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tIn order to 
hara
terize surfa
e 
hemome
hani
al phenomena driv-ing mi
ro-ele
tro-me
hani
al systems (MEMS) behavior, we proposeherein a method to simultaneously obtain a full kinemati
 �eld des
rib-ing the surfa
e displa
ement and a map of its 
hemi
al modi�
ationfrom opti
al measurements. Using a mi
ros
ope, re�e
ted intensity�elds are re
orded for two di�erent illumination wavelengths. De
ou-pling the wavelength-independent and -dependent 
ontributions to themeasured relative intensity 
hanges then yields the sought �elds. Thismethod is applied to the investigation of the ele
tro-elasti
 
oupling,providing images of both the lo
al surfa
e ele
tri
al 
harge density andthe devi
e deformation �eld. 1



Be
ause of their high surfa
e over volume ratio, the me
hani
al behav-ior of mi
rometer sized stru
tures is signi�
antly more surfa
e-driven thanthat of usual ma
ros
opi
 obje
ts. This property has been proposed to de-vise mi
rome
hani
al sensors of environmental 
hanges [1℄. In parti
ular, asigni�
ant e�ort has been put on the development of biologi
al sensors [2℄,thus highlighting the need for a more basi
 understanding of 
oupled surfa
ephenomena [3℄. Opti
al te
hniques, being non destru
tive and allowing highspatial resolution, provide well suited tools.In order to model 
hemi
ally-indu
ed me
hani
al loadings, the 
ontrol ofthe 
hemi
al homogeneity of the 
onsidered surfa
e is required. As surfa
e
hemi
al 
omposition modi�
ations indu
e (
omplex) re�e
tion 
oe�
ient
hanges, Jin et al.[4℄ proposed an ellipsometri
 imaging set-up to measurethe opti
al thi
kness of thin adsorbed �lms. Li et al.[5℄ also use interferom-etry to measure lo
ally the 
on
entration pro�les of rea
tants near an ele
-trode. Di�erential re�e
tan
e 
hanges dete
tions have been a
hieved to per-form sensitive ele
trore�e
tan
e [6℄ and thermore�e
tan
e [7℄ measurements,providing a

ess to ele
tro
hemi
ally indu
ed e�e
ts at substrate-ele
trolyteinterfa
es and surfa
e temperature �elds.Modelling 
hemome
hani
al 
oupled phenomena also requires to mea-sure kinemati
 �elds of deformable surfa
es. To measure 
antilevers pro�les,Mertens et al.[8℄ propose a s
anning opti
al lever te
hnique. Several inter-ferometri
 te
hniques have been proposed relying on phase 
hanges relatedto the out-of-plane displa
ement �eld [9℄. Opti
al lever and ellipsometri
measurement te
hniques have been 
ombined to monitor the mean surfa
e
urvature and global mole
ules adsorption on the surfa
e of a mi
ro
antilever[10℄. In order to obtain spatially resolved informations, we propose to usemultiple wavelengths imaging re�e
tion mi
ros
opy whi
h provides both lo-
al surfa
e modi�
ation and kinemati
 �eld measurements. A de
ouplingmethod is presented to distinguish wavelength-dependent and -independent(i.e., kinemati
) 
ontributions to the 
olle
ted intensity. The method is ap-plied to the investigation of the ele
tro-elasti
 
oupling on a 
antilever beam,allowing one to simultaneously obtain an ele
trore�e
tan
e mapping and a�eld related to the lo
al surfa
e rotation of mi
rometer-sized stru
tures.To study 
oupled surfa
e phenomena at the mi
rometer s
ale, deformableme
hani
al mi
ro
antilevers are subje
ted to time dependent a
tuation. Theobje
ts under s
rutiny are observed with an obje
tive lens and imaged on aCCD array (Dalsa 1M30, 12 bits, 1024 × 1024 pixels) using fo
using opti
s(fo
al length 180 mm) (Fig. 1a). Re�e
ted intensity 
hanges arise eitherfrom surfa
e re�e
tivity or from 
olle
tion e�
ien
y 
hanges. The former isusually wavelength-dependent (as with ele
tro- or thermo-re�e
tan
e) whilethe latter is wavelength-independent sin
e it depends on the surfa
e orienta-2



tion and on the numeri
al aperture of the obje
tive lens whi
h is 
orre
tedfor 
hromati
 aberrations (Fig. 1b). In order to distinguish the wavelength-dependent and -independent 
ontributions, the sample is illuminated witha Green and a Red light emitting diode (LEDs) of di�erent wavelengths,namely λG=505 nm and λR=625 nm. These diodes are sequentially trig-gered by a 1.8s period signal, provided by a fun
tion generator (Fig. 1
) and
N sums of 10 images are a
quired for ea
h illumination wavelength. The

Figure 1: a : Experimental set-up with two sequentially triggered sour
es,b : Sensitivity of the 
olle
ted intensity to the surfa
e orientation, 
 : Lightsour
es timing.intensity Im 
olle
ted by the pixel P reads
Im(P, λ, tn) = Ii(P, λ)R(P, λ, tn)ε (θ(P ), tn) (1)where Ii(P, λ) is the intensity impinging on the surfa
e 
onjugated with pixel

P , at wavelength λ. R(P, λ, tn) is the re�e
tivity of the surfa
e, i.e., theratio of the re�e
ted and in
ident intensities, depending on a lo
al parameter
X(P, tn) (su
h as ele
tri
al 
harge, temperature, et
.) at the time step tn.
ε (θ(P ), tn) is the 
olle
tion rate related to the lo
al surfa
e orientation θ(P ).The in�uen
e of X(P, tn) on the re�e
tivity is assumed to be small, so that
R is linearized

R(P, λ, tn) = R0(P, λ)[1 + r(λ)X(P, tn)] (2)with r(λ) = 1

R0

∂R
∂X

the relative re�e
tan
e sensitivity to the 
ontrolled param-eter X. The geometri
al e�e
t ε (θ(P ), tn) is linearized in the 
ase of smallsurfa
e rotations around the initial orientation θ0(P )

ε(θ(P ), tn) = ε0(θ0(P )) [1 + dθ0
(P )(θ(P, tn) − θ0(P ))]3



with dθ0
(P ) = 1

ε0

∂ε
∂θ

the lo
al slope sensitivity. Finally, the measured inten-sity linearly depends on the wavelength-independent and -dependent relativeintensity 
hanges Rwi(P, t) and Rwd(λ, P, t), respe
tively :
Im(P, λ, tn) =

Ia(P, λ) [1 + Rwd(λ, P, tn) + Rwi(P, tn)] (3)with
Ia(P, λ) = Ii(P, λ)R0(P, λ)ε0(θ0(P ))

Rwd(λ, P, tn) = r(λ)X(P, tn)

Rwi(P, tn) = dθ0
(P )(θ(P, tn) − θ0(P ))For a given (P, tn), Eq.(3) is re
ast as the linear system

[
Im(λR) − Ia(λR)
Im(λG) − Ia(λG)

]
=

[
Ia(λR) Ia(λR)

k Ia(λG) Ia(λG)

] [
Rwd(λR)

Rwi

] (4)where the ratio k = r(λG)/r(λR) is assumed to be di�erent from 1. Thes
alar k and the initial intensity �elds Ia(P, λ) are obtained by pre-pro
essingthe data. Over the rigid substrate Ωs, the lo
al 
harge density X(P, tn) isassumed to be equal to the mean 
harge density Xi(tn), so that at a givenlo
ation, Isol
a (P, λ) is obtained as a minimizer (for a given set {cq}) of theobje
tive fun
tion η2(P, λ, Ia(P, λ), {cq})

η2(P, λ, Ia(P, λ), {cq}) =
N∑

n=1

(Im(P, λ, tn) − Ia(P, λ)f(Xi, {cq}))
2 (5)with

f(Xi, {cq}) = 1 +

Q∑

q=1

cqX
q
i (tn) (6)The 
oe�
ients {cq} are obtained as the minimizers of the sum κ2 over Ωsof the minimal η2

κ2(λ, {cq}) =

∫

P∈Ωs

η2(P, λ, Isol
a (P, λ), {cq}) (7)The 
oe�
ients r(λ) are then obtained as the 
oe�
ient c1 identi�ed when
onsidering a large area Ωs. Repeating this pro
edure over the 
antilever4



surfa
e Ωc (instead of Ωs) gathering all the pixels at a given abs
issa alongthe 
antilever axis then yields Ia(P, λ) for these points. Values of Q above 6have been found to provide r values independent of Q. Solving Eq. (4) thenyields the relative intensity 
hange 
ontributions. The lo
al slope sensitivity�eld dθ0
(P ) is obtained by a 
alibration pro
edure to be detailed elsewhere.The used me
hani
al stru
tures are sili
a mi
ro
antilevers (70 × 20 ×

0.77 µm3), 
overed with a 20 nm titanium adhesion layer and a 50 nm goldlayer. These devi
es are pla
ed in a 
ell and observed with an immersionobje
tive lens (×20, Numeri
al Aperture 0.5). We fo
us here on the ele
-trome
hani
al e�e
ts indu
ed by 
harging the gold surfa
e. The 
antileversare immersed in a KCl ele
trolyte (10−2 mol.l−1), and the ele
tri
al poten-tial of their surfa
e is 
ontrolled by an ele
tro
hemi
al workstation (CHI660A) with respe
t to an Ag/AgCl referen
e ele
trode [11℄. A total area of
A ≃ 50 mm2 is in 
onstant 
onta
t with the ele
trolyti
 solution. The goldsurfa
e is 
leaned by varying its potential Ug from 0.1 to 0.8 V during three
y
les at 12 mV.s−1. Referen
e images are a
quired and the potential isthen swept between 0.1 to 0.46 V at 4 mV.s−1 while re
ording the ele
trode
harge A×Xi. N = 50 sums of 10 images are sequentially a
quired for ea
hwavelength during the 
y
le.The above-detailed pre-pro
essing and de
oupling pro
edure is appliedto the re
orded images Im(P, λ, tn). The pre-pro
essing yields r(λR) =
−162 
m2C−1 and k = 2.03, whi
h is 
onsistent with results in [12℄. The
alibration pro
edure also provides dθ0

(P ) ≃ 1 rad−1 everywhere along the
antilever, so that the Rwi and Rwd(λR) �elds are easily 
onverted to a sur-fa
e rotation (and thus surfa
e displa
ement) and lo
al 
harge density �eldsrespe
tively. The signal-to-noise ratio 
an be improved by averaging Rwi and
Rwd(λR) a
ross the width of the beam. Figure 2 shows the evolution of theaverages R̃wi and R̃wd(λR) as a fun
tion of time (verti
al axis) along the axisof the beam (horizontal axis) whi
h is an
hored at x = 0.

R̃wi does not vary on the substrate during the 
harging pro
ess, but in-
reases up to 2×10−3 sin
e the 
antilever bends. This agrees with a me
hani-
al e�e
t a
ting only on deformable stru
tures. Rwd(λR, P, tn) is related to thelo
al 
harge density X(P, tn) and R̃wd(λR), whi
h is heterogeneous, de
reasesdown to −4 × 10−3 on the substrate. In order to prove the ele
tro
hemi
alorigin of the observed phenomena, Figure 3 depi
ts the evolutions of Rwi and
Rwd averaged on the whole substrate and at the edge of the 
antilever (30% ofits surfa
e) as a fun
tion of the ele
trode 
harge A×Xi(tn). Again, Rwi doesnot signi�
antly 
hange on the substrate (Fig. 3) whi
h 
on�rms its me
han-i
al origin. All other evolutions are quasi-linear fun
tions of the ele
trode
harge, showing that the ele
tri
al 
harge density governs the me
hani
al5



Figure 2: Relative intensity 
hanges R̃wd(λR) (top) and R̃wi (bottom) iden-ti�ed along the substrate (x ≤ 0) and the beam (x ≥ 0) during the loading
y
le (time along the verti
al axis). The 
antilever is an
hored at x = 0(dashed line).e�e
ts and that the expansion (2) is valid. The Rwd 
ontribution is twi
elarger on the substrate than at the 
antilever's tip (Fig. 3), thereby provingthat the 
harging pro
ess o

urs heterogeneously along the 
antilever. Thedeviation of Rwd obtained from the referen
e images yields an estimate ofthe standard deviation on the relative intensity 
hanges : σRwd
≃ 10−2 for asingle pixel, whi
h is redu
ed by spatial averaging to σ gRwd

≃ 10−4.The te
hnique des
ribed herein makes use of a standard re�e
tion mi-
ros
ope with a CCD array and two sour
es of di�erent wavelengths. Multi-physi
al phenomena o

uring at their surfa
e result in wavelength-dependentand -independent 
olle
ted intensity variations, so that a pro
edure is pro-posed to de
ouple these 
ontributions from intensity images at two di�er-ent wavelengths. This method has been applied to mi
ro
antilevers underele
tro
hemi
al a
tuation by varying the ele
tri
al potential of a substrate-aqueous ele
trolyte interfa
e. The lo
al 
harge density and rotation �elds areobtained with a measurement reprodu
ibility within the 10−4 range, therebyproviding a powerful and simple way to study the multi-physi
al behavior ofMEMS devi
es.A
knowledgementThis work has been partially �nan
ed by the ANR proje
t µE
oliers.6



Figure 3: Averages of Rwi and Rwd on the substrate and at the end of thebeam versus the ele
trode 
harge A × Xi. The solid lines are linear �ts toea
h dataset. Calibrated values of the surfa
e 
harge density (triangles) andsurfa
e rotation (
ir
les) 
an be read on the right ordinate axis.Referen
es[1℄ N. V. Lavrik, M. J. Sepaniak and P. G. Datskos, �Cantilever transdu
ersas a platform for 
hemi
al and biologi
al sensors.� Rev. S
i. Instrum. 75,2229 (2004).[2℄ J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E.Meyer, H.-J. Güntherodt, Ch. Gerber and J. K. Gimzewski, �Trans-lating biomole
ular re
ognition into nanome
hani
s.� S
ien
e 288, 316(2000).[3℄ M. F. Hagan, A. Majumdar and A. K. Chakraborty, �Nanome
hani
alfor
es generated by surfa
e grafted DNA.� J. Phys. Chem. B 106, 10163(2002).[4℄ G. Jin, P. Tengvall, I. Lundström and H. Arwin, �A biosensor 
on
eptbased on imaging ellipsometry for visualization of biomole
ular intera
-tions.� Anal. Bio
hem. 232, 69 (1995).[5℄ Q. Li and H. S. White, �Interferometri
 measurement of a depletion layerstru
ture and volumetri
 data in 
on
entrated organi
 redox solutions.�Anal. Chem. 67, 561 (1995). 7



[6℄ J. Feinleib,�Ele
trore�e
tan
e in metals.� Phys. Rev. Lett. 16, 1200(1966).[7℄ G. Tessier, S. Holé and D. Fournier, �Quantitative thermal imagingby syn
hronous thermore�e
tan
e with optimized illumination wave-lengths.� Appl. Phys. Lett. 78, 2267 (2001).[8℄ J. Mertens, M. Álvarez and J. Tamayo, �Real-time pro�le of mi
ro
an-tilevers for sensing appli
ations.� Appl. Phys. Lett. 87, 234102 (2005).[9℄ F. Amiot and JP. Roger, �Nomarski imaging interferometry to measurethe displa
ement �eld of mi
ro-ele
tro-me
hani
al systems.� Appl. Opt.45, 7800 (2006).[10℄ M. Godin, O. Laro
he, V. Tabard-Cossa, L. Y. Beaulieu, P. Grütterand P. J. Williams, �Combined in-situ mi
rome
hani
al 
antilever-basedsensing and ellipsometry.� Rev. S
i. Instrum. 74, 4902 (2003).[11℄ F. Amiot, F. Hild, F. Kanou� and JP. Roger, �Identi�
ation of theele
troelasti
 
oupling from multi-physi
al �elds measured at the mi-
rometre s
ale.� J. Appl. Phys. D 40, 3314 (2007).[12℄ R. Kofman, R. Garrigos and P. Cheyssa
, �Opti
al-response of a 
hargedmetal-aqueous ele
trolyte interphase.� Thin Solid Films 82, 73 (1981).

8


