N

N
N

HAL

open science

An algebraic semantics for MOF

Artur Boronat, José Meseguer

» To cite this version:

Artur Boronat, José Meseguer. An algebraic semantics for MOF. Formal Aspects of Computing, 2010,

22 (3), pp.269-296. 10.1007/s00165-009-0140-9 . hal-00567269

HAL Id: hal-00567269
https://hal.science/hal-00567269
Submitted on 20 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00567269
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

An Algebraic Semantics for MOF

Artur Boronat! and José Meseguer?

IDepartment of Computer Science, University of Leicester, UK,
2Department of Computer Science, University of Illinois at Urbana-Champaign, USA

Abstract. In model-driven development, software artifacts are represented as models in order to improve
productivity, quality, and cost effectiveness. In this area, the Meta-Object Facility (MOF) standard plays a
crucial role as a generic framework within which a wide range of modeling languages can be defined. The MOF
standard aims at offering a good basis for model-driven development, providing some of the building concepts
that are needed: what is a model, what is a metamodel, what is reflection in the MOF framework, and so
on. However, most of these concepts are not yet fully formally defined in the current MOF standard. In this
paper we define a reflective, algebraic, executable framework for precise metamodeling based on membership
equational logic (MEL) that supports the MOF standard. Our framework provides a formal semantics of
the following notions: metamodel, model, and conformance of a model to its metamodel. Furthermore, by
using the Maude language, which directly supports MEL specifications, this formal semantics is ezecutable.
This executable semantics has been integrated within the Eclipse Modeling Framework as a plugin tool
called MOMENT?2. In this way, formal analyses, such as semantic consistency checks, model checking of
invariants and LTL model checking, become available within Eclipse to provide formal support for model-
driven development processes.

Keywords: MOF, model-driven development, membership equational logic, metamodeling semantics, re-
flection, formal analysis.

1. Introduction

Model-driven development is a software engineering field in which software artifacts are represented as
models in order to improve productivity, quality, and cost-effectiveness. Models provide a more abstract
description of a software artifact than the final code of the application. The Meta-Object Facility (MOF)
standard [OMGO06] offers a generic framework in which the abstract syntax of different modeling languages
can be defined. This is done by specifying within MOF different metamodels for different modeling languages.
Models in a modeling language are then conforming instances of their corresponding metamodel. The MOF
standard aims at offering a good basis for model-driven development, providing some of the building concepts
that are needed: what is a model, what is a metamodel, what is reflection in the MOF framework, and so
on. However, most of these concepts are not yet fully formally defined in the current MOF standard. This
is, in part, due to the fact that metamodels can only be defined as data in the MOF framework.

In this paper, we define a reflective, algebraic, executable framework for precise metamodeling that
supports the MOF standard, focusing on the subset Essential MOF (EMOF) that is commonly used for
metamodeling and that has close implementations in mainstream metamodeling environments such as the

Correspondence and offprint requests to: Artur Boronat, Department of Computer Science, University of Leicester, University
Road, Leicester, LE1 TRH, UK. e-mail: aboronat@mcs.le.ac.uk

2 A. Boronat and J. Meseguer

Eclipse Modeling Framework (EMF) [Emf09]. Our formal framework provides a formal semantics of the
following notions: metamodel, model, and conformance of a model to its metamodel. We clearly distinguish
the different roles that the notion of metamodel usually plays in the literature: as data, as type, and as
theory. In addition, we introduce two new notions: (i) metamodel realization, referring to the mathematical
representation of a metamodel; and (ii) model type, allowing models to be considered as first-class citizens.
In particular, our executable algebraic semantics for MOF generates, in an automatic way, the algebraic
semantics of any MOF metamodel by formalizing MOF metamodels as MEL theories. Furthermore, such MEL
theories are executable by rewriting. This means that useful MEL deduction capabilites become available as
decision procedures to check properties about the models of a metamodel so formalized; and that all this
can be achieved by executing the MEL theory formalizing a metamodel in an algebraic language such as
Maude [CDEOQ7]. In this way, the executable formal semantics of a metamodel can be used to automatically
analyze the conformance of its model instances. Such model instances are characterized algebraically as terms
modulo structural axioms of associativity, commutativity and identity, and have an equivalent topological
characterization as graphs. This makes the formal semantics particularly useful, since models can be directly
manipulated as graphs in their term-modulo-axioms formal representation. Furthermore, as we explain below,
it makes possible a number of very useful model management and model analysis tasks.

Our framework provides not only an algebraic semantics, but also an executable environment called MO-
MENT2 [Mom09], that is plugged into the Eclipse Modeling Framework (EMF) [Emf09] and that constitutes
the kernel of an algebraic model management framework supporting model transformations and formal anal-
ysis techniques. In this work, we illustrate the basic principles on which MOMENT?2 is based by showing
how the executable formalization of MOF metamodels as MEL theories provides automated, semantics-based
support for very useful model-based tasks, such as the definition of domain specific languages, model trans-
formations, model traceability and model management operators; and formal analysis techniques, such as
reachability analysis and LTL model checking of model-based systems. EMF-based technology is used for
developing modeling environments and model-based software, including automated support for textual and
graphical syntax and programming facilities. Our approach smoothly complements the aforementioned tech-
nology, so that already existing fully-fledged EMF-based modeling languages can be formalized and analyzed
in MOMENT?2 in an automatic manner.

Philosophically, we can view this work as exploiting for the area of software modeling languages the
kinds of benefits that the rewriting logic semantics project [MeR07] has already demonstrated in the areas of
programming languages (see [MeR04, MeR07, SRM09] and references there), and of formal specification and
verification languages (see, e.g., [CDE99, StM04, CeS04]). What is common to all these efforts is the use of a
flexible logical framework (either rewriting logic [Mes92], or, as done in this paper, its MEL equational sublogic
[Mes98]) to formalize the semantics of either a programming language, a formal specification language,
or, as done in this work, a wide range of software modeling languages. By exploiting the fact that the
framework’s logic is executable and has a high-performance implementation, one obtains much more than
just precise semantic definitions: one obtains useful (and quite efficient) semantics-based tools, such as
programming language interpreters and model checkers, theorem provers of various kinds, and, in this paper,
a model management tool like MOMENT? that is metamodel-generic and can support a wide range of model
management and model analysis tasks.

The paper is structured as follows: Section 2 briefly describes the underlying formal background; Section
3 identifies important concepts that are not formally defined in the MOF standard and are usually left
unspecified in most of the MOF implementations; Section 4 presents the foundations of our algebraic frame-
work, explaining how the algebraic semantics of MOF metamodels is defined; Section 5 illustrates several
applications of our framework in different model-driven development scenarios; Section 6 discusses related
work; and Section 7 summarizes the main contributions of this work and discusses future work.

2. Membership Equational Logic, Rewriting Logic, and Maude

The logical framework in which we give an algebraic semantics to MOF is membership equational logic
(MEL) [Mes98]. A key feature of MEL is its strong support for types (called sorts), subtypes, and partiality;
and the closely-related feature that types can be very expressive. In MEL, membership in a type is not just
a syntactic matter, but may depend on the satisfaction of semantic conditions. This MEL feature is crucially
exploited in our semantics of MOF, where the set of models that conform to a given metamodel is precisely
characterized by a type satisfying suitable semantic conditions. Another key feature of MEL is that it has

An Algebraic Semantics for MOF 3

initial algebras [Mes98]; therefore, our MOF semantics is an initial algebra semantics. Furthermore, under
very reasonable assumptions MEL theories are ezecutable by rewriting.

2.1. The Syntax and Semantics of MEL

A MEL signature is a triple (K, %, S) (just ¥ in the following), with K a set of kinds, ¥ = {3y & } (w,k)er*x Kk
a many-kinded signature of function symbols, and S = {Si}rex a K-kinded family of disjoint sets of
sorts. The kind of a sort s is denoted by [s]. Intuitively, membership in a sort is exactly definedness; whereas
membership in just a kind without membership in any of the sorts of that kind means undefinedness or error.
For example, let Numeric be a kind having sorts Nat, Int, and Rat. Then, in a suitable MEL specification of
the number hierarchy we may have expressions like 4 — 7 of sort Int, and 2/7 of sort Rat. But the expression
2/0 has kind Numeric but has no sort and is therefore interpreted as an undefined or error expression.

A MEL X-algebra A contains a set Ay, for each kind k € K, a function Af : A, x - x Ay, — Ay for each
operator f € X, ...k, x and a subset A; C Ay, for each sort s € Sy, with the meaning that the elements in
sorts are well-defined, while elements without a sort are errors. In particular, Ty, is the ¥-algebra of ground
Y-terms, and for X a set of K-kinded variables, Tx(X), is the X-algebra of X-terms with variables in X.
Ts r, and Tx(X)y denote, respectively, the set of ground ¥-terms of kind &k and of ¥-terms of kind %k over
variables in X, where X = {21 : k1,..., 2y : kn} is a set of kinded variables.

Given a MEL signature X, atomic formulae have either the form ¢t = t' (¥-equation) or t : s (X-
membership) with ¢, € Tx(X), and s € Sk; and X-sentences are conditional formulae of the form
VX)) e if Npi=a A /\j w; : sj, where ¢ is either a Y-equation or a X-membership, and all the
variables in ¢, p;, g;, and w; are in X. The novel feature with respect to other equational logics is the sup-
port for conditional memberships of the form (VX) t:s if A;pi =a AN ; wj © s;. This makes membership
in a sort not just a syntactic matter, but a semantic one, since the semantic conditions A, p; = ¢; A /\j wj : S;
must be satisfied.

A MEL theory is a pair (X, F) with ¥ a MEL signature and F a set of X-sentences. The paper [Mes98]
gives a detailed presentation of (X, E)-algebras, sound and complete deduction rules, and initial and free
algebras. In particular, given a MEL theory (X, E), its initial algebra is denoted T(s,g). As usual for any
Y-algebra, given a sort s € S, the set T(x/p), s is the set of terms of sort s in T(x,), which by construction
is precisely the set of E-equivalence classes of ground terms ¢t € Ty, such that F It : s, where - denotes the
provability relation in MEL (see [Mes98]).

Order-sorted notation s; < sz can be used to abbreviate the conditional membership (Vz : k) z :
So if x:s1. Similarly, an operator declaration f:s; X .-+ X s, — s corresponds to declaring f at the kind
level and giving the membership axiom (Va1 : ki,...,2n 1 kn) f(21,...,20) i 5 if Ajcjc, @i 0 Si. We write
(Va1 :81,...,@n 1 8y) t =1 in place of (Vo : ki,...,xn tky) t =1t if Njc;jcn @it Si

We can use order-sorted notation as syntactic sugar to present a MEL theory (3, E') in a more readable
form as a tuple (S, <, %, Fog U A) where: (i) S is the set of sorts; (ii) < is the subsort inclusions, so that there
is an implicit kind associated to each connected component in the poset of sorts (S, <); (iii) X is given as
an order-sorted signature with possibly overloaded operator declarations f : sy X ... X s, — s as described
above; and (iv) the set E of (possibly conditional) equations and memberships is quantified with variables
having specific sorts (instead than with variables having specific kinds) in the sugared fashion described
above; furthermore, F is decomposed as a disjoint union £ = EyU A, where A is a collection of “structural”
axioms such as associativity, commutativity, and identity. Any theory (S, <, X, EgUA) can then be desugared
into a standard MEL theory (X, F) in the way explained above.

2.2. Rewriting Logic

Rewriting logic [Mes92, BrMO06] is a flexible logic to specify concurrent systems. Any such system is specified
by a rewrite theory Z = (X, E, R), where (X, F) is a MEL-theory, and R is a collection of rewrite rules of
the form

t—t if C

4 A. Boronat and J. Meseguer

where ¢, € Tx(X)g for some kind k, and C is a condition or guard. For the purposes of this paper we
assume that C' is a conjunction of 3-equations u; = v A...Au, = v, (for a more general notion of condition
see [BrMO06]).

The intuition about Z is that the states of the sytem that Z specifies are formalized as elements of
the initial algebra T(sx gy, whereas the local state transitions are applications of rules in R that satisfy
their condition C. Such rewrite rules transform each state containing a fragment that is an instance of the
rule’s left-hand side ¢ to a new state where that fragment is replaced by the corresponding instance of .
More complex concurrent transitions in such a system are then formalized as proofs in the theory Z (see
[Mes92, BrMO06]).

2.3. Executable MEL Theories and Maude

The point of the decomposition F = EgU A is that, under appropriate executability requirements explained
in [BJM00, CDEO07], such as confluence, termination, and sort-decreasingness modulo A, a MEL theory
(S, <, X, Eg U A) becomes executable by rewriting with the equations and memberships Ey modulo the
structural axioms A. Furthermore, the initial algebra T(x,g) then becomes isomorphic to the canonical
term algebra Cansy g, 4 whose elements are A-equivalence classes of ground ¥-terms that cannot be further
simplified by the equations and memberships in Fj.

An important consequence of (S, <, ¥, EyUA) satisfying the confluence, termination and sort-decreasingness
requirements is that both term equality and term membership become decidable by rewriting [BJMOO].
Furthermore, MEL theories satisfying these executability properties can be executed in high-performance
languages such as Maude [CDEOQ7] that support execution of MEL theories modulo any combination of
associativity and/or commutatitvity and/or identity axioms.

The syntax of Maude follows very closely the mathematical syntax for MEL and rewriting logic described
above, including support for order-sorted notation. In the rest of the paper we will at times present fragments
of MEL and rewriting logic specifications in Maude syntax. Specifically, as explained in [CDEQ7], MEL theories
are specified in Maude as functional modules, whereas rewrite theories are specified as system modules. Such
syntax is essentially self-explanatory, but we give here a few explanations to help the reader. First of all, basic
notions such as sorts, subsorts, operators, equations, rules and memberships are declared with respective
keywords sort, subsort, op, eq (or ceq for conditional equations), rl (or crl for conditional rules) and mb
(or cmb for conditional memberships). Second, associativity and/or commutativity and/or identity axioms
are not declared explicitly as equations, but are instead declared as attributes of the binary operator enjoying
them in the corresponding op declaration with the assoc, comm, and id: keywords. Third, the syntax of
an operator need not be prefix syntax: it can also be user-definable “mixfix” syntax, where the argument
places are indicated by underbars. For example, a user can define an if-then-else operator with syntax
if _then_else _fi.

3. MOF and its Semantic Issues

In this section, we give an informal description of the MOF standard by describing the MOF architecture and
the main concepts in the MOF metamodel. We also discuss several semantic issues that are then addressed
by the formal algebraic semantics presented in subsequent sections.

3.1. The MOF Modeling Framework

MOF is a semiformal approach to define modeling languages usually presented as a four-level hierarchy,
with levels MO, M1, M2 and M3. Each entity M at level i represents a model'. M consists of a collection
of typed elements e, which can be simple data values or objects. Types T for the elements e that constitute
a model M at level i are defined as collections of elements in a metamodel .# at level i 4+ 1. There are two
different kinds of types T: data types and object types. We indicate that an element e is typed with a type

1 In the MOF framework, the concept of a model M is conceptually specialized depending on the specific metalevel, in which
a model is located: model at level M1, metamodel at level M2 and meta-metamodel at level M3; as shown below.

An Algebraic Semantics for MOF 5

| NamedElement EMOF
© name : EString """‘"--.__._metamodel

L

I]
— [TypedElement
£l Type 0..1

eType

= isOrdered : EBoolean
= isUnique : EBoolean

= lower : Eint
= upper : Eint

ownedAttribute

|| DataType [Class 0. [Property
= isAbstract : EBoolean

= isComposite : EBoolean

eOpposite

M3
w2 Vi
/ connectsTo | 0..1
! Component

| Component metamodel
= name : EString

A [client [server RN

7
,

M1

c1: Client
I c3 : Client s2 : Server l

s

Fig. 1. The MOF framework.

T as e : T. This relation is specialized for simple data values as the isValueOf relation, and for objects as
the isInstanceOf relation. In addition, a model M is said to conform to a metamodel .# [Bez05], when the
elements that constitute the model are properly typed. We call this relation conformance relation between
a model M and a metamodel .# and we denote it by M : .Z.

Fig. 1 illustrates models at each level M1-M3 of the MOF framework. Each model is encircled by a
boundary and tagged with a name. For example, confl at level 1, which is a model corresponding to a
configuration of components. The isInstanceOf relation between objects of a model M and the metarepre-
sentation of object types in a metamodel ., and the conformance relation between a model M and the
corresponding metamodel .# are depicted with dashed arrows. We consider levels M1-M3 out of the MOF
hierarchy in this work, which are:

M1 level. This level contains metarepresentations of models. A model is a collection of objects that de-
scribe the elements of some physical, abstract or hypothetical reality by using a well-defined language.
In addition, a model is suitable for computer-based interpretation, so that development tasks can be
automated. For example, the model confl in Fig. 1 defines a configuration of client/server components
describing how they are interconnected. We use object diagram notation for representing models, making

6 A. Boronat and J. Meseguer

their graph structure explicit. Each object corresponds to a component indicating whether it is a client
or a server.

M2 level. This level contains metarepresentations of metamodels, usually given as class diagrams. A meta-
model is a model specifying the abstract syntax of a modeling language and defines the types that can
be used for defining objects in a model by means of UML-like classes. As an example, we consider a
metamodel for defining configurations of components as shown in Fig. 1 in UML notation. The types
of a configuration are defined by the classes Component, Server and Client. The Component class is
abstract so that it cannot be instantiated. This class is specialized into a Client and a Server classes.
The model confl at level 1 conforms to the component metamodel .Z at level 2.

M3 level. An entity at level 3 is the metarepresentation of a meta-metamodel. A meta-metamodel specifies

a modeling framework, which could also be called a modeling space. In MOF, there is only one such
meta-metamodel, called the MOF meta-metamodel (usually also called the metamodel MOF). Within
the MOF standard, we focus on the Essential MOF (EMOF) specification that describes the meta-
metamodel, which appears simplified in Fig. 1. In the MOF modeling framework one can define many
different metamodels. Such metamodels, when represented as data, must conform to the MOF meta-
metamodel. That is, a metamodel, such as the component metamodel, is a model that conforms to the
meta-metamodel MOF. Other metamodels that are likewise specified in MOF are the UML2 metamodel to
define UML models, the OWL metamodel to define ontologies [Lac05], the AADL metamodel to specify
real-time distributed computer systems [SAE07], and so on. The fact that all these metamodels are
specified within the single MOF framework greatly facilitates systematic model/metamodel interchange
and integration.
The MOF hierarchy is closed at its top level, because the MOF meta-metamodel itself is also defined
as a model that conforms to itself. The class diagram notation is indeed used as a convenient concrete
graphical syntax at levels 2 and 3 for hidding the verbose representation of a model, which could likewise
be given as an object diagram. Fig. 2 in Section 4.3 shows the model that constitutes the component
metamodel as an object diagram.

3.2. Discussion and Open Problems

At present, important MOF concepts such as those of metamodel, model and conformance relation do not
have an explicit, syntactically characterizable status in their data versions. For example, we can syntactically
characterize the correctness of the data elements of a metamodel .#, but there is no explicit type that
permits defining .# as a well-characterized value, which we call a model type. In addition, in the MOF
standard and in current MOF-like modeling environments, such as Eclipse Modeling Framework or MS DSL
tools, a metamodel .# does not have a precise mathematical status. Instead, at best, a metamodel .#
is realized as a program in a conventional language as, for example, the Java code that is generated for a
metamodel .# in EMF. This informal implementation corresponds to what we call a metamodel realization. In
these modeling environments, the conformance relation between a model definition M and its corresponding
metamodel .# is checked by means of indirect techniques based on XML document validation or on tool-
specific implementations in OO programming languages. Therefore, metamodels .# and models M cannot
be explicitly characterized as first-class entities in their data versions, and the semantics of the conformance
relation remains formally unspecified. This is due to the lack of a suitable reflective formal framework in
which software artifacts, and not just their metarepresentations, can acquire a formal semantics.

In this work, we formalize the notions of: (i) metamodel realization, (ii) model type, and (iii) conformance
relation, by means of a reflective semantics that associates a mathematical metamodel realization to each
metamodel .#Z in MOF.

4. An Algebraic Semantics for MOF

The practical usefulness of a formal semantics for a language is that it provides a rigorous standard that
can be used to judge the correctness of an implementation. For example, if a programming language lacks a
formal semantics, compiler writers may interpret the informal semantics of the language in different ways,
resulting in possibly inconsistent and diverging implementations. For MOF, given its genericity, the need
for a formal semantics that can serve as a rigorous standard for any implementation is even more pressing,

An Algebraic Semantics for MOF 7

since many different modeling languages rely on the correctness of the MOF infrastructure. In this section,
we propose an algebraic, mathematical semantics for MOF in membership equational logic (MEL).

4.1. A High-Level View of the MOF Algebraic Semantics

A metamodel .# describes a metamodel realization that contains a model type. What this metamodel
describes is, of course, a set of models. We call this the extensional semantics of .#, and denote this
semantics by [.Z]. Recall that we use the notation M : .# for the conformance relation. Using this notation,
the extensional semantics can be informally defined as follows:

[#])={M | M:.«}.

We make the informal MOF semantics just described mathematically precise in terms of the initial algebra
semantics of MEL. As already mentioned in Section 2, a MEL specification (3, E) has an associated initial
algebra T(x;). We call Tix; gy the initial algebra semantics of (¥, E), and write

I, E)ﬂms =1T(s,p)-

Let [MOF] denote the set of all MOF metamodels ., and let SpecMEL denote the set of all MEL
specifications. The reason why we define [MOF] as a set of metamodels .#, instead than as a set of model
types [.#] is because, as already mentioned, the mathematical status of .Z is, as yet, undefined, and is
precisely one of the questions to be settled by a mathematical semantics. Instead, well-formed metamodels
M are data structures that can be syntactically characterized in a fully formal way. Therefore, the set
[MOF], thus understood, is a well-defined mathematical entity. Our algebraic semantics is then defined as
a function

A : [MOF] — SpecMEL

that associates to each MOF metamodel .Z a corresponding MEL specification A(.#). The function A is
defined in detail in Sections 4.2-4.4. Our informal semantics [.#] is thus made mathematically precise.
Recall that any MEL signature 3 has an associated set S of sorts. Therefore, in the initial algebra T(s g each
sort s € S has an associated set of elements T(x,) ;. The key point is that in any MEL specification of the
form A(A), there is always a sort called Model, whose data elements in the initial algebra are precisely the
data representations of those models that conform to .#. That is, Model is the syntactical representation
of the model type [.#] associated to a metamodel .#. Therefore, after A is defined, we can give a precise
mathematical semantics to our informal MOF extensional semantics by the defining equation

[A4] = Taca), Model-

Note that our algebraic semantics gives a precise mathematical meaning to the entities lacking such
a precise meaning in the informal semantics, namely, the notions of: (i) model type [.#Z], (ii) metamodel
realization A(.#), and (iii) conformance relation M : .#. Specifically, we associate to a metamodel .Z a
precise mathematical object, namely, the MEL theory A(.#), constituting its metamodel realization. The
structural conformance relation between a model and its metamodel is then defined mathematically by the
equivalence

M: A <= M € Trhu)model

We will summarize again our formal semantics of all the key MOF concepts in Section 4.4.1 after all
details of the function A have been made precise in Sections 4.2—4.4.

4.2. Reflective Bootstrapping of the Algebraic Semantics

The algebraic semantics that we propose exploits the reflective features of both MOF and MEL. This allows
a modular, stepwise approach in the definition of the semantic function A. This has many advantages, both
theoretically and in the practical realization of A in the MOMENT2 tool.

The key observation about reflection in MOF is that the MOF meta-meta-model at level 3 is also a
meta-model at level 2, which can be treated just as any other metamodel. In particular this means that

MOF € [MOF].

8 A. Boronat and J. Meseguer

It also means that our algebraic semantics function A : [MOF] — SpecMEL applies in particular to MOF,
that is, that there is a MEL theory A(MOF).

The MEL theory A(MOF) is enormously useful to bootstrap our algebraic semantics because of the
following remarkable property. Since for any metamodel .# we have the identity [.#] = Ta(x),moder, in
particular for the meta-metamodel MOF we have the identity

IMOF] = TamoF), Modei-
This suggests the following bootstrapping strategy to define the semantic function A : [MOF] — SpecMEL.

1. First define the MEL theory A(MOF). This automatically gives us the domain [MOF] of our desired
semantic function A : [MOF] — SpecMEL as the algebraic data type [MOF] = Thmor), Modei-

2. Once the domain [MOF] of A is thus algebraically represented, proceed to give a recursive definition of
the semantic function A for any .# € [MOF].

Step (1) is described in Section 4.3, and Step (2) in Section 4.4.

There is, however, a third very important step, namely, to also exploit reflection in the target logical
framework MEL. Reflection in MEL means that there is a wniversal MEL theory U € SpecMFEL that can
simulate the deduction of all finitary MEL theories, including its own deduction [CMPO07].

In particular, the universal theory U has a sort Module that meta-represents all finitary MEL theories,
including U itself. This means that there is an algebraic data type SpecMFEL whose elements are meta-
representations of MEL theories, so that given any finitary MEL theory (X, E'), we have (X, F) € SpecMEL iff

(3, E) € SpecMEL, where (3, E) is the meta-representation of (X, F). Specifically, the algebraic data type
SpecMFEL has the following initial algebra semantics definition:

SpecMEL = Ty moduie-

All this means that we can take a third step in our bootstrapping process, namely, to realize our semantic
function A as an equationally defined function

A : [MOF] — SpecMEL

mapping each metamodel .# to the metarepresentation A(.#) of the MEL theory A(.Z).

At the theoretical level, this third bootstrapping step means that the entire algebraic semantics of MOF
can be defined within the semantic framework of MEL. At the practical level it also means that, because
of the efficient support in Maude for key functionality of the universal MEL theory I/ by means of Maude’s
META-LEVEL module, the function A can be efficiently implemented in Maude. In fact, this is exactly how
the core functionality of the MOMENT?2 tool has been developed, as explained in Section 4.4.

In Sections 4.3 and 4.4 we give a high level summary of the definition of the A semantic function, as
achieved by the three reflective bootstrapping steps described above. A complete definition of A is available
in [Bor07]%. In Section 4.5 we explain how A is used in the EMF by means of MOMENT2.

4.3. The MEL Theory A(MOF)

As already mentioned, we denote the metamodel that constitutes the meta-metamodel of the MOF framework
by MOF. In particular, we focus on the subset EMOF of the MOF standard. An excerpt of the metamodel
EMOF, extracted from the core specification of the standard MOF 2.0 [OMGO06] is shown in Fig. 1. MOF is
itself a MOF metamodel, since MOF : MOF. In this section we take the first bootstrapping step described
in Section 4.2, namely, to define the MEL theory A(MOF). That is, we first define A for a single metamodel,
namely MOF. The A(MOF) theory defines the [MOF] type as the set of metamodels .#, which can be
viewed as both graphs and terms. This theory has been manually defined in [Bor07] as a first step in the
bootstrapping process needed to define the A function in general. The AMOF) theory provides the algebraic
representation for both object types and model types for defining metamodels .#. The full specification of
A(MOF) as a membership equational theory is given in Maude notation as a functional module [Bor07]. As
already explained in Section 2.3, Maude functional modules are ezactly MEL theories with an initial algebra

2 In the dissertation, the A function is denoted by reflecty;op-

An Algebraic Semantics for MOF 9

semantics. The Maude notation for sorts, subsorts, operations, equations and memberships is self-explanatory
and typewriter variant of the mathematical notation [CDE07]. In what follows we present some fragments
of the theory fully specified in [Bor07], in Maude notation, with special emphasis on its sorts, subsorts and
operations.

In the theory A(MOF), object types are used to describe a metamodel .#Z : MOF as a collection of
objects. Objects are defined by using the following sorts: 0id for object identifiers; Cid for class names;
and PropertySet for multisets of comma-separated pairs of the form (property : name = value), which
represent property values. Objects in a metamodel .# are then syntactically characterized by means of an
operator

op <_:_|_> : 0id Cid PropertySet -> Object
These sorts, subsorts and operators are defined, in Maude notation, as follows:

sorts 0id Cid Property PropertySet Object .
subsort Property < PropertySet .
op noneProperty : -> PropertySet .

op _¢,_ : PropertySet PropertySet -> PropertySet
[assoc comm id: noneProperty]
op property‘:_ : String -> Property .
op property‘:_=_ : String String -> Property .
op property‘:_=_ : String Int -> Property .
op property‘:_=_ : String Float -> Property .
op property‘:_=_ : String Bool -> Property .
op property‘:_=_ : String Collection+{0id} -> Property .

In the AMOF) theory, a metamodel .# that conforms to the meta-metamodel MOF, that is, such that
A : MOF, can be represented as a collection of objects by means of a term of sort Model. A term of sort
Model is defined by means of the following constructors, in Maude notation:

sorts ObjCol Model . subsort Model < ObjCol .

op none : -> 0ObjCol .

op __ : ObjCol ObjCol -> ObjCol [assoc comm id: none]
op <<_>> : 0bjCol -> [Model]

That is, we first form a collection of objects of sort ObjCol using the associative and commutative multiset
union operator __? and then we wrap the set of objects by using the <<_>> constructor to get the desired
term of sort Model. Note that membership in the sort Model is not defined just by the constructor <<_>>
(only membership in the kind [Model] is implied by the above operator declaration). Instead, membership of
a term in the sort Model is achieved by conditional membership axioms that are given below after introducing
the formal definition of the object types Class and Property. Each of these modeling primitives is specified
in the A(MOF) theory by means of sorts, subsorts and operators, in Maude notation as follows.

Class object type. Object types are the central concept of MOF to model entities of the problem domain
in metamodels. An object type is defined in a metamodel .# as a Class instance and a set of Property
instances. The object type Class contains meta-properties like name, which indicates the name of the object
type, ownedAttribute, which indicates the properties that belong to the Class instance, and superClass, which
indicates that the object type is defined as a specialization of the object types that are referred to by means
of this property. The Class object type is specified as a sort Class, such that Class < Cid, and a constant
with the operator op Class : -> Class . Terms of sort Property in the theory A(.#) enable the definition
of property values in objects that form part of a metamodel.

In the component metamodel, the Class instance that defines the object type Component in the metamodel
A is defined as the term

< ’class0O : Class | property : "name" = "Component",
property : "isAbstract" = true,
property : "ownedAttribute" = ... >

where ’classO is an object identifier.

3 This binary operator symbol has empty syntax (juxtaposition).

10 A. Boronat and J. Meseguer

Property object type. A model can be viewed as a graph where the collection of nodes consists of the
collection of attributed objects of the model and the edges are defined by means of directed links between
objects, defined as object-typed property values. This graph structure is usually represented with object
diagram notation as in Fig. 1. Indeed, a model is an enriched graph where edges can also be defined as
structural containments so that hierarchies of nested objects can also be represented.

A Property instance in a metamodel .# enables the definition of an attribute in an object or an association
end between objects in a model definition M : .#, one level down in the MOF framework. A Property
instance defines the type of the property, where the type is represented as a DataType instance (basic data
values and enumerations) or as a Class instance (object types). Properties that are typed with datatypes are
attributes, and properties that are typed with object types are association ends or references. An association
end defines a unidirectional association between two classes®. Bidirectional associations are defined by means
of two opposite association ends. Composition associations can be defined by indicating that the association
end that points to the composite class has its meta-property isComposite set to true. Other meta-properties,
such as lower, upper, isOrdered and isUnique, constitute the multiplicity metadata of a specific property.

The co5nstructors that permit defining objects of the Property object type are defined, in Maude notation,
as follows®:

sort Prop . subsort Prop < TypedElement .
op Prop : -> Prop .

The Property instance that defines the metaproperty name of the object type Component in the meta-
model .#Z of the example is represented by the term

< ’prop : Prop | property : "name" = "name",
property : "type" = ’String,
property : "class" = ’classO >.

where ’String is the identifier of the object that represents the built-in String type. We have taken into
account the modeling primitives that constitute the metamodel Essential MOF, including simple data types
and enumeration types. A detailed specification is provided in [Bor07]. The metamodel .# of the example
is defined as a term of sort Model in the AMOF) theory in Fig. 2.

MOF model type. In the theory A(MOF), the sort 0bjCol denotes collections of objects that are instances
of the classes in the metamodel MOF and the sort Model denotes the set of collections of objects that are
models that conform to a given metamodel by satisfying a number of constraints. In particular, we consider
that an object collection is a model if: (i) there are no duplicate identifiers for different objects, (ii) properties
are only set once in an object tuple, (i) there are no dangling references (that is, a model is a well-formed
graph), (iv) an object can only have one container according to the composite association ends in the
metamodel (that is, a model is a hierarchical graph), and (v) values in properties correspond to the type of
the corresponding property definition in the metamodel.

The sort Model is defined with the following memberships, which provide the semantics of the model
type for the metamodel MOF:

mb << none >> : Model

cmb << 0C >> : Model if (OC =/= none) and unique0id(0OC)
and noDuplicateProperties(OC) and noDanglingEdges(0C)
and singleContainer(OC) and validProperties(0C)

The predicates used in the condition of the second membership axiom are defined in the Appendix A as
equationally defined boolean functions, where the predicates correspond to the above-mentioned constraints,
in order of appearance.

The theory A(MOF) is the metamodel realization of MOF'. The carrier of the sort Model, in the theory
A(MOF), in the initial algebra Taor) defines the [MOF] model type, i.e., the model type whose elements

4 Association ends are defined, in the MOF standard [OMGO6], as properties that are owned by the class from which they can
be navigated. This notion was called Reference in previous versions of the MOF standard and it is called FReference in the
EMF.

5 We represent the name of the Property class as Prop to avoid name collisions with the aforementioned sort Property.

An Algebraic Semantics for MOF 11

ownedAttribute type — —
class0 - Class . propO0 : Property String : PrimitiveType

—« , Qi
name = “Component” name = ‘name name = “String

isAbstract = true
superClass, wnedAttribute
superClass type Srop! - Property

1353 name = “connectsTo”
lower =0

class1 : Class class2 : Class
PP — - upper = -1
name = CI_|ent name = S?rver isOrdered = false
isAbstract = false | | isAbstract = false isUnique = true

<< < ’classO : Class | property : "name" = "Component",

property : "isAbstract" = true, property : "superClass" = empty-set,
property : "ownedAttribute" = OrderedSet{’prop0 :: ’propil} >

< ’prop0 : Prop | property : "name" = "name",
property : "type" = ’String, property : '"class" = ’class0 >

< ’propl : Prop | property : "name" = "connectsTo",
property : "type" = ’classO, property : "class" = ’classO,
property : "lower" = 0, property : "upper" = -1,
property : "isOrdered" = false, property : "isUnique" = true >

< ’classl : Class | property : "name" = "Client",

property : "isAbstract" = false, property : "superClass" = Set{ ’classO },
property : "ownedAttribute" = empty-orderedset >

’class2 : Class | property" = "name" = "Server",

property : "isAbstract" = false, property : "superClass" = Set{ ’classO },
property : "ownedAttribute" = empty-orderedset >

’String : PrimitiveType | property : "name" = "String" > >>

A

A

Fig. 2. Metamodel .# viewed as a graph and as a term.

are metamodels:
[MOF] = Tamor), Modet-

Note that, since [MOF] is the set of all metamodels .# in MOF, this means that
MOF e [MOF].

4.4. Reflective Algebraic Semantics of MOF Metamodels

Once the A(MOF) theory is provided, we define the value of the function A on any metamodel .#, such
that .# € [MOF], as its corresponding MEL theory A(.#). This corresponds to the second bootstrapping
step described in Section 4.2. Given a metamodel .Z, the A(.#) theory defines the [.#] semantics as the
set of models M that consist of a collection of typed objects, which can be viewed as a graph where objects
correspond to nodes, object attributes to node attributes and object-typed properties to edges. In addition,
nodes can be nested by means of object-typed properties that are defined as isComposite. The metamodel
A of a model M corresponds to the type graph of the graph M, where object types constitute node types
enabling node inheritance by means of class inheritance relationships.

In the A(#) theory, the algebraic notion of object type is generically given by means of the sort Object.
Terms of sort Object are defined by means of the constructor

op <_:_|_> : 0id Cid PropertySet -> Object.

which is analogous to the constructor for objects that has been presented in the A(MOF) theory.

Models M : .# are given as collections of objects, which are instances of a specific class with name
C. A class in a metamodel is an instance of the class Class in MOF. Each class may contain a number
of properties, defined as instances of the class Property in MOF, as explained in Section 4.3. The object
type [C] that corresponds to a class C' is the set of objects that can be defined as instances of the class C.
Defining the algebraic semantics of an object type involves the definition of the object identifiers and the
properties that may be involved in the definition of a specific object in a model M : .#. Class inheritance
and the corresponding object type specialization relationships must be also taken into account. Therefore,
we need to define the carrier of the sorts 0id, Cid and PropertySet for a specific object type definition.

12 A. Boronat and J. Meseguer

Consider, for example, the metamodel .# in Fig. 1. In subsequent paragraphs, we use this example to
obtain the theory that defines the Component, Server and Client object types.

Class Names. In the A(.Z) theory, each Class definition with name C in .# (except for abstract classes)
is defined as a new sort also named C' and declared to be a subsort of Cid, and C is also declared as a
constant by giving an operator declaration op C : -> C . Abstract classes are defined as those that cannot
be instantiated. For an abstract class C, only the sort C is declared as before. The name of an abstract class
C is not specified as a constant. In this way, when C' is an abstract class, objects in a model M, such that
M : A, cannot have C as their type.

In the example of the component metamodel, the A function generates a sort for the abstract object type
Component in Maude notation as follows:

sort Component .
The concrete object types Client and Server are formalized as sorts and constants as follows:

sorts Client Server .
op Client : -> Client .
op Server : -> Server .

The class name for a given object can be obtained by means of the operator class defined as follows:

op class : Object -> Cid .
eq class(< 0 : C | PS>) =C .

Object Type Specialization Relation. A specialization is a taxonomic relationship between two object
types and is represented as a class inheritance relationship between a subclass and a superclass, where
multiple inheritance is allowed. This relationship specializes a general object type into a more specific one
and is formalized in Maude as a subsort relationship. In the example, we algebraically define the inheritance
relationships between the classes Client, Server and Component by means of the subsorts

subsorts Client Server < Component .
The supersorts of the resulting subsort hierarchy are defined as subsorts of the sort Cid.

subsort Component < Cid .

Object Type Properties. A class is defined with a collection of Property instances describing its meta-
properties. A Property instance is associated with a specific type ¢ in the metamodel ., which is defined
as an object t : Type. Depending on the type t of a property, we can distinguish two kinds of properties:

o Value-typed Properties or Attributes. Properties of this kind are typed with DataType instances, which can
represent either a simple data type or an enumeration type. Value-typed properties define the attributes
of nodes in a graph.

o Object-typed Properties or Association Ends. Properties of this kind are typed with object types, enabling
the definition of unidirectional labelled edges in a graph.

The type meta-property together with the multiplicity metadata define a set of specific constraints on
the acceptable values for the property type. These constraints are taken into account in the algebraic type
that is assigned to the property by means of OCL collection types, as indicated in Table 1. In this table, the
Set{0id} sort corresponds to sets of identifiers that may be empty by means of the constant empty-set,
while the NeSet{0id} sort corresponds to sets of identifiers that cannot be empty, i.e., it excludes the
constant empty-set. In the example, the Component object type is specified in the theory A(.#) with the
above sorts and subsorts and with the operators for defining properties.

4.4.1. Summary of the MOF Algebraic Semantics

The function A : [MOF] — SpecMEL specified in Sections 4.2-4.4 provides the basics for associating to
each basic, informal concept about MOF metamodels a corresponding formal definition. This was already
sketched out in Section 4.1, but is now made even more explicit for the following concepts: (i) metamodel
realization, (i) object type, (iii) model type, and (iv) conformance of a model to a metamodel.

An Algebraic Semantics for MOF 13

Table 1. OCL types for encoding multiplicity constraints in properties.

Type Lower Bound Upper Bound isOrdered isUnique
?,0id 0 1 - -
Set{0id} 0 * false true
OrderedSet0id} 0 * true true
Bag{0id} 0 * false false
Sequence{0id} 0 * true false
0id 1 1 - -
NeSet{0id} 1 * false true
NeOrderedSet0id} 1 * true true
NeBag{0id} 1 * false false
NeSequence{0id} 1 * true false

Definition 1. Given a MOF-conformant metamodel .# : MOF', and given an object class named C' in .Z:

(i) The metamodel realization of .# is the MEL-theory A(.Z).
(ii) The object type of the class C' is the set

[Cl={o]| o€ Tacu),object N class(o) € Tauy,c},

that is, the elements of the object type [C] are all the object instances of the class C' and of all its
subclasses in the inheritance relation specified in ..

(iii) The model type of .# is the set
[[%]] TA(//[,Model»

that is, each model M of ./ is algebraically represented as an element M € [.#], i.e., as an equivalence
class of terms of sort Model modulo the equations and memberships of A(.Z).

(iv) The metamodel conformance relation between a model M and its metamodel .#, denoted M : ., is,
by definition, the memberhip relation M € [.#], that is, we have

M: . H# = M e [H].
4.4.2. Embedding MOF Reflection into MEL Logical Reflection.

We are now ready to discuss the third, final bootstrapping step, mentioned in Section 4.2. The logical
reflective features of MEL [CDE07, CMPO07], particulary its universal theory U, make it possible to internalize
the representation function mapping the specifications of some other formalism to MEL as an equationally
defined function within MEL (see [CDE99]). In particular this can be done for our representation function
for MOF

A : [MOF] — SpecMEL.

Note that the domain of the function A, since it is the algebraic data type [MOF] = Tpanor), moder defined
by initial algebra semantics in Section 4.3, is already internalized within MEL. However, the set of (finitary)
MEL specifications SpecMFEL is a metalevel entity and therefore outside the object level of MEL, that is, not
directly definable as an algebraic data type in MEL. As explained in detail in [CMPO7], this set is representable
at the object level inside the universal theory U as the set of elements of sort Module in its initial algebra
Ty That is, we have a faithful representation mapping

SpecMEL — SpecMEL : (2, FE) — (%, E)
where, by definition, the set SpecMFEL is the algebraic data type
SpecMEL = Ty Module

corresponding to the elements of sort Module in the initial algebra of the universal theory U. Then, the
reflective internalization of the MOF algebraic semantics A becomes an equationally defined function

A : [MOF] — SpecMEL : M +— AN.#)

14 A. Boronat and J. Meseguer

so that the term A(.#), for a specific metamodel .#, metarepresents the MEL theory A(.Z).

But since the universal theory U faithfully simulates all the deductive capabilities of an object level theory
(3, E) by means of its meta-representation (X, E) as data [CMP07], this means that, given a metamodel
A in MOF, anything we can do with its associated MEL theory A(.#) we can likewise perform at the

metalevel with its meta-representation as data A(.#Z). Furthermore, in an efficient implementation of the
relevant deductive functionality of U such as the one provided in Maude’s META-LEVEL module [CDEQ7],
the difference in computation time between performing a deduction in A(.#) or performing the analogous

deduction at the metalevel with A(.#Z) is negligible in practice.

In this way, the term A(.#), that for a specific metamodel .#Z meta-represents the MEL theory A(.#),
can then be used in different model-driven development scenarios, as illustrated in Section 5. The function A
is completely defined in [Bor07] and is implemented as A in MOMENT?2. That the function A is equationally
definable follows from the general principle that A is a computable function and that all computable functions
can be equationally defined by a finite set of confluent and terminating equations [BeT80]. In practical
terms, this is just a matter of representing all the recursive definitions given for in A earlier in Section 4.4
as corresponding equational definitions at the metalevel.

4.5. MOMENT?2 and the Eclipse Modeling Framework

MOMENT? is a suite of tools, built on top of the Eclipse Modeling Framework (EMF), that provides support
for formal model-driven development. The mathematical foundations of this tool suite directly rely on the
algebraic semantics A of MOF metamodels, presented in this work, which can be neatly exploited in the
EMF, a widely used MOF-like metamodeling framework, by means of OMG standards, such as MOF, OCL
and QVT. In this way, the formal analysis techniques that are presented in Section 5 can be applied to model-
driven development practices in industrial environments, such as Rational Software Architect [RSA09] or
OSATE AADL [SAEO07]. In particular, MOMENT?2 provides support for verifying metamodel conformance
with OCL constraint satisfaction [BoM09], QVT-like model transformations and their verification based on
Maude’s reachability analysis and Maude’s LTL model checker, as explained in [BHMO09).

The integration of MOMENT?2 into the EMF is based on a metamodel-independent, automatic bridge®
between EMF and Maude. For each metamodel .#, the key components of this bridge are: (i) a model
representation function rep : [#] — [.#] ypsr, Which represents each .#-conformant model M € [.#] in
the algebraic semantics as an EMF model instance” rep(M) € [.#] gy, Where [4], denotes the set of
M -conformant models in their EMF representation; and (ii) its inverse function rep™ : [4] pye — [#].
which converts each EMF model instance to its corresponding algebraic representation rep~*(Mgyr) € [#].
Note that only the set [.#] has been given a formal representation. Therefore, the set [.#]z,r and the
functions rep and rep~! are respectively realized by the EMF system and Java code in the MOMENT?2 im-
plementation. However, the bridge provided by the (rep, rep~!) pair is quite robust, because the conformance
relation is checked for Mgyp € [4] gy by EMF, and for M € [.#] by Maude. Up to renaming of object
identifiers, the functions rep and rep~! are inverse of each other. Specifically, for each Mppp € [A] gy We
have rep =t (rep(Mpyr)) = Mpyr and for each M € [.#], rep(rep=t(M)) differs from M only in a renaming
of its object identifiers, due to the internal management of object identifiers as URIs in EMF.

Fig. 3 shows a summary of the formalization of the metamodel .# of the example and a configuration of
components as a model M in the formal framework, i.e., as a term of sort Model. In this way, MOMENT2
enables the prototyping and experimentation of formal model-driven development techniques and the formal
analysis of model-based languages and models in Maude, as shown in Section 5.

6 This bridge uses the APT of the Maude Development Tools [Mau06] for integrating Maude into Eclipse.
7 In EMF terminology, a metamodel at M2 is an EMF model and a model at M1 is an EMF model instance.

An Algebraic Semantics for MOF 15

sort 0id Cid Property PropertySet Object ObjCol Model .
subsort Qid < 0id .

subsort Property < PropertySet .

op noneProperty : —-> PropertySet .

op _,_ : PropertySet PropertySet -> PropertySet
connectsTo | 0..1 [comm assoc id: noneProperty]

{| Component subsort Object < ObjCol .

= name : EString op <_:_|_> : 0id Cid PropertySet -> Object .
Ao T‘ep_l op none : -> ObjCol .

op __ : ObjCol ObjCol -> ObjCol [comm assoc id: none]

— op <<_>> : ObjCol -> [Model]

mb << none >> : Model
[client £ server cmb << 0C >> : Model if (OC =/= none) and unique0id(OC)
and noDuplicateProperties(OC) and noDanglingEdges(0C)
and singleContainer(OC) and validProperties(0C)

op property‘:_=_ : String String -> Property .
op property‘:_=_ : String Collection+{0id} -> Property .

o roperty : —> Property .
M2 P property perty

sorts Configuration Component Client Server .
M1 c1: Client subsorts Configuration Component < Cid .

op Configuration -> Configuration .

subsorts Client Server < Component .
| s2 : Server I op Client : -> Client . op Server : -> Server .

| c3 : Client

<<

< ’cil : Client | property : "name" = "c1", property : "connectsTo" = ’si1 >
< ’c2 : Client | property : "name" = "c2", property : "connectsTo" = ’sl1 >
< ’c3 : Client | property : "name" = "c3", property : "comnectsTo" = ’s1 >
< ’c4 : Client | property : "name" = "c4", property : "comnectsTo" = ’s1 >
< ’sl : Server | property : "name" = "si", property : "connectsTo" >
< ’s2 : Server | property : "name" = "s2", property : "connectsTo" >

>>

Fig. 3. EMF-Maude mappings in MOMENT?2.

4.6. A Metamodeling Framework with n Layers.

Although the number of metamodeling layers that are usually taken into account is up to four, the MOF
2.0 core specification allows the use of n layers [OMGO6]. Our algebraic semantics for layers M3-M28 can
be naturally extended to support n layers for arbitrary n > 2. Furthermore, it is not necessary to require
that the corresponding semantic framework is MEL, which typically supports a more static semantics. To
support dynamic semantics of models in an n-layer MOF framework, we may use rewriting logic and exploit
the logic containment MEL C RL, which induces a containment of specifications SpecMEL C SpecRL. Our
present semantics, which is a semantics A = A, can be extended as follows. The first step of the extension
chooses a model @1 € [MOF] and defines a new formal semantics for layer 2 as a function

Ay : [Q1] — SpecRL.

We again define the semantics of a model Q2 € [@1] using initial model semantics by using a sort Model in
A2(Q2) and defining [Q2] = Ta(Qs,), Moder Where if Ay (Q2) is the rewrite theory (X, EUA, R), then Ta,(Q,), Model
is, by definition, the carrier of sort Model in the initial algebra T(s pua)-

Following inductively this way, if we have already provided a semantics up to level n using models
Qo € [MOF] (where Qo = MOF), Q1 € [Qo], Q2 € [@1],--,@n-1 € [@rn—2], then we can add layer n + 1

8 Recall from Section 3 that layer 0 is the meta-metamodel layer M3 of MOF, layer 1 is the layer M2 of metamodels .# € [MOF],
and layer 2 is the layer M1 of models M € [.Z].

16 A. Boronat and J. Meseguer

0 [Qo] > Qo SR 2o (Qo)
1 [Qo] > @1 R A (Q1)
n+1 [Qn] 2 Qni1 & App1(Qn1)

Fig. 4. N-layer metamodeling framework for MOF.

in the same way by choosing a model @,, € [@,—1] and by defining a function
Any1 : [Qn] — SpecRL
again, defining for each @41 € [@,] its semantics by the identity

[[Qn+1ﬂ = TAn,+1 (Qn+1),Model-

This process of iterated extension is schematically depicted in Figure 4, where A coincides with A obtaining
the MOF theory A¢(Qo) = A(MOF), explained in Section 4.3.

Note that the first extension step A to our semantics A; has already been considered, in a more general
way, in the paper [BKMO09], where for each @1 € [MOF] an institution [GoB92] Zg, is chosen and then an
Zg,-based semantics is given as a mapping As : [Q1] — Specz,,, -

The above extension scheme is the case where Zg, = RL. Furthermore, our scheme, by using initial model
semantics at all layers can be extended to an arbitrary number of levels, whereas it is not clear how the more
general institutional semantics of [BKMO09] could be further extended to layer 3 for an arbitrary institution.

An interesting example of a useful extension of our semantics A; to a rewriting logic semantics Ao is
provided by the semantics (presented in [OBMO09]) of (a fragment of) AADL models in rewriting logic as a
mapping As : [AADL] — SpecRL, where an AADL model @, including behavior information defined with
AADL’s behavioral annex, has an associated rewrite theory As(Q2) that can be used in conjuction with the
Real-Time Maude tool [OIMO07] to both simulate and formally analyze real-time properties of the AADL
model Q.

5. Applications in Model-Driven Development Scenarios

In this Section we present some model-driven scenarios in which the algebraic semantics A of MOF meta-
models plays an important role. We illustrate the application of A by using Maude and its support for formal
reasoning in the running example of model-based software architecture reconfigurations. These techniques
are internally used in MOMENT?2, so that they can be applied in EMF-based environments through OMG
standards and without explicit contact with the underlying MEL and Maude.

Section 5.1 presents some scenarios where A provides the formal foundations for techniques and practices
widely used in the model-driven community: metamodel conformance, semantics of MOF domain-specific
languages, model transformations and model management. Section 5.2 focuses on the formal implications
and advantages of our approach where formal analysis is made available within modeling environments: static
analysis based on structural constraint satisfaction, and dynamic analysis based on reachability analysis and
LTL model checking.

5.1. Model-Driven Development Scenarios

Model-driven development techniques can be formalized in our approach as follows.

An Algebraic Semantics for MOF 17

2 : Component

3 : Component r| 1:Component 2 : Component

4 : Component \:> | 3 : Component | 1 : Component |

| 4 : Component }—)l 6 : Component |

Fig. 5. Reconfiguration rule.

5.1.1. Model conformance.

MOMENT?2 provides an automated, deductive mechanism to check the structural conformance relation
M : A by relying on Maude’s implementation of MEL. Consider the metamodel .# and the model conf1
in Fig. 3, given as a constant confl. We can automatically check whether the model conf1 conforms to the
metamodel ., formalized as the model type [.#] and syntactically represented by the sort Model in the
theory A(.#), by evaluating the following membership in Maude:

red confl :: Model .
result Bool: true

5.1.2. Rewriting logic semantics of domain-specific languages.

A MOF-based domain-specific language (DSL) provides modeling primitives that can be used to define
concepts in a given domain. For example, real-time embedded systems can be specified with AADL [SAEOQT],
web service workflows can be defined with BPEL [Wsb07], or ontologies can be defined with OWL [Lac05].
The abstract syntax of these languages is provided as MOF metamodels, their concrete syntax can be
either textual or graphical, and their dynamic semantics can be defined either with approaches for defining
the semantics of programming languages, with frameworks that provide library support for manipulating
models, such as Kermeta [Tri08], or with graph transformation systems [Roz97, EMK99, EEP06]. The last
one constitutes an interesting candidate for defining model-based DSLs due to the graph-based nature of
models and to the formalization of the approach.

A MOF metamodel .# is used to define concepts in a particular domain, such as components in our
running example, where software architectures are configurations of components that may be connected to
each other through the connectsTo association end. In this section, we enrich the algebraic semantics A(.#Z)
with a rewrite rule to define a dynamic semantics for component configurations. In particular, we add a
dynamic connection load balancing strategy, so that a server component should not have more than two
connections at a time, i.e., when a component has more than two connections, the spare connections are
forwarded to other components with less than two incoming connections. We depict the reconfiguration as
a graph transformation rule in Fig. 5, where a rule is defined with a left-hand side (LHS) pattern and a
right-hand side (RHS) pattern. Each pattern consists of nodes that represent Component objects in a model
(graph) M and edges representing connectsTo references between them. A reconfiguration can be applied
whenever the LHS pattern of the rule can be matched against a specific configuration M of components,
and then the edges are manipulated as follows: an edge in the LHS and not in the RHS is removed from the
configuration, an edge not in the LHS but in the RHS is added, the rest of edges remain unmodified. Marked
edges indicate that the edges must not exist in order to apply the rule; this notion is known as a megative
application condition in the graph transformation community.

The graph-theoretic nature of models is axiomatized in our algebraic semantics as a set of objects modulo
the associativity, commutativity, and identity axioms of set union. The semantics of a reconfiguration can
then be naturally expressed as a rewrite theory [Mes92] extending the algebraic semantics A(.#) of our
metamodel specification with rewrite rules that are applied modulo the equational axioms. In this way, the
above graph-transformation rule can be summarized at a high level as follows:

op free-reconfiguration : Model -> Model .
crl free-reconfiguration(M) =>

18 A. Boronat and J. Meseguer

free-reconfiguration(<< < 01 : C1 | PS1 >

< 02 : C2 | property : "connectsTo" = 01, PS2 >
< 03 : C3 | property : "connectsTo" = 01, PS3 >
< 04 : C4 | property : "connectsTo" = 05, PS4 >

<05 : C5 | PS5 > 0OC >>)
if << <01 : C1 | PS1 >
< 02 : C2 | property : "connectsTo" = 01, PS2 >
< 03 : C3 | property : "connectsTo" = 01, PS3 >
< 04 : C4 | property : "connectsTo" = 01, PS4 >
<05 :C5 | PS5 >0C > :=M A nac(05, M) .

where the expression P := M matches the pattern P to the model variable M, 01, 02, 03, 04, 05 : 0id,
c1, C2, C3, C4, C5 : Component,

PS1, PS2, PS3, PS4, PS5 : PropertySet, OC : 0ObjCol, M : Model, the LHS of the graph transforma-
tion rule in Fig. 5 corresponds to the pattern in the P := M expression, its RHS corresponds to the RHS
of the rewrite (after the => symbol), and the nac(05,M) condition corresponds to the negative application
condition that enables the application of the rule:

op nac : 0id Model -> Bool .
eq [counterexampleNAC] : nac(01,
<< <01 :C1 | PS1>

< 02 : C2 | property : "connectsTo" = 01, PS2 >
< 03 : C3 | property : "connectsTo" = 01, PS3 > OC
>>
) = false .

eq [satisfiedNAC] : nac(01, M) = true [owise]

The formalization of model transformations in rewriting logic and their verification in Maude presented in
[BHMO09] is also available in the MOMENT?2 framework, extending the formalization of the MOF framework
that is presented in this paper, relying on it, and providing a user-friendly EMF-based programming environ-
ment generated with openArchitectureWare?. The most recent version of MOMENT?2 provides a QVT-like
syntax to define transformation rules that are then automatically translated into rewrite rules and executed
by Maude. In [BHMO09], the authors present a more detailed treatment of the graph transformation notions
that are explained in this section for formal verification purposes.

5.1.8. Model transformations and operators for model management.

Due to the executability of MEL specifications in Maude, the realization of MOF metamodels as MEL
theories enhances the formalization and prototyping of model-driven development processes, such as:

e Model transformations [SeK03], where translations of models between different modeling languages can
be performed.

e Model-driven roundtrip engineering [BGS08, PMDO05], where a model that constitutes the abstract syntax
tree of a program can be translated into a model that specifies the software at a higher level of abstraction.
Code may be generated again from recovered models in an automated way. An important issue is to keep
both the abstract description and the code synchronized to deal with changes in a consistent way.

e Model traceability [ANRO6], where traceability is important to keep track of the changes applied to
software artifacts in a software development process for maintenance and evolution purposes.

e Model management [Ber03], where models can be manipulated by means of generic operators that rely on
mappings between models. These operators permit, for example, merging models, generating mappings
between models, and computing differences between models; they can be used to solve complex scenarios
such as the roundtrip problem.

We illustrate the application of MOMENT?2 to trace component reconfigurations, which can be applied
to adapt a configuration to a given criteria, as the load balance strategy discussed above. We consider a
traceability metamodel .7 to define mappings between components as models T', such that T : 7. An
equationally defined operator is presented to generate such models.

9 An updated version with the new XText framework is ongoing work.

An Algebraic Semantics for MOF 19

H Todel sorts TModel TMapping .

subsorts TModel TMapping < Cid .

[}
A op TModel : —> TModel .

o+ | iinks F—> op TMapping : -> TMapping .

|-} Component [2]| 0..1 .
(from component) 5 TMapping op property‘:_=_ : String String -> Property .
© name : EString 0.1 op property‘:_=_ : String Collection+{0id} -> Property .
op property : —> Property .

domain

Fig. 6. Traceability metamodel .7 and its algebraic realization A(.7).

The metamodel 7 in Fig. 6 permits defining mappings between components that may belong to different
configurations as TMapping instances. A TModel instance constitutes the container for all the mappings
between two models. Given configurations confl and conf2; a trace model can be defined between them
in order to map the elements that represent the same component in both configurations. Such mappings
can be used to keep track of the changes that have been applied to the initial configuration or to identify
structurally-equivalent elements in a model management scenario as presented in [BCR05, BCROG6].

A model transformation, defined as an equationally defined function, can be used to automatically gen-
erate a trace model between two configurations. The following match operator takes two component con-
figurations (the models conf1 and conf2 in Fig. 1) as inputs and generates a trace model with mappings
between the components of both configurations. The match operator uses an auxiliar operator $match that,
in addition, takes a traceability model that is initialized with a TModel instance, and a natural number that
is used to create object identifiers. The $match operator adds a new link whenever two components with the
same name are found. More complex structural criteria can be used to match objects by simply traversing
the objects that constitute the model by means of matching modulo associativity and commutativity axioms.

op match : Model Model -> ModelTrac .
eq match(M1,M2) = $match(M1,M2,init-trac,0)

op $match : Model Model ModelTrac Nat -> ModelTrac .
eq $match(<< < 01 : Cl1 | property : "name" = Name, PS1 > OC1 >>,
<< < 02 : C2 | property : "name" = Name, PS2 > 0C2 >>,
<< < 03 : TModel | property : "links" = Set, PS3 > 0C3 >>, N
) =
$match(<< 0C1 >>, << 0C2 >>,
<< < 03 : TModel |
property : "links" = Set -> including(getNewOid(N)), PS3 >
< getNew0id(N) : TMapping | domain : 01, range : 02 > 0C3 >>,
N+1)
eq $match(M1,M2,TM, N) = TM [owise]

where Model{Trac} is the sort of the model type [7] in the theory A(7), init-trac is a constant that
represents a trace model with a single TModel instance, the getNew0Oid function obtains a new object
identifier from a natural number, and the including operator adds an element to a set, as in OCL. The
trace model betweeen the configurations confl and conf2 can be generated by means of the command
red match(confl, conf2). The output model is illustrated in Fig. 7.

5.2. Formal Analysis Scenarios

In this subsection, we present some applications of the algebraic semantics A for MOF metamodels to formal
reasoning of model-driven development practices. In particular, static and dynamic analysis of model-based
domain-specific languages (DSLs).

20 A. Boronat and J. Meseguer

match(conf1,conf2) match(conf1,conf2)
<<
(e | o | o
property : "links" = Set{ ’1, ’2, ’3, ’4, ’5, 6 } >
__ ______ _ < ’1 : TMapping | property : "domain" = ’ci,
property : "range" = ’cl >
< ? . i s in" =
i |-G [t T e L
|- > < ’3 : TMapping | property : "domain" = ’c3,
c4:Client [~7~ "~ ~| c4.:Client property : "range" = ’c3 >
<— < ’4 : TMapping | property : "domain" = ’c4,
rep property : "range" = ’c4 >
—’-- —————— —4— < ’5 : TMapping | property : "domain" = ’si,
property : "range" = ’s1 >
-- —————— — < ’6 : TMapping | property : "domain" = ’s2,
property : "range" = ’s2 >
conf1 conf2 >>

Fig. 7. Trace model and its term representation.

5.2.1. Static analysis.

Once a metamodel . is realized as a theory A(.#'), more axioms can be added to A(.#) in order to enrich
the semantics of the metamodel .# or to add semantics to the corresponding DSL. These axioms may
correspond to OCL constraints as shown in [BoM09] and can be used to verify that a specific model satisfies
certain semantic properties.

For example, we can define a boolean predicate over a model that specifies that client components do
not receive connections from other components in a specific configuration. This predicate is given as an
equationally defined function that negates the satisfaction of the predicate when the property is not satisfied
and that asserts its satisfaction in any other case:

op checkClientServer : Model -> Bool .

eq checkClientServer(<< < 01 : C1 | property : "connectsTo" = 02, PS1 >
< 02 : Client | PS2 > OC >>) = false .

eq checkClientServer(M:Model) = true [owise]

where 01, 02: 0id,Cl : Component,PS1, PS2: PropertySet,and 0C : ObjCol, and where the last equa-
tion uses Maude’s owise feature, so that it is applied if and only if the other equations for checkClientServer
fail. As explained in [CDEQ7], owise equations are semantically equivalent to ordinary but more verbose
conditional equations. The models confl and conf2 in Fig. 1 can then be verified as follows:

red checkClientServer (conf1)
result Bool: true

red checkClientServer (conf2)
result Bool: false

where conf2 does not satisfy the constraint.
5.2.2. Formal verification of behavioral specifications.

The rewriting logic semantics of DSLs, defined by means of A and additional rewrite rules, can also be used for
formal dynamic analysis. Given a specific initial configuration M of components, we can use Maude’s search
command to model check whether or not all possible reconfigurations of an initial configuration preserve the
constraint checkClientServer, introduced above.

The metamodel realization A(.#), corresponding to Fig. 1, and the rewriting rule free-reconfiguration
presented above define a state transition system, where states represent configurations M and M’ of com-
ponents and transitions M — M’ are given by one application of the reconfiguration rule. However, a
reconfiguration of this kind could conceivably produce configurations M’ of components that do not satisfy
the constraint checkClientServer.

In Maude, the search command allows one to exhaustively explore (following a breadth-first strategy)

An Algebraic Semantics for MOF 21

the reachable state space defined by a state transition system as the one above, checking if an invariant is
violated. We can use the search command to find out if the reconfiguration free-reconfiguration produces
such an illegal configuration as follows':

search [1] free-reconfiguration(confl) =>+
free-reconfiguration(<< < 01 : C1 | property : "connectsTo" = 02, PS1 >
< 02 : Client | PS2 > OC >>)

where confl is a constant that represents the initial configuration M in Fig. 1. This command finds a
counterexample, conf2 in Fig. 1, where a client component is connected to another client component. An
alternative reconfiguration rule can be defined to avoid this problem as shown below, by indicating that the
node 05 in the graph patterns of the rule in Fig. 5 is of type Server. No counterexamples are found when
running again the search command with the new reconfiguration rule.

op safe-reconfiguration : Model -> Model .
crl safe-reconfiguration(M) =>
safe-reconfiguration(<< < 01 : C1 | PS1 >
< 02 : C2 | property : "connectsTo" = 01, PS2 >
< 03 : C3 | property : "connectsTo" = 01, PS3 >
< 04 : C4 | property : "connectsTo" = 05, PS4 >
< 05 : Server | PS5 > OC >>)
if << <01 :C1 | PS1 >
< 02 : C2 | property : "connectsTo" = 01, PS2 >
< 03 : C3 | property : "connectsTo" 01, PS3 >
< 04 : C4 | property : "connectsTo" = 01, PS4 >
< 05 : Server | PS5 > OC >> := M / nac(05, M)

5.2.8. Linear temporal logic model checking.

Maude also provides a model checker where properties can be given as linear temporal logic (LTL) for-
mulae [CDEQ7]. Taking into account the safe-reconfiguration rule that has been added to the theory
A(A), we can also model check liveness properties, such as the fact that the server sI will always have
a balanced load L eventually. This property can be formulated in LTL as 0O ¢ balanced(”s1”, L), where
balanced(”s1”, L) is a state predicate that is satisfied when the server component with name ”s!” has L
or less connections. Following the guidelines provided in [CDEO0T7], we defined a subtheory inclusion to use
Maude’s model checker, defined in the theory MODEL-CHECKER, into the theory A(.#) that is extended with
the rule safe-reconfiguration. The sort Model is defined as subsort of the sort State, used by the model
checker to represent system states. The predicate symbol balanced is then defined as a parametric predicate
|= between system states and state predicates can be equationally defined for the case in which the state
predicate is satisfied:

subsort Model < State .

op balanced : String Nat -> Prop .

eq free-reconfiguration(<< < 01 : Server |
property : "name" = Name, PS1 > OC >>)
|= balanced(Name, L)

= (countBalance(01, << < 01 : Server |
property : "name" = Name, PS1 > 0C >>) <= L)

where countBalance is an equationally defined function that counts the number of connections to a given
component with identifier 01 in the model M:

op countBalance : 0id Model -> Nat .

eq countBalance(01, << < 02 : C2 |
property : "connectsTo" = 01, PS2 > OC >>) =
1 + countBalance(01, << 0C >>)

eq countBalance(01, M) = 0 [owise]

10 We have removed the types of the variables in the RHS of the command (after the =>+ symbol) for the sake of simplicity.

22 A. Boronat and J. Meseguer

The model predicate balanced("s1",2) can be used in a LTL formula to model check that the server
"s1" will end up with 2 or less connections as follows:

red modelCheck(safe-reconfiguration(confl), [] <> balanced("s1", 2))

6. Related Work

The meaning of the metamodel notion has been widely discussed in the literature, see for example [Lud04,
Sei03, Kuh06, Ren04]. There is a consensus that a metamodel can play several roles: as data, as type or as
theory. In this paper, we have formally expressed each of these roles by means of the notions of metamodel
A, model type [.#], and metamodel realization A(.#), respectively.

The current MOF standard does not provide any guidelines to implement a reflective mechanism that
obtains the semantics of a metamodel. An informal attempt to realize MOF metamodels as Java programs is
provided in the Java Metadata Interface (JMI) specification [JCP02], which is defined for a previous version of
the MOF standard. A mapping of this kind has been successfully implemented in modeling environments such
as the Eclipse Modeling Framework. By contrast, our A function gives us an executable formal specification
of the algebraic semantics of any EMOF metamodel . .

Although EMOF metamodels can be viewed as simplified UML class diagrams, formal approaches for
metamodeling need a reflective mechanism, such as A in our approach, to provide the semantics of modeling
languages. This mechanism is not needed in UML, where the modeling language is fixed. We focus on several
approaches for metamodeling that rely on different formalisms.

The Meta-Modeling Language is a meta-circular language based on the MML calculus [CEKO1], which
provides an operational semantics for both UML modeling constructs and OCL operators. Modeling lan-
guages can be precisely defined in MML by explicitly specifying its abstract syntax, its semantic domain and
a mapping between the concepts involved in both [CEK02]. This mapping can be viewed as the application
of the function A to a specific metamodel .Z .

Alloy [Jac06] is a declarative language based on first-order relational logic in which systems with con-
straints can be modeled. The Alloy analyzer [All09] provides an automated mechanism for constraint sat-
isfaction with two main functionalities: simulation for producing valid instances of an Alloy specification
and assertion for verifying constraints. [ABGO07] provides an encoding of EMOF metamodels with OCL con-
straints into Alloy so that the Alloy analyzer [A1l109] is used to generate models that conform to a metamodel
(automated test case generation) and to verify that OCL constraints can be satisfied. Counterexamples and
logical inconsistencies are found when the constraints are not satisfied. In [ABKO08], the Alloy analyzer is used
to verify relational model transformations in order to ensure that a model transformation cannot produce
invalid models. However, Alloy has a simple type system where only integers can be used in attribute values.

In [Poe06], constructive type theory is used for defining a typed metamodeling framework, where models,
which are defined as terms, can also be represented as types by means of a reflection mechanism such as A.
In this framework, the conformance relation is implicitly provided by construction: only valid models can be
defined as terms, and their definition constitutes a formal proof of the fact that the model belongs to the
corresponding type by means of the Curry-Howard isomorphism.

The Diagram Predicate Framework, which combines notions from category theory and first-order logic
extending the theory of generalized sketches [Mak97], has been used to formalize MOF metamodels and their
OCL constraints diagrammatically [RRW09]. In this work, the authors illustrate how their approach can be
used to formalize software artifacts in several layers of the MOF framework, where the conformance of a
model to its metamodel is encoded as a graph morphism.

In the graph transformations field [Roz97, EMK99, EEP06], metamodels are defined as type graphs
with node inheritance, and models are defined as attributed typed graphs. The main difference between
type graphs and metamodels rely on the use of composition associations in EMOF metamodels, which can
be used for defining hierarchies of composite objects in models. A notion of graph with containments is
introduced in [BETO08], where the authors show how graph transformations can be used as a formal backend
for model transformations. In this way, the theory on graph transformations and related tools can be used to
perform formal analysis of model transformations. In particular, the authors show how to analyse termination
and confluence of model transformations that are encoded as graph transformations in the algebraic graph
transformation environment AGG [Agg09].

There are a number of metamodeling approaches based on Maude. Maude already provides support for

An Algebraic Semantics for MOF 23

object-oriented programming [Mes93], where objects, the isInstanceOf relation and the class specialization
relation are supported. The dynamics of object-oriented systems can be provided by means of term rewriting.

The static semantics of the UML metamodel (version 1.3) has been previously formalized as an algebraic
specification in MEL [FeT01]. In this approach, the authors already took the MOF approach into account,
although the MOF standard was in its early stages. In [FeT00, Fer02], the authors provide a formal four-
layered framework where: (i) some parts of the MOF meta-metamodel are formalized in a MEL theory at M3
level (called MOF layer); (i) the UML class diagram and the object diagram metamodels are provided as
MEL theories, called syntactic specification and semantic specification respectively, at M2 level (called UML
metamodel layer); (iii) UML class diagrams are defined as terms in the syntactic specification theory at M1
level (called domain model layer); and (iv) object diagrams are defined as terms in the semantic specification
theory at MO-level (named user objects layer). A novel feature in this approach relies on the reuse of the
reflective facilities of MEL to provide support for the evolution of UML-based software artifacts [ToF00]. The
authors focused on the verification of static properties by using Maude as an implementation of MEL and
the language to define the constraints.

Another approach [RRD07] based on Maude uses the KM3 language [JoB06] for indirectly defining EMOF
metamodels. In this work, the authors present how KM3 specifications of metamodels can be represented
as object modules [CDE07] in Full-Maude and how models can be defined as Maude collections of objects.
However, no automated support is provided for representing models as terms since KM3 only permits defining
the textual concrete syntax of metamodels. That is, mappings like rep~! and rep are not defined for models
that conform to metamodels that are extracted from KM3 specifications. In this way, the user has to define
the models in Maude notation directly. The authors provide a mechanism to represent KM3 specifications
of metamodels as collections of objects at a syntactic level so that Maude is used to statically analyse KM3
specifications: to check when two metamodels describe model subtypes, to infer metamodels from models
and to compute metrics. However, model types are not algebraically characterized. Since KM3 metamodels
can be represented in EMF automatically, KM3 metamodels can also be formalized through MOMENT2.

Our algebraic semantics A for EMOF metamodels .# in MEL formally defines the notions of metamodel
realization A(A), model type [] and model conformance M : . This means that A enables reasoning
with model types at an algebraic level and not just at a syntactical level. Due to the graph nature of models,
the algebraic semantics A for MOF can also be used as an algebraic environment for graph transformations,
where Maude’s analysis capabilities, such as reachability analysis and LTL model checking, can be reused. The
complete algebraic formalization of EMOF metamodels together with OCL can be found in [BoM09, Bor07],
where composition associations are also taken into account in the formalization. The algebraic semantics A
is implemented in MOMENT?2 where EMF is used as implementation of the EMOF standard. Furthermore,
the generic mappings rep and rep~! allow representing EMF models as terms in MOMENT? in a transparent
way to the user. This is an essential feature in MOMENT2, where the goal is to apply Maude for formal
model management tasks by using OMG standards, such as MOF, OCL and QVT.

7. Conclusions and Future Work

In this work we have proposed an algebraic semantics for the MOF metamodeling framework, formalizing
notions not yet clear in the MOF standard. In our approach, we give an explicit formal representation for
each of the different notions that may be involved in a metamodeling framework: metamodel realization
A(A), model type [.#], and metamodel conformance M : .#. Our work provides an algebraic executable
formalization of the MOF standard that can be reused in standard-compliant frameworks.

This algebraic framework opens a wide spectrum of interesting applications for model-driven develop-
ment. In particular, we have shown how it can be used for automatically checking metamodel conformance,
defining domain-specific languages and specifying model transformations and model management operators.
In addition, Maude’s formal verification facilities can be used for static and dynamic analysis of domain-
specific languages, such as checking constraints over models, reachability analysis and LTL model checking.

The algebraic semantics for MOF' provides the foundational notions for a model management tool suite,
MOMENT2 [Mom09], that supports both OCL [BoM09] and QVT-like model transformations [BHMO09].
MOMENT?2 uses MOF, OCL and a QVT-like model transformation language as interface, so that the
techniques that have been illustrated in this work are internally used in a transparent way to the user. For
the development of this framework, we have relied on the experience gained in previous prototypes that
gave algebraic executable specifications for OCL [BOGO06], QVT [BCR06] and model management operators

24 A. Boronat and J. Meseguer

[BCRO5, BCRO6]. In addition, grammar-based software artifacts can also be related to models by specifying
context-free grammars as MEL signatures. This last feature makes our framework also suitable for forward
and reverse model-driven engineering.

In future work, we plan to apply the algebraic MOF framework together with the aforementioned tool for
model transformations and Maude-based formal reasoning techniques in model-driven development scenarios,
where software systems that are developed contain critical properties that have to be verified. In particular,
we are considering the formal analysis of real-time embedded systems in the avionics domain, by using
model-based languages like the Architecture Analysis and Design Language (AADL) [SAE07].

Acknowledgments.

We thank the anonymous referees for their comments and suggestions that have helped us to improve the
exposition. This work has been partially supported by the project META TIN2006-15175-C05-01, by the
ONR Grant N00014-02-1-0715, by NSF Grant IIS-07-20482, and by the project SENSORIA, IST-2005-
016004.

References

[ABGOT] K. Anastasakis, B. Bordbar, G. Georg, and 1. Ray. UML2Alloy: A Challenging Model Transformation. In G. Engels,
B. Opdyke, D. C. Schmidt, and F. Weil, editors, MoDFELS, volume 4735 of LNCS, pages 436—450. Springer, 2007.

[ABKO08] K. Anastasakis, B. Bordbar, and J. M. Kiister. Analysis of Model Transformations via Alloy. In MODEVVA,
volume 5002 of LNCS. Springer, 2008.

[Agg09] AGG Homepage, 2009. http://tfs.cs.tu-berlin.de/agg/.

[ALl09] Alloy Analyzer Homepage, 2009. http://alloy.mit.edu/.

[ANRO6] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model traceability. IBM Syst. J., 45(3):515-526,
July 2006.

[Ber03] P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. In Proceedings of the 1st Biennial
Conference on Innovative Data Systems Research (CIDR), 2003.

[BeT80] J. Bergstra and J. Tucker. Characterization of computable data types by means of a finite equational specification

method. In J. W. de Bakker and J. van Leeuwen, editors, Automata, Languages and Programming, Seventh
Colloquium, pages 76—90. Springer-Verlag, 1980. LNCS, Volume 81.

[BETO08] E. Biermann, C. Ermel, and G. Taentzer. Precise Semantics of EMF Model Transformations by Graph Transfor-
mation. In K. Czarnecki, editor, MoDELS’08, volume 5301 of LNCS, pages 53—67. Springer, 2008.

[Bez05] J. Bézivin. On the unification power of models. Software and System Modeling (SoSym), 4(2):171-188, 2005.

[BCRO5] A. Boronat, J. A. Carsi, and I. Ramos. Automatic Support for Traceability in a Generic Model Management
Framework. In A. Hartman and D. Kreische, editors, ECMDA-FA, volume 3748 of LNCS, pages 316-330. Springer,
2005.

[BCROG] A. Boronat, J. A. Carsi, and I. Ramos. Algebraic specification of a model transformation engine. In L. Baresi and
R. Heckel, editors, FASE, volume 3922 of LNCS, pages 262-277. Springer, 2006.

[BCROG] A. Boronat, J. A. Carsi, I. Ramos, and P. Letelier. Formal model merging applied to class diagram integration.
Electr. Notes Theor. Comput. Sci., 166:5-26, 2007.

[BGS08] M. Bork, L. Geiger, C. Schneider, and A. Ziindorf. Towards roundtrip engineering - a template-based reverse
engineering approach. In I. Schieferdecker and A. Hartman, editors, ECMDA-FA, volume 5095 of LNCS, pages
33-47. Springer, 2008.

[BHMO09] A. Boronat, R. Heckel, and J. Meseguer. Rewriting Logic Semantics and Verification of Model Transformations.
In FASE, volume 5503 of LNCS. Springer, 2009.

[BKMO09] A. Boronat, A. Knapp, J. Meseguer, and M. Wirsing. What is a Multi-Modeling Language? In 19th International
Workshop on Algebraic Development Techniques, volume 5486 of LNCS, pages 71-87. Springer, 2009.

[BoMO09] A. Boronat and J. Meseguer. Algebraic Semantics of OCL-constrained Metamodel Specifications. In R. F. Paige
and B. Meyer, editors, TOOLS (47), LNBIP. Springer, 2009.

[BOGO6] A. Boronat, J. Oriente, A. Gémez, I. Ramos, and J. A. Carsi. An Algebraic Specification of Generic OCL Queries
Within the Eclipse Modeling Framework. In A. Rensink and J. Warmer, editors, ECMDA-FA, volume 4066 of
LNCS, pages 316—330. Springer, 2006.

[Bor07] A. Boronat. MOMENT: a formal framework for MOdel manageMENT. PhD in Computer Science, Universitat
Politenica de Valéncia (UPV), Spain, 2007. http://www.cs.le.ac.uk/people/aboronat/papers/2007_thesis_
ArturBoronat.pdf.

[BJMOO0] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational logic. Theoretical
Computer Science, 236:35—132, 2000.

[BrMO6] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories. Theor. Comput. Sci., 360(1-
3):386-414, 2006.

[CDEO07] M. Clavel, F. Durdn, S. Eker, J. Meseguer, P. Lincoln, N. Marti-Oliet, and C. Talcott. All About Maude — A
High-Performance Logical Framework. Springer LNCS Vol. 4350, 2007.

An Algebraic Semantics for MOF 25

[CDE99)
[CEKO1]
[CEK02]

[CeS04]

[CMPO7)
[EEP06)

[Emf09]
[EMK99]

[Fer02]

[FeT00]

[FeT01]
[GoB92]

[Jac06]
[JCP02]

[JoBO6]

[Kuh06]
[Lac05]

[Ludo4]
[Mak97]

[Mau06]
[MeRO4]
[MeRO7]
[Mes92]

[Mes93]

[Mes98]

[Mom09]
[OBMO09]

[O1MO7]
[OMGO6]
[PMDO5]

[Poe06]
[Ren04]

[RRDO7]

[RSA09)

M. Clavel, F. Durdn, S. Eker, J. Meseguer, and M.-O. Stehr. Maude as a formal meta-tool. In J. Wing and
J. Woodcock, editors, FM’99 — Formal Methods, volume 1709 of LNCS, pages 1684-1703. Springer-Verlag, 1999.
T. Clark, A. Evans, and S. Kent. The Metamodelling Language Calculus: Foundation Semantics for UML. In
H. Huflmann, editor, FASE, volume 2029 of LNCS, pages 17-31. Springer, 2001.

T. Clark, A. Evans, and S. Kent. Engineering modelling languages: A precise meta-modelling approach. In FASE
02, volume 2306 of LNCS, pages 159-173, London, UK, 2002. Springer.

I. Cervesato and M.-O. Stehr. Representing the MSR cryptoprotocol specification language in an extension of
rewriting logic with dependent types. In P. Degano, editor, Proc. Fifth International Workshop on Rewriting
Logic and its Applications (WRLA’2004), volume 117. Elsevier ENTCS, 2004. Barcelona, Spain, March 27 - 28,
2004.

M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational logic, many-sorted equational
logic, Horn logic with equality, and rewriting logic. Theoretical Computer Science, 373:70-91, 2007.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transformation. Springer,
March 2006.

Eclipse Organization. The Eclipse Modeling Framework, 2009. http://www.eclipse.org/emf/.

H. Ehrig, U. Montanari, H.-J. Kreowski, G. Rozenberg, and H.-J. Kreowski. Handbook of Graph Grammars and
Computing by Graph Transformations, Vol. 3. World Scientific Publishing Company, July 1999.

J. L. Ferndndez Aleman. A formalization proposal of the UML four-layered architecture. PhD thesis, Murcia
University, April 2002. (In Spanish).

J. L. Ferndndez and A. Toval. Can intuition become rigorous? Foundations for UML model verification tools.
In International Symposium on Software Reliability Engineering (ISSRE 2000). IEEE, October 2000. San Jose,
California, USA.

J. L. Ferndndez and A. Toval. Seamless Formalizing the UML Semantics through Metamodels, pages 224—248.
Unified Modeling Language: Systems Analysis, Design, and Development Issues. Idea Group Publishing, 2001.

J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specification and Programming. J.
ACM, 39(1):95-146, 1992.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.

Java Community Process. The Java Metadata Interface (JMI) Specification (JSR 40), 2002. http://www. jcp.org/
en/jsr/detail?id=40.

F. Jouault and J. Bézivin. Km3: A dsl for metamodel specification. In R. Gorrieri and H. Wehrheim, editors,
FMOODS, volume 4037 of LNCS, pages 171-185. Springer, 2006.

T. Kiithne. Matters of (meta-) modeling. Software and Systems Modeling (SoSyM), 5:369-385(17), December 2006.
L. W. Lacy. Owl: Representing Information Using the Web Ontology Language. Trafford Publishing, January
2005.

J. Ludewig. Models in software engineering - an introduction. Inform., Forsch. Entwickl., 18(3-4):105-112, 2004.
M. Makkai. Generalized sketches as a framework for completeness theorems. Journal of Pure and Applied Algebra,
115(1):49-79, February 1997.

Maude Development Tools, 2006. http://moment.dsic.upv.es.

J. Meseguer and G. Rogu. Rewriting logic semantics: From language specifications to formal analysis tools. In
Proc. Intl. Joint Conf. on Automated Reasoning IJCAR’04, Cork, Ireland, July 2004, pages 1-44. Springer LNAT
3097, 2004.

J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical Computer Science, 373:213-237,
2007.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1):73—
155, 1992.

J. Meseguer. A logical theory of concurrent objects and its realization in the Maude language. In G. Agha,
P. Wegner, and A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented Programming, pages
314-390. MIT Press, 1993.

J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-Presicce, editor,
Proc. WADT’97, pages 18-61. Springer LNCS 1376, 1998.

MOMENT?2, 2009. http://wuw.cs.le.ac.uk/~aboronat/tools/moment2.

P. Olveczky, A. Boronat and J. Meseguer. Formal Semantics and Analysis of Behavioral AADL Models in Real-Time
Maude. To appear as technical report at UTUC.

P. C. Olveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic
Computation, 20(1-2):161-196, 2007.

OMG. Meta Object Facility (MOF) 2.0 Core Specification (ptc/06-01-01), 2006.

E. V. Paesschen, W. D. Meuter, and M. D’Hondt. Selfsync: a dynamic round-trip engineering environment.
In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 146—-147, New York, NY, USA, 2005. ACM.

I. Poernomo. The meta-object facility typed. In H. Haddad, editor, SAC, pages 1845-1849. ACM, 2006.

A. Rensink. Subjects, models, languages, transformations. In J. Bézivin and R. Heckel, editors, Language Engi-
neering for Model-Driven Software Development, volume 04101 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl, Germany, 2004.

J. R. Romero, J. E. Rivera, F. Durdn, and A. Vallecillo. Formal and Tool Support for Model Driven Engineering
with Maude. Journal of Object Technology, 6(9):187-207, 2007.

IBM. Rational Software Architect for WebSphere Software, 2009. http://www-01.ibm.com/software/awdtools/
swarchitect/websphere/.

26 A. Boronat and J. Meseguer

[Roz97] G. Rozenberg. Handbook of Grammars and Computing by Graph Transformation, Vol. 1. World Scientific Pub-
lishing Company, January 1997.

[RRW09] Y. L. Adrian Rutle, Alessandro Rossini and U. Wolter. A Diagrammatic Formalisation of MOF-Based Modelling
Languages . In R. F. Paige and B. Meyer, editors, Objects, Components, Models and Patterns, 47th International
Conference, TOOLS EUROPE 2009, Zurich, Switzerland, June 29 - July 3, 2008. Proceedings, LNBIP. Springer,

20009.

[SAEQT7] SAE. AADL, 2007. http://www.aadl.info/.

[Sei03] E. Seidewitz. What models mean. Software, IEEE, 20(5):26-32, 2003.

[SeK03] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of model-driven software development.
IEEE Software, 20(5):42-45, 2003.

[SRMO09] T. Serbanuta, G. Rosu, and J. Meseguer. A rewriting logic approach to operational semantics. Information and
Computation, 2007:305-340, 2009.

[StMO04] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic: Specifying typed higher-order languages in a
first-order logical framework. In Essays in Memory of Ole-Johan Dahl, pages 334-375. Springer LNCS Vol. 2635,
2004.

[ToF00] A. Toval and J. L. Ferndndez. Formally modeling uml and its evolution: a holistic approach. Kluwer Academic

Publishers, September 2000. FMOODS’00, Formal Methods for Open Object-Based Distributed Systems. Stanford,
California, USA.

[Tri08] Triskell Team. Kermeta, 2008. http://www.kermeta.org/.

[Wsb07] OASIS. Web Services Business Process Execution Language Version 2.0, 2007. http://docs.oasis-open.org/
wsbpel/2.0/wsbpel-v2.0.pdf.

A. Semantics of the Model sort in a A(.#) theory

In this section, we provide an algebraic definition, in Maude notation, of the boolean predicates that are
used in the membership that defines the semantics of the sort Model in Section 4.3-4.4.
The unique0id predicate checks that there are no duplicate object identifiers in different objects.

op unique0id : ObjCol -> Bool .
eq unique0id(< 0 : C1 | PS1 > < 0 : C2 | PS2 > OC) = false .
eq unique0id(OC) = true [owise]

The noDuplicateProperties predicate checks that there are no properties with the same name. The
getPropertyName is a projection function that obtains the name of a property.

op noDuplicateProperties : 0ObjCol -> Bool .

ceq noDuplicateProperties(< 0 : C | P1, P2, PS > OC) = false
if getPropertyName(P1) == getPropertyName (P2)

eq noDuplicateProperties(0OC) = true [owise]

The noDanglingEdges predicate checks that there are no references to objects that are not defined in
the model. This is achieved by traversing all references in all objects of a model.

op noDanglingEdges : 0ObjCol -> Bool
eq noDanglingEdges(0C) = noDEInOC(0OC, OC)

op noDEInOC : ObjCol ObjCol -> Bool

eq noDEIn0OC(none, OC) = true .

eq noDEInOC(< 0 : C | PS > 0C1, OC) =
noDEInPS(PS, 0C) and noDEIn0OC(0C1, OC)

op noDEInPS : PropertySet 0bjCol -> Bool .

eq noDEInPS((property : PN = V:Collection+{0id}, PS), 0C) =
noDEInCollection+(V:Collection+{0id}, OC) and-then
noDEInPS(PS, 0C)

eq noDEInPS(PS, OC) = true [owisel

op noDEInCollection+ : Collection+{0id} ObjCol -> Bool .
eq noDEInCollection+(0O, < 0 : C | PS > OC) = true .

eq noDEInCollection+(empty-set#0id, OC) = true
eq noDEInCollection+(Set{ 0 }, <0 : C | PS > OC) = true .
eq noDEInCollection+(Set{ O, Mgm }, <0 : C | PS> 0C) =

An Algebraic Semantics for MOF 27

noDEInCollection+(Set{ Mgm }, <0 : C | PS > 0OC)
--- more equations consider the cases for ordered sets, bags and sequences

eq noDEInCollection+(V:Collection+{0id}, <0 : C | PS > 0C) =
false [owise]

The singleContainer predicate checks that an object is only contained in at most one container, guar-
anteeing that a model is a hierarchical graph. The operator metaProp (C,PN) returns the object that defines
the property named PN in the class named C in the metamodel as an intance of the MOF Property and
getX operators project a property value from the tuple that defines an object. For instance, the operator
op _.‘getBool(_) : Object String -> Bool . returns the value of a boolean property PN in an object
Obj as Obj . getBool(PN). The operators get and getString are likewise defined for objects and string
values.

--- single container
op singleContainer : 0bjCol -> Bool .
eq singleContainer(0C) = $singleContainer(0C, 0C)

op $singleContainer : 0bjCol ObjCol -> Bool .

eq $singleContainer(none, 0C2) = true .

eq $singleContainer(0bj 0C1, 0C2) =
$singleContainer(0C1, 0C2) and (#cont(Obj, 0C2) <= 1)

op #cont : Object 0bjCol -> Nat .

ceq #cont(< 0 : C | PS >, < 02 : C2 | property : PN = 0idCol , PS2 > OC) =
1 + #cont(< 0 : C | PS >, 0OC)

if metaProp(C,PN) . getBool("containment") and
0idCol -> includes(0)

ceq #cont(< 0 : C | PS >, <02 : C2 | property : PN
1 + #cont(< 0 : C | PS>, OC)
if metaProp(C,PN) . getBool("containment")

0, PS2>0C) =

eq #cont(0Obj, 0C) = 0 [owise]

The validProperties predicate checks that the properties in objects are valid by ensuring that: i) the
names used in properties are defined in the metamodel, i) property values correspond to property types and
ii1) values satisfy the cardinality constraint of the corresponding property. The functions Is0idProperty (P)
and IsStringProperty(P) check that the type of the corresponding property P are of type 0id or String,
respectively.

op validProperties : 0bjCol -> Bool .

eq validProperties(none) = true .
eq validProperties(Obj OC) =
validPropertiesInObject(Obj) and-then validProperties(0C)

op validPropertiesInObject : Object -> Bool .
eq validPropertiesInObject(Obj) = true [owise]
eq validPropertiesInObject(< 0 : C | P, PS >) =
if (invalidName(C, P) or not(propertyValidType(C, P))
or (IsOidProperty(metaProp(C, getPropertyName(P)))
and not(propertyValidCardinality(C, P))))
then false
else validProperties(< 0 : C | PS >) fi .

--- i)

op invalidName : Cid Property -> Bool .

eq invalidName(C, P) = (classObject(C) . get("eAllStructuralFeatures")
. getString("name") -> excludes(getPropertyName(P))) [owise]

28

--- ii)

op propertyValidType : Cid Property -> Bool .

eq propertyValidType(C, property : PN) = true .

eq propertyValidType(C, property : PN = V:Collection+{String}) =
IsStringProperty(metaProp(C, PN))

--- more equations deal with other built-in types

--- iii)
op propertyValidCardinality : Cid Property -> Bool .
eq propertyValidCardinality(C, class : ClassName) = true .

--- no value
eq propertyValidCardinality(C, property : PN) =
(metaProp(C, PN) . getInt("lowerBound") == 0)

--- only 1 value
eq propertyValidCardinality(C, property : PN = V:MetaOid) =
((metaProp(C, PN) . getInt("lowerBound")) <= 1)
and-then
((metaProp(C, PN) . getInt("upperBound")) == 1)

--- more than one value

eq propertyValidCardinality(C, property : PN = V:Collection{0id}) =

((metaProp(C, PN) . getInt("lowerBound"))
<= (V:Collection{0id} -> size))
and
(((metaProp(C, PN) . getInt("upperBound")) == -1)
or
((metaProp(C, PN) . getInt("upperBound"))
>= (V:Collection{0id} -> size))

A. Boronat and J. Meseguer

