A Hamilton-Jacobi approach to junction problems and application to traffic flows

Abstract : This paper is concerned with the study of a model case of first order Hamilton-Jacobi equations posed on a ''junction'', that is to say the union of a finite number of half-lines with a unique common point. The main result is a comparison principle. We also prove existence and stability of solutions. The two challenging difficulties are the singular geometry of the domain and the discontinuity of the Hamiltonian. As far as discontinuous Hamiltonians are concerned, these results seem to be new. They are applied to the study of some models arising in traffic flows. The techniques developed in the present article provide new powerful tools for the analysis of such problems.
Type de document :
Article dans une revue
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2013, 19 (01), pp 129-166. 〈10.1051/cocv/2012002〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00569010
Contributeur : Cyril Imbert <>
Soumis le : lundi 28 novembre 2011 - 10:28:02
Dernière modification le : mercredi 14 novembre 2018 - 15:22:02
Document(s) archivé(s) le : lundi 5 décembre 2016 - 08:51:45

Fichiers

jonction-hal3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Cyril Imbert, Régis Monneau, Hasnaa Zidani. A Hamilton-Jacobi approach to junction problems and application to traffic flows. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2013, 19 (01), pp 129-166. 〈10.1051/cocv/2012002〉. 〈hal-00569010v3〉

Partager

Métriques

Consultations de la notice

929

Téléchargements de fichiers

303