On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems.

Abstract : We present a detailed survey of discrete functional analysis tools (consistency results, Poincaré and Sobolev embedding inequalities, discrete $W^{1,p}$ compactness, discrete compactness in space and in time) for the so-called Discrete Duality (DDFV) Finite Volume schemes in three space dimensions. We concentrate mainly on the 3D CeVe-DDFV scheme presented in [3]. Some of our results are new, such as a general time-compactness result based upon the idea of Kruzhkov [65]; others generalize the ideas known for the 2D DDFV schemes or for traditional two-point finite volume schemes. We illustrate the use of these tools by studying convergence of discretizations of nonlinear elliptic-parabolic problems of Leray-Lions kind, and provide numerical results for this example.
Type de document :
Article dans une revue
Computational Methods in Applied Mathematics, De Gruyter, 2013, 13 (4), pp. 369-410. 〈http://www.degruyter.com/view/j/cmam.2013.13.issue-4/cmam-2013-0011/cmam-2013-0011.xml〉. 〈10.1515/cmam-2013-0011〉
Liste complète des métadonnées

Littérature citée [70 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00567342
Contributeur : Boris Andreianov <>
Soumis le : lundi 22 avril 2013 - 21:31:36
Dernière modification le : jeudi 4 octobre 2018 - 01:20:20
Document(s) archivé(s) le : mardi 23 juillet 2013 - 04:15:18

Fichier

AndBendHub-Part-II-preprint201...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Citation

Boris Andreianov, Mostafa Bendahmane, Florence Hubert. On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems.. Computational Methods in Applied Mathematics, De Gruyter, 2013, 13 (4), pp. 369-410. 〈http://www.degruyter.com/view/j/cmam.2013.13.issue-4/cmam-2013-0011/cmam-2013-0011.xml〉. 〈10.1515/cmam-2013-0011〉. 〈hal-00567342v3〉

Partager

Métriques

Consultations de la notice

721

Téléchargements de fichiers

201