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Abstract:

Effects of the temperature and the incident electron current density on the total electron emission yield

(TEEY) of polycrystalline diamond deposited by chemical vapor deposition technique (CVD) were

investigated at low electron beam fluence. It was found that the TEEY reversibly increases with the

temperature and reversibly decreases with the current density. This behavior is explained on the basis of a

dynamic completion between the holes accumulation which (positive space charge) that internally diminish

the secondary electron (SE) emission and the thermally activated conductivity that tends to reduce the space

charge formation.

I. Introduction

Due to low or even negative electron affinity and to wide energy bandgap, diamond exhibits generally a

relatively high total electron emission yield (TEEY). The TEEY is the number of emitted electrons

(secondary and backscattered) to the incident electrons number. Depends on its surface termination [1],

doping level and nature [2], thickness [3], surface roughness [4] temperature and electron fluence (e-

fluence) [5], etc, the reported yield maximum varies from more than 80 in monocristal (100) with

hydrogenated or cesiated surface [6] to about 10 in polycrystalline diamond films deposited by chemical

vapor deposition technique (CVD). Owing to its high TEEY diamond emerges as a very interesting material

for electron multiplication and particles detector [4,7]. Recently, Stacey and al [5], have investigated the

effect of the moderate sample heating in conjunction with the effect of e-fluence on the TEEY of CVD-

diamond with hydrogenated surface. They established that under continuous e-irradiation, both electrons

stimulate desorption (ESD) of hydrogen and charge trapping play a major role on secondary electron (SE)

emission process. In this paper, we report results on the effects of the temperature and of the incident

current density on TEEY of a polycrystalline H-terminated CVD diamond layer. In order to prevent a

possible ESD and electron induced contamination phenomena, very low e-fluence were used (106 e/cm² to

109 e/cm²). We have found that increasing the temperature and/or reducing the current density result in a

significant enhancement of the TEEY. These results are explained in terms of a dynamic competition

between the formation of a positive space charge (holes accumulation) that internally reduces the SE

emission [8-10] and the thermally activated conduction of diamond [11,12] that tends to reduce the space

charge formation.

II. Experimental

A. Samples

The polycrystalline H-terminated CVD diamond layer has been grown in a silica bell jar low

pressure chamber where the gas mixture was activated by a microwave electric field (see figure 1).



Conventional experimental conditions were set at: 2kW, 100 mbar, 2.5 % CH4, substrate

temperature 890 °C. The 21 µm thick layer microstructure and purity have been determined by

respectively scanning electron microscopy (figure 2).  

Figure 1 : experimental set up for diamond growth.



Figure 2: Scanning electron micrography of the polycrystalline diamond layer used for the study.

B. Electron emission yield measurement
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Figure 3. Experimental setup

The experimental setup is shown in figure 3. Cryogenic pump associated to oil-free molecular-diaphragm

pumps allow the system to be maintained at vacuum level down to 5 10-8 Torr. A hemispherical electron-

collecting electrode (collector) faces the sample surface. The sample holder and the collector can be

independently biased to choose the desired potential. Sample current is monitored using 350 Mhz

TDS5034B oscilloscope connected to a Femto-DHPCA-100 high speed and a low noise current amplifier.



The electron beam incidence is set normal to the sample surface. ELG2 Kimball instrument electron gun

with a µs electron beam pulsing capacities was used as the electron source. The incident charge per pulse,

∆Qi is measured using a Faraday cup connected to oscilloscope throughout a second DHPCA-100 current

amplifier. The total electron yield can be obtained from:

i

Si

Q

QQ

∆
∆−∆

=σ (1)

∆QS is the flowed charge from the sample to the ground. ∆Qi was varied in this experiment between 3 10-13

C (2.4 106 e/cm²) and 5 10-11 C (4 108 e/cm²). The e-irradiation was performed at fixed spot diameter of ~5

mm and at fixed pulse duration of 50 µs. The e-fluence was varied by varying the beam current from 5 nA

to 320 nA. Due to the fact that σ > 1 in the investigated energy range (30 eV-2 keV), surface positive

charging is expected, which could attract back the emitted electrons. Assuming that σ = 10 and that all

generated holes due to the SE emission are trapped in the sample (worst case), the induced positive surface

potential Vs should be at the maximum 4 V. For the last calculation the relative dielectric permittivity of the

sample, εr, was assumed to be 5.7. A positive Vs (even of few tens of mV) leads to a substantial SE

emission drop [7, 13, 14]. This effect (external charging effect) on the TEEY is illustrated on studied sample

in figure 4, where the σ dependence to the sample holder bias, VH (the S-curve) is plotted. The TEEY is

nearly constant bellow VH =-3 V and starts to sharply decreases when VH is positively increased. To

circumvent the SE blocking due to the work function difference between the electron gun cathode and the

sample holder and due to possible charging effect, the sample holder was set to a negative value with

respect to its surrounding (VH = -18V).
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Figure 4: TEEY as function of the sample holder bias, VH at 1 keV primary beam energy. T= 25°C , J0≈ 30

nA/cm², VC= 0V.



III. Results

A. Effect of the current density

The TEEY curves measured using low (~30 nA/cm²), medium (~130 nA/cm²) and high (~310 nA/cm²)

incident current density, j0 are shown in figure 5a. An overall decrease of the electron emission yield is

observed when the electron fluence is increased. Note that the energy at which occurs the maximum of the

TEEY is comparable to that reported previously by several groups on CVD-polycrystalline diamond [15,

16]. The maximum electron emission yield, σmax at incident electron energy, E0 of 1 keV as the function of

the incident current density is plotted in figure 5b. σmax decreases rapidly from ~12 at j0=5 nA/cm² to ~ 6 at

j0= 310 nA/cm² and thereafter remains roughly constant. It should be noticed that σmax variation with the

incident current density is reversible.
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Figure 5: (a) TEEY as the function of the primary electron energy measured using (~30 nA/cm²) medium

(~130 nA/cm²) and high (~310 nA/cm²) current density. (b) Maximum of the TEEY (at E0 = 1keV) as the

function of the incident electron current density. VH = -18 V and T = 25°C.

B. Effect of the temperature

Figure 6 and figure 7 show the influence of the temperature on the electron emission yield. When low

current density is used (30 nA/cm²), a significant rise of the TEEY is observed when the temperature is

increased from 25° C to 90°C (Figure 6). When high current density (310 nA/cm²) is used, only a slight

increase of the TEEY is observed. Note that the change on σ as function of the temperature is also

reversible.
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Figure 6: TEEY as the function of the incident electron energy .T = 25°C, 60°C and 90°C .J0= 30nA/cm².
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Figure 7: TEEY as the function of the incident electron energy .T = 25°C, 60°C and 90°C .J0= 310nA/cm².

IV. Discussion

In their recent study, Stacey et al [5] have shown that the decay of the TEEY of CVD-hydrogenated

diamond as the function of the e-fluence is reduced or even canceled when the temperature is moderately

increased. This observed decay was associated to the electron stimulate desorption of hydrogen (ESD) that



induces an increase of the electron affinity. Indeed, the yield of the ESD of hydrogen declines when the

temperature increases [17]. In contrast to Stacey et al [5] experiments where continuous irradiation is used,

in our experiments, the incident e-fluence was kept very low thanks to the use of short duration electron

pulses. All observed variations of TEEY in this work are fully reversible without requiring any specific

surface treatment (plasma exposure or heat treatment). This suggests that the used total e-fluence for the

present TEEY measurements is most probably not sufficient to induce any significant surface modification

such as ESD or electron induced contaminant deposition [18, 19]. We believe that our results can be

explained in terms of a dynamic competition between on the one side, the positive charging resulting from

the SE emission and on the other side, the temperature sensitive conductivity of diamond that tends to

prevent the charge accumulation thanks to easier flow of charge carriers between the diamond surface and

the substrate. It was established that the conductivity, γ, of the CVD-diamond is mainly governed by

hopping mechanism [10]. γ can be expressed as:

]/exp[)( 0 kTET a−= σγ (2)

where Ea is the activation energy of the hopping process. Ea is highly dependent on sample growth

conditions. The reported values in the literature are in 0.2 eV – 0.65 eV range [10, 11]. Accordingly, the

elevation of the temperature from 25°c to 90°C enhances the conductivity by a factor ranging from 4 to 50.

Consequently, when the temperature is increased, charge carrier flows more easily between the Si substrate 

and the diamond surface; the rate of the space charge formation is then reduced. Charging may affects the

SE emission by two distinct ways:

• internally, by acting on the SE transport and escape into the vacuum

and

• externally, by attracting back the emitted SE.

A comprehensive description of the influence of charging on the TEEY can be found for instance in

Cazaux works [7,20,21]. In order to discriminate between internal and external effects of charging, we

have investigated the effects of the temperature and current density change on the S-curves (TEEY

dependence to the sample holder bias VH). The results are shown in figure 8a. The incident electron

energy was set at 1 keV. It is interesting to notice that TEEY varies only in magnitude: the three

normalized S-curves overlap perfectly (figure 8b). Positive surface potential variation, ∆VS with respect

to the grounded collector (negative ∆VS) should induce an overall shift of the S-curves to lower VH

(higher VH). An example of the effect of external charging on the S-curve is illustrated in figure 8c:

when a positive surface potential ∆VS (negative surface potential (∆VS) is induced by biasing negatively

(positively) the collector, an overall shift of the S-curve to the left (right) is observed. This shift was not

observed in figure 8b. This suggests that the TEEY variations shown in figures 3 and 4 are not related to

an external effect of charging, but rather are linked to internal effects.
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Figure 8: (a) TEEY at 1 keV as the function of the sample holder bias (S-curves) for 3 situations (T= 25°C

and j= 30 nA/cm²), (T= 25°C and j= 310 nA/cm²) and (T= 90°C and j= 30 nA/cm²). (b) Normalized S-

curves represented in (a) . The measurements were performed at VC = 0V. (c) TEEY at 1 keV and j = 310

nA as the function of the sample holder bias (S-curves) for 3 situations VC = 0V, VC= -18 V and VC = +18V.

T = 25°C

Two possible mechanisms that internally reduce the SE emission could explain our results.

(1) As the positive charge increases, the probability of recombination of low energy SE with holes increases

and the mean free path of SE undergoing emission thereby decreases [8-10, 22]. The effect of such

mechanism on the TEEY was recently observed by us on MgO [10].

(2) Holes accumulation induces an upward band bending at the vacuum/diamond interface, thus creating a

blocking barrier for low energy SE undergoing emission. A detailed description of this phenomenon is

given by Hoffman et al. [23,24]. This blocking mechanism is expected to be particularly effective in low or

negative electric affinity materials (as the diamond) where a large number of the emitted SE are quasi-

thermalized [25,26]

Based on the consideration developed above we attempt in the following to interpret our

experimental results. The overall increase on the TEEY seen on the figure 6 when the temperature is

increased is most likely due to the conductivity rises (see expression 2). The higher is the temperature and

the easier is the flow of charge carriers (holes and electrons) between the Si substrate and the irradiated

diamond surface. As the result, the increase of the temperature leads to the decrease of the hole density and



therefore an enhancement of the TEEY. When the current density is high (310 nA/cm²), the increase of

conductivity with temperature becomes insufficient to counterbalance the high rates of creation of holes

(proportional to the current density). This probably explains why the effect of the temperature on the TEEY

becomes much less important at high current density (figure 7).

V. Conclusion

We have investigated the conjugate effect of current density and temperature on the electron emission

properties of a polycrystalline H-terminated CVD-diamond layer. We have found that increasing the

temperature and/or decreasing the incident current density lead to an overall increase of the TEEY. The

results are explained in terms of competition between on the one side the increase of positive charge density

subsequent to the SE emission and on the other side temperature activated conductivity that tends to

counterbalance the space charge formation thanks to easier flow of charge carriers between the substrate and

the diamond.
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