows that Ψ(x, t) is a harmonic function, or

∇2Ψ(x, t) = 0 (6)

The solution to this equation can be expressed as an orthogonal series of the form

Ψ(x, t) =
∞∑
l=0

l∑
m=−l

Mlm(t) rl Ylm(n) (7)

where

r ≡ |x| , n ≡ x/r (8)

are the spherical coordinates of the field point x, whose origin is by (arbitrary)
convention assumed in the geometric centre of the LCA. Equation (7) could also
contain terms proportional to r−l−1, but these have been dropped because the field
cannot diverge at the centre of the LCA. Actually, the expansion of Eq. (7) is only
valid in a region interior to the closest field source. Finally, the coefficients Mlm(t),
which will be called multipole coefficients in the sequel, depend on the sources of
magnetic field.

To obtain the field components we take the derivative of Eq. (7) following Eq. (5):

B(x, t) =∇Ψ(x, t) =
∞∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (9)

According to standard mathematics, the coefficients Mlm(t) can be fully
determined if the magnetic field is known at the boundary of the volume where the
field equations are considered, in this case the LCA. This data is of course not available
to us, since we only know B in four points of the boundary, where the magnetometers
are. Therefore the question we need to address is: how many terms of the series can we
possibly determine on the basis of the limited information available? Or, equivalently,
how many multipole coefficients can we estimate, given the magnetometers readout



Theory and modelling of the magnetic field measurement in LISA PathFinder 6

data? Then, also, to which accuracy can we estimate the actual magnetic field after
the maximum number of multipole coefficients have been calculated?

The answer to the first question above is actually not difficult: let us assume that
the series in Eq. (9) is truncated after a maximum multipole index value l=L. The
estimated field, Be, is then given by:

Be(x, t) =
L∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)] (10)

The number of terms in this sum is

N(L) =
L∑
l=1

(2l + 1) = L(L+ 2) (11)

which obviously equals the number of multipole coefficients needed to evaluate the
sum. For example, we have N(2) = 8 and N(3) = 15. On the other hand, the number
of magnetometer data channels is 12 —three channels per magnetometer, as the
devices are tri-axial. This means we cannot push the series beyond the quadrupole
(l= 2) terms. This means that since we only have 12 data channels we have some
redundancy to determine the first eight Mlm(t) coefficients up to l= 2, though we also
lack information to evaluate the next seven octupole terms §.

In order to make a best estimate of the Mlm(t), a least-square method is set up
as follows. Firstly, we define a quadratic error:

ε2(Mlm) =
4∑
s=1

|Br(xs, t)−Be(xs, t)|2 (12)

where Br is the real magnetic field and the sum extends over the number of
magnetometers, situated at positions xs (s= 1,. . . ,4). We then find those values of
Mlm which minimise the error:

∂ε2

∂Mlm
= 0 (13)

Once this system of equations is solved, the estimated coefficients Mlm(t) are
replaced back into Eq. (10) and then the spatial arguments x substituted by the
positions of each test mass to finally obtain the interpolated field values. This process
needs to be repeated for each instant t of time at which measurements are taken,
thereby generating the magnetic field time series. The gradient is estimated by taking
the derivatives of Eq. (10):

∂Bi
∂xj

∣∣∣∣
e

(x, t) =
L∑
l=0

l∑
m=−l

Mlm(t)
∂2

∂xi∂xj

[
rl Ylm(n)

]
(14)

It is to be noted that Eq. (10) is a polynomial of degree L−1 in the space
coordinates (x, y, z), hence its degree equals 1 when L= 2. Since this is the most
we can get of the magnetometer readout channels, the multipole expansion is actually
equivalent to a linear interpolation of the field between its values at the boundary
of the LCA and its interior. We may therefore not expect this method to produce

§ A clarification is in order here. The multipole coefficients Mlm(t) are actually complex numbers,
which may mislead one into inferring that actually fewer can be calculated. This is however not
so because of the symmetry Mlm(t) = (−1)mM∗

l,−m(t), which ensures that B(x, t) is actually a real

number.
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excellent results, simply because the magnetic field inside the LCA is weaker than at
its boundaries, the reason being that the magnetic field sources are outside the LCA.
This valley structure of the magnetic field needs at least octupole (quadratic) terms to
be approximated, but this would require at least one more vector magnetometer, which
is not available. By the same argument, the field gradient can only be approximated
by a constant value throughout the LCA —see Eq. (14).

3.1. Numerical simulations

In order to have a quantitative idea of the actual performance of the above
interpolation scheme, we make use of the source dipole model. It has the following
ingredients and assumptions:

(i) The sources of magnetic are point dipoles outside the LCA.
(ii) The sources are those identified by Astrium Stevenage, as already mentioned,

whose positions in the S/C are known. The set itself, as well as the source
magnetic parameters need to be updated, but the data used (which date back to
November 2006) qualifies to verify the performance of the interpolation methods.

(iii) The magnetic field created by the dipole distribution at a generic point x and
time t is therefore given by

B(x, t) =
µ0

4π

n∑
a=1

3 [ma(t)·na] na −ma(t)
|x− xa|3

(15)

where na = (x− xa)/|x− xa| are unit vectors connecting the the a-th dipole ma

with the field point x, and n is the number of dipoles.
(iv) Fluctuations of the dipoles, both in modulus and direction, are unknown, but this

is not essential to assess the numerical performance of the algorithm.

We aim to compare interpolated magnetic field results with exact ones within
the context and scope of the above model. To artificially simulate several possible
scenarios, we will take advantage of the uncertainties in the source dipole orientations
to randomly generate different magnetic field patterns, which we intend to reconstruct
based on the multipole expansion. More specifically, the procedure is the following
one:

(i) Each dipole has a known fixed position in the spacecraft, and a fixed modulus,
also known. The number of magnetic dipoles is also fixed to 37, which is the
number in Astrium’s list.

(ii) The orientations of the dipoles are instead unknown. An example scenario is
characterised by a specific selection of the 37 dipole orientations.

(iii) In order to explore the behaviour of the algorithm, a batch of examples are
examined, each corresponding to a randomly generated set of dipole orientations.

(iv) In each case, Eq. (13) is solved for Mlm, and the field estimate at each TM is
then calculated with Eq. (10). In the last step, the result is compared with the
theoretical one given in Eq. (15), and the differences annotated.

(v) Finally, a statistical analysis of the differences (errors) is done.
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The random character of the procedure may seem unrealistic, since the actual
satellite configuration is not random. In this context, however, randomness is an
efficient way of mimicking lack of knowledge. As we will see in the next section,
numerical analysis based on this methodology sheds much light on the merits of the
interpolation procedure —as it will also be the case when we come to neural networks
performance in section 5.

3.1.1. Simulation results In this section we summarise the most relevant results of
the analysis of the multipole interpolation method. We use a batch of 1 000 example
scenarios such as described above. Magnetic moment orientations were chosen
by randomly picking values of the two defining spherical angles (θ, ϕ) from two
independent uniform distributions.

Figure 3 graphically represents a magnetic field map in the LCA region
corresponding to an arbitrarily chosen example out of the 1 000 considered. The
valley structure is very clear in the |B| plot, while the Bx component shows a saddle
shape —see figure caption. By and Bz show qualitatively similar forms, and thus
we do not show them. The elliptical forms in the estimate of |B| are due to the

Figure 3. Magnetic field contour plots in the LCA region for a given source
dipole configuration. x is the direction between the two TMs, and y is in the
“horizontal” plane, which in the plot is at the TMs centres of mass altitude. Left
panels: moduli of the magnetic field. The top panel displays the exact one, and
the bottom one shows its multipole estimate. Right panels: same as in the left
panels, but for one of the field components (Bx). The modulus of the magnetic
field shows a complex structure in the central area, while Bx has a saddle structure
there —see along the diagonals of the frame graph. White dots mark the centres
of the TMs, and small green triangles the positions of the magnetometers.
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Figure 4. Binned errors of the estimated modulus of the magnetic field and of
its x component. They are reported in percentage. Colours correspond to each of
the LTP TMs, respectively. Inset values of σ indicate the rms half-width of the
distributions. Solid lines are Gaussian fits to the histograms.

Table 1. Averaged absolute value of the estimation errors in the components of
the magnetic field and of its modulus. They are reported in relative percent.

TM1 TM2

ε(Bx) 493.7 640.4
ε(By) 330.5 543.1
ε(Bz) 359.5 368.2
ε(|B|) 88.6 75.7

quadratic combination of the field components. The estimate of Bx shows instead
a linear structure, with constant gradient in all directions. Naked eye inspection
immediately reveals a poor resemblance between estimated and exact quantities, but
let us elaborate some numerical data.

Figure 4 displays the binned distribution of estimation errors, defined by

ε(|B|) =
|Be| − |Br|
|Br|

, ε(Bx) =
Bx,e −Bx,r
|Br|

(16)

where we have used a denominator |Br| in ε(Bx) to avoid meaningless infinities when
Bx is close to zero. By and Bz show similar trends and are not displayed. As can be
seen, errors average to zero, but have rms deviations well above 100 %. Even worse,
outliers are significant, as can be seen in Table 1, where averaged absolute values over
the 1 000 simulated cases are displayed. Except, obviously, for the modulus error,
we are around 500 %, but detailed examination of individual data further shows that
errors as high as 2 000 % eventually happen.

The most salient features of the numerical analysis can be briefly summarised.
Firstly, we find that magnetic field estimation errors are very variable, ranging from
very few percent to over 1 000 % and, secondly, these huge uncertainties happen in
an utterly random and fully unpredictable way. The a posteriori conclusion is quite
simple: the intrinsic linear character of the interpolation scheme is not capable of
reproducing the field structure inside the LCA —hence at the positions of the TMs—
and, therefore, can produce very good or very bad results just by accident. In addition
to not being predictable, the average error is any case too large. The ultimate reason
for such poor performance is the the small number of magnetometers as well as their
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Figure 5. Feed-forward neural network architecture. Magnetometers readings
are the system inputs, and estimates of the field and gradient at the positions
of the test masses are the outputs of the system. In this architecture, only one
intermediate, or hidden layer is assumed. Each of the circles represents one neuron
and corresponds to the model of Eqs. (17) and (18).

positioning: in this approach, four magnetometers only allow for a field multipole
expansion up to quadrupole terms, which means that the field values at the TMs
are just linearly interpolated between magnetometer readouts at the boundary of the
LCA. On the other hand, the magnetometers are closer to the magnetic field sources
than they are to the TMs, which prevents resolution of the spatial field structure
details inside the LCA with only linear terms in the space coordinates.

It is to be noted, however, that even if the chosen examples are random, the actual
treatment of the data has not really been statistical. For example, no correlations
between different source realisation results, or feedback from previous configurations
have been considered as a way to improve magnetic field and gradient estimates.
Extension of the above analysis along this line is an interesting route to explore to
smooth out large uncertainties in individual cases, but it is still under investigation.

4. A novel approach: neural networks

An alternative to the above methodology has been investigated, and a number of
promising results are already available. It is based on neural network algorithms [8]
and, as we shall see, it provides a way to take positive advantage of the repetition of
(numerical) experiments in similar physical conditions. This learning process, which
was absent in the interpolation scheme as described in Section 3, actually enables
magnetic field and gradient estimates which improve the previous results by about
two orders of magnitude.

Artificial neural networks are made up of interconnecting artificial neurons
(programming constructs that mimic the properties of biological neurons) that have
the capacity to learn from processing data. Neural networks are often used in solving
nonlinear classification and regression tasks by learning from data, hence are worth
trying with the present problem [9].

There are four sets of tasks which need to be implemented when solving a problem
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with artificial neural networks:

(i) Neuron model selection
(ii) Model and architecture selection

(iii) Learning paradigm and learning algorithm selection
(iv) Performance assessment

We next go through them, one by one.

4.1. Neuron model

The neuron is the basic unit of any neural network. It performs the following two
operations:

• It collects the inputs from all other neurons connected to it and computes a
weighted sum of the signals the latter inject into it, generally adding a bias as
well. If we represent the inputs by a vector x≡ (x1, . . . , xn), and the weights by
a w≡ (x1, . . . , wn) then this operation consists in calculating the sum

Σ = w0 +
n∑
k=1

wkxk ≡ w0 + wTx (17)

where the superindex T stands for transpose matrix; in this case, wT is a row
vector while x is a column vector, so that wTx is the scalar product of w and
x. A term w0 is added to form the most general linear function of the vector
argument x; it is called the bias.

• The above sum is used as the argument to the so-called activation function, ϕ(Σ).
The neuron’s output, also known as its activation, is thus

o = ϕ(Σ) (18)

In general, ϕ(Σ) can be selected in many different ways. Here, differentiable
activation functions will be used, which suit well the gradient descent back-
propagation learning algorithm —see sections below.

4.2. Neural network architecture

Artificial neural networks are software or hardware models inspired by the structure
and behaviour of biological systems, and they are created by a set of neurons
distributed in layers. There are many different types of neural networks in use today,
but the architecture of a so-called feed-forward network, where each layer of neurons
is linked with the next by means of a set of weights, is the most commonly used, and
will also be used here. The specific architecture adopted in this study is shown in
figure 5. The data streams coming from the magnetometers will be considered the
system inputs, while magnetic field results and their gradients at the positions of the
test masses will be the system outputs.

4.3. Learning paradigms and learning/training algorithms

The investigation of learning algorithms is currently an active field of research. The
design and implementation of an adequate training scheme is the essential ingredient
for obtaining a good-quality estimate of the magnetic field and its gradient at the LTP
TMs.
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4.3.1. Learning paradigms There are two major learning paradigms, each
corresponding to a particular abstract learning task. These are supervised learning
and unsupervised learning.

(i) Supervised learning. The idea of this paradigm is quite clearly suggested by its
very name. A set of examples is filed, each set consisting in a number of vector of
inputs (the magnetometers’ readouts in this case) and the corresponding values of
the magnetic field and its gradient at the TMs for a given distribution of dipoles
in the spacecraft. Let x represent a generic input vector, and y the associated
vector output. These two vectors constitute an example. The set of filed examples
for supervised learning is thus a set of pairs (x,y), where x∈X and y∈Y , X and
Y being some suitable sample spaces. The network is then fed the inputs x of
one example and let it work out an output, o, say. This output is then compared
with the correct one, y, and an error is calculated if o 6= y. Iterations are then
triggered to adjust the weighting factors such that the error is minimised. These
will however vary as different examples are run, so a cost function is defined which
enables the network to optimise the set of weights which works best for the set
of examples analysed, based on some suitable criterion.

(ii) Unsupervised learning. In unsupervised learning a cost function is to be
minimised as well, but this function can be any relationship between x and the
network output, o, but never taking into account the real expected target. The
cost function is determined by the task formulation. Unsupervised learning is
thus a form of self-adaptive system, whose guide is not an a priori knowledge of
the final result but knowledge gained from experience.

In either case, the learning process is based on the architecture of the network, i.e.,
number of neurons and layers and their interconnections, as well as on the activation
functions. These are parameters which, at least in the simplest cases, are tuned
ab initio by the user based on observed performance of the network. In this study,
supervised learning has been the implemented learning paradigm.

4.3.2. Learning algorithms There are many algorithms for training neural networks.
When training feed-forward neural networks with supervised learning, a back-
propagation algorithm is usually implemented. The error of the mapping at the output
is propagated backwards in order to readjust the weights and improve the output error
for the next iteration. The propagation can be implemented with different methods,
the Ideal Gradient Descent being a classic which will also be used here, with slight
modifications that make the algorithm convergence faster.

Iterations on the weights of the different neurons at the different layers proceed
according to the following algorithm:

wn+1 = wn − η
∂E

∂w

∣∣∣∣
n

(19)

where n labels the current iteration step, and η is the learning rate, adjustable by
the user. E is the sum over the set of training examples of the square errors of the
outputs:

E =
∑
s

(o− y)T (o− y) (20)

where s stands for the number of examples, o is the (vector) output from the network,
while y is the target, or correct output in the corresponding example. The quantity
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Figure 6. Error distributions for each field component at the position of test
mass 1 (black line) and test mass 2 (red line). The top left panel displays the
results for Bx, the top right panel shows the error distribution for By , while the
bottom left panel depicts the distribution obtained for Bz and the bottom right
panel that for |B|.

E can only be defined in supervised learning, of course, and the idea of the above
procedure is to find that point in weight space where E is an absolute minimum.
E can therefore be considered the cost function to be minimised in this particular
supervised training scheme, also known as batch mode as the analysis is done across
the entire set of training patterns in a single block.

There are a number of technical issues in pursuing the iterations in Eq. (19),
such as the choice of the initial set of weights, the identification of local minima of E,
the boundary effects,. . . which need to be addressed in each specific case. We skip a
detailed discussion of these matters here and we focus on the results obtained using
our method. For further details, the reader is referred to Refs. [8] and [10].

4.4. Performance assessment

In this last step, the trained network must be tested with examples which differ from
those used in the learning process. This is needed to assess whether or not the trained
neural network is able to generate the expected results when fed with previously unseen
inputs, hence determine its usability for the specific purpose it is intended.

5. Results

Training and testing have been done based on different field realisations, using
the same model of sources and magnetic field described in section 3.1, i.e., each
example will consist in the magnetic field at the magnetometers’ positions, plus the
magnetic field and gradient at the TM positions, all of them corresponding to a given
configuration of the 37 Astrium dipoles.

Two different batches of examples, each including 1 000 realisations of a possible
magnetic environment, have been generated following the directives explained in
section 3.1. The first batch has been used as the training set for a neural network
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Figure 7. Correlation coefficient between the information entering the network
(each magnetometer input) and the outputs provided by the trained network for
the field estimates.

with 12 inputs (3 inputs for each of the 4 vector magnetometers) and 16 outputs
representing the field information at the position of the two test masses (3 field plus 5
gradient components per test mass ‖). The second batch has been used for validation
to assess the performance of the network in front of unseen magnetometers readings.

5.1. Field estimation

Figure 6 shows the distribution of relative errors (in percentage) of the estimated
components of the magnetic field at the positions of each TM. The plot is based on
the results of the 1 000 validation runs described in the previous section. As can
be observed, the order of magnitude of the errors of the estimated fields are now
within much more acceptable margins (below ∼ 15%). This represents a reduction of
estimation errors of about two orders of magnitude in comparison with the multipole
expansion method.

During the training process, the neural network eventually learns that the
magnetic field at the TMs is generally smaller than the magnetometers read —with
occasional exceptions due to the rich and complex structure of the field inside the LCA,
see e.g. figure 3. The neural network is able to derive an inference procedure which
is actually quite efficient, and it does so by proper adjustment of its weight matrix
coefficients w as explained in section 4.3.1. In order to better understand the reaction
of the trained neural network to the magnetometers’ data, we found instructive and
expedient to look into relationships between the data read by the magnetometers and
the magnetic field estimates generated at the output of the neural network. We chose
to calculate correlation coefficients between input and output data, and the results
are displayed in Figure 7. The following major features are identified:

• Each component of the field is basically estimated from the magnetometers
reading of the same component. For example, the interpolation of the Bx

‖ Note that only 5 of the 9 gradient components ∂Bi/∂xj are independent. This is because the
conditions of Eq. (4) imply that ∂Bi/∂xj is a traceless and symmetric matrix.
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Figure 8. Probability density function of the errors distribution for the three
components of ∇Bx. From top to bottom: ∂Bx/∂x, ∂Bx/∂y and ∂Bx/∂z at
the positions of the test masses. Errors are given in percentages, the black lines
corresponding to TM1, and the red ones to TM2.

component in test mass 1 is mostly dependent on the Bx readings of the
magnetometers.

• The measurements of the magnetometers closer to the interpolation points have
larger weights. For instance, when the field is estimated at the position of TM1,
to which M4 is the closest magnetometer, the value it measures is the largest
contributor to the interpolated field in TM1. At the same time, M1 and M3 being
nearly equidistant from both test masses, their weights are almost identical.

5.2. Gradient interpolation

The magnetic field gradient can also be estimated. The 9 components ∂Bi/∂Bj
of the gradient are not independent, since they must verify Eqs. (4), which reduce
their number to 5. The remaining 4 components can be easily calculated thereafter.
Another option is to estimate the 9 gradient components regardless of the previously
mentioned constraint, in which case they are actually found not to satisfy them.
Discrepancies are however within the estimation error range, so we do not adopt this
option here as it is slightly more cumbersome due to the correspondingly increased
complexity of the network.

Results on gradient estimation are shown in Figure 8 for ∇Bx at the positions of
both TMs. As can be observed, they are also within much more acceptable margins
than the earlier interpolation approach could possibly produce. It is to be noted that
no apparent or easily deductible physical relationship is found between the estimated
gradient at the test mass positions and the magnetometer inputs, in contrast with
what we have found for the field estimation.

5.3. Statistical analysis

In Table 2 we present a statistical comparison of the properties of the distribution of
interpolated magnetic fields. For the sake of conciseness we only list the statistical
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Table 2. Statistical properties of the distribution of errors of the interpolated
magnetic field.

σ γ1 γ2

Multipole interpolation
Bx(TM1) 130.7583 -0.2782 19.3869
Bx(TM2) 128.3601 -0.1009 21.4974
|B|(TM1) 105.5386 -3.6770 29.7343
|B|(TM2) 102.1037 -4.4770 38.0686

Neural network interpolation
Bx(TM1) 1.5204 -0.0028 2.7746
Bx(TM2) 1.6260 -0.0008 2.8626
|B|(TM1) 1.4464 -0.1014 2.9440
|B|(TM2) 1.3682 -0.0969 2.9905

properties of the interpolated modulus and x-component of the magnetic field. In
particular, we show the standard deviation (σ) of the interpolating errors for both
the multipole interpolation and the neural network estimate, the skewness of the
distribution (γ1) and the corresponding kurtosis (γ2). Clearly, and as already
mentioned, the interpolating errors are very large for the case in which a multipole
interpolating scheme is used, as clearly shown by the very large standard deviation
obtained when using this method. Also interesting to note is that for the case of the
x-component of the magnetic field both methods yield distributions which are almost
symmetrical. However this is not the case for the modulus of the magnetic field when
the multipole interpolating method is used. Finally, the kurtosis of the multipole
interpolation is very large, revealing a large number of outliers. All in all, a look
at Table 2 reveals that the neural network method presents much better statistical
properties than the multipole interpolation.

6. Conclusions

The magnetic diagnostics sensor set in the LTP is such that to infer the magnetic field
and gradient at the positions of the TMs based on the readouts of the magnetometers
is far from simple. The standard interpolation scheme presented in Section 3, and
based on a multipole expansion of the magnetic field inside the LCA volume, does not
go beyond quadrupole order which, in practice, means that just a linear approximation
is done. This grossly fails to generate reliable results, basically due to the method’s
inability to reproduce the richer magnetic field structure in the LCA. Artificial neural
networks have been presented as an alternative approach to estimate the required
field values at the TM positions. In this paper we have presented results which very
significantly improve the performance of the multipole expansion technique by almost
two orders of magnitude, a very encouraging outcome which points to the use of the
neural networks as an efficient tool to analyse LTP magnetic data.

Which is the reason for such significant difference in performance of the two
methods discussed? We think essentially the fact that neural networks are able to learn
from a large set of similar source configurations where the correct answer is known. If
the real situation is sufficiently close to one (or more) of the training cases then the field
and gradient estimates are quite reasonably good. The presented implementation of
multipole interpolation is not subjected to any such learning process, nor use is made
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of information from previous cases as a priori knowledge, e.g., in some Bayesian sense.
Further investigation is underway on this matter, which may reveal new possibilities
of the multipole expansion principle.

The good performance of the neural network algorithm is of course tightly bound
to the adequacy of the training process it is submitted to in the first place. This poses
a problem to identify which is the best such training which should properly deal with
the set of data the magnetometers will deliver in flight. This underlines the need to
characterise on ground to our best ability the magnetic field distribution across the
LCA for as many as possible foreseeable working conditions, both regarding DC and
fluctuating values. Reliable information on this is essential for a reliable assessment of
magnetic noise in the LTP. The neural network analysis presented in this paper only
apply to static fields. What they actually show is that neural networks work very well
(∼ 10 % accuracies) irrespective of the source dipole configuration. A different issue,
which is beyond the scope of this paper and is also currently under investigation, is how
to deal with time series of magnetometer readouts, which is of course the kind of data
the satellite will telemeter to ground. Features such as trends, field fluctuations,. . .
will likely happen during mission operations, and the neural network algorithm must
be trained to properly address them. Preliminary results indicate that the network
is able to deal with moderate trends and levels of fluctuations, but further effort is
needed to explore alternatives, e.g. self-adaptability, which will make more robust the
performance of the system.
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