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A Comparison of Symmetrical and Asymmetrical
Three-Phase H-Bridge Multilevel Inverter for DTC
Induction Motor Drives

Farid Khoucha, Mouna Soumia Lagoun, Abdelaziz Kheloui,
and Mohamed El Hachemi Benbouzid, Senior Member, IEEE

Abstract—Earlier studies have pointed out the limitations of
conventional inverters, especially in high-voltage and high-power
applications. In recent years, multilevel inverters are becoming
increasingly popular for high-power applications due to their im-
proved harmonic profile and increased power ratings. Several stud-
ies have been reported in the literature on multilevel inverters
topologies, control techniques, and applications. However, there
are few studies that actually discuss or evaluate the performance
of induction motor drives associated with three-phase multilevel
inverter. This paper presents then a comparison study for a cas-
caded H-bridge multilevel direct torque control (DTC) induction
motor drive. In this case, symmetrical and asymmetrical arrange-
ments of five- and seven-level H-bridge inverters are compared
in order to find an optimum arrangement with lower switching
losses and optimized output voltage quality. The carried out exper-
iments show that an asymmetrical configuration provides nearly
sinusoidal voltages with very low distortion, using less switching
devices. Moreover, torque ripples are greatly reduced.

Index Terms—Direct torque control (DTC), induction motor,
multilevel inverters.

I. INTRODUCTION

ULTILEVEL voltage-source inverters are intensively
M studied for high-power applications [1], [2], and stan-
dard drives for medium-voltage industrial applications have
become available [3], [4]. Solutions with a higher number of
output voltage levels have the capability to synthesize wave-
forms with a better harmonic spectrum and to limit the motor
winding insulation stress. However, their increasing number of
devices tends to reduce the power converter overall reliability
and efficiency. On the other hand, solutions with a low number
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of levels either need a rather large and expensive LC output filter
to limit the motor winding insulation stress, or can only be used
with motors that do withstand such stress. The various volt-
age stages have been chosen after considering the real-power
contribution of the highest voltage stage. The maximum power
supplied by highest voltage stage is maintained below the load
power.

Many studies have been conducted toward improving mul-
tilevel inverter. Some studies dealt with innovative topologies,
such as cascaded multilevel inverter, to optimize the components
utilization and the asymmetrical multilevel inverter to improve
the output voltage resolution [5]. Other studies focused on de-
veloping advanced control strategies or upgrading the voltage-
source inverter strategies for implementation in multilevel in-
verter [6], [7].

In symmetrical multilevel inverter, all H-bridge cells are fed
by equal voltages, and hence all the arm cells produce similar
output voltage steps. However, if all the cells are not fed by
equal voltages, the inverter becomes an asymmetrical one. In
this inverter, the arm cells have different effect on the output
voltage. Other topologies are possible, such as the neutral point
clamped fed by unequal capacitors.

Asymmetrical multilevel inverter has been recently investi-
gated [8], [9]. In all these studies, H-bridge topology has been
considered and a variety of selection of cascaded cell numbers
and dc-sources ratios have been adopted [8]. The suggested
pulsewidth-modulation strategy that maintains the high-voltage
stage to operate at low frequency limits the source-voltage
selection.

One of the methods that have been used by a major mul-
tilevel inverter manufacturer is direct torque control (DTC),
which is recognized today as a high-performance control strat-
egy for ac drives [10]-[13]. Several authors have addressed the
problem of improving the behavior of DTC ac motors, espe-
cially by reducing the torque ripple. Different approaches have
been proposed [14]. Although these approaches are well suit-
able for the classical two-levels inverter, their extension to a
greater number of levels is not easy. Throughout this paper, a
theoretical background is used to design a strategy compatible
with hybrid cascaded H-bridge multilevel inverter; symmetri-
cal and asymmetrical configuration are implemented and com-
pared [15]. Experimental results obtained for an asymmetrical
inverter-fed induction motor confirm the high dynamic perfor-
mance of the used method, presenting good performances and
very low torque ripples.

0885-8969/$26.00 © 2010 IEEE



KHOUCHA et al.: COMPARISON OF SYMMETRICAL AND ASYMMETRICAL THREE-PHASE H-BRIDGE MULTILEVEL INVERTER 65

\ Induction
Motor

Cell Cell Cell
Al Bl | Cl1
Cell A2
e e -
e == === o [
" 1
sr4i | G
n 1
] %S . )
Cell [ Cell

—oh
_D=
—
8
]
8]
LT

Rectifier DC-Link H-Inverter N

Fig. 1.  Structure of two-cells cascaded multilevel inverter.

II. CASCADED H-BRIDGES STRUCTURE AND OPERATION

The cascaded H-bridge inverter consists of power conversion
cells, each supplied by an isolated dc source on the dc side, which
can be obtained from batteries, fuel cells, or ultracapacitors
[15]-[17], and series-connected on the ac side. The advantage
of this topology is that the modulation, control, and protection
requirements of each bridge are modular. It should be pointed out
that, unlike the diode-clamped and flying-capacitor topologies,
isolated dc sources are required for each cell in each phase.
Fig. 1 shows a three-phase topology of a cascade inverter with
isolated dc-voltage sources. An output phase-voltage waveform
is obtained by summing the bridges output voltages

Vo (£) = o1 (£) + Vo2 (t) + - +vo.n (T) (D

where N is the number of cascaded bridges.
The inverter output voltage v, () may be determined from the
individual cells switching states

v, (t) = Z (/‘j -1) Vi,

Jj=1

N
i =01, ... (2

If all de-voltage sources in Fig. 1 are equal to V., the inverter

is then known as a symmetric multilevel one. The effective num-

ber of output voltage levels n in symmetric multilevel inverter
is related to the cells number by

n=1+2N 3)

For example, Fig. 2 illustrated typical waveforms of Fig. 1
multilevel inverter with two dc sources (five-levels output). The
maximum output voltage V,, nax is then

Vomax = NVge. €]

To provide a large number of output levels without increasing
the number of inverters, asymmetric multilevel inverters can be
used.

In [18] and [19], it is proposed to chose the dc-voltages
sources according to a geometric progression with a factor of
2 or 3. For N of such cascade inverters, one can achieve the
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Fig.2. Symmetric multilevel inverter with five-levels output voltage synthesis.
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Fig. 3. Asymmetric multilevel inverter with seven-levels output voltage
synthesis.
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Fig. 4. Asymmetric multilevel inverter with nine-levels output voltage syn-

thesis.

following distinct voltage levels

n=2Nt1 1 if Vo, =2 W, j=1,2..., N
n=3", if Vaey =3 Wae, j=1,2,..., N.
(©)

For example, Figs. 3 and 4 illustrated typical waveforms of
Fig. 1 multilevel inverter with, respectively, two dc sources (V.
and 2Vy.) (seven-levels output) and two dc sources (V4. and
3V4.) (nine-levels output).
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TABLE I
COMPARISON OF MULTILEVEL INVERTERS
Symmetrical Asymmetrical inverter
inverter Binary Ternary

N 2N +1 N _q 3V

DC sources number N N N
Switches number AN 4N 4N

Vomax [pu] N N 1 (3” - l)/2

The maximum output voltage of these N cascaded multilevel
inverters is

N
Vorax = Y Ve, (6)
j=1
Equation (6) can be rewritten as
Vonax = (28 - 1) Vie,
if Vaej =271y, j=12 ...,N
3NV —1 7
Vonmax = <2) Ve, ™
if‘/dc,‘j:gjil‘/am .7:]-7 27"'7N'

Comparing (3) to (7), it can be seen that asymmetrical mul-
tilevel inverters can generate more voltage levels and higher
maximum output voltage with the same number of bridges.

Table I summarizes the number of levels, switches, dc sources,
and maximum available output voltages for classical cascaded
multilevel inverters.

Increasing the number of levels provides more steps; hence,
the output voltage will be of higher resolution and the reference
sinusoidal output voltage can be better achieved. Among the n*
switching states of n-level inverter, there is n zero states, where
zero output voltages are produced. Among the (n* —n) nonzero
remaining states, there are unique states and mutual states. The
unique states provide voltage vectors that cannot be obtained by
any other states. The mutual state on the other hand, provides a
set of output voltages that can be provided by some other mutual
state or states. The equivalent mutual states share the same
voltage vectors. The n-level inverter has [(n — 1)* — (n — 1)]
nonzero mutual states. The voltage vectors of the five-level
inverter are shown in Fig. 5. The number of distinct voltage
vectors obtained from n-level inverter is [n® — (n — 1)3]. The
existence of equivalent mutual states has usually been used
to minimize the switching losses. Nevertheless, the equivalent
mutual states can be replaced by any one of these states and the
other states can be considered redundant. There are (n — 1)3
redundant states in the n-level symmetrical H-bridge multilevel
inverter.

III. INDUCTION MOTOR DIRECT TORQUE CONTROL

DTC is an alternative method to flux-oriented control [12].
However, in the standard version, important torque ripple is ob-
tained even at high sampling frequencies. Moreover, the inverter
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Fig.5. Voltage vectors of various states of the symmetrical five-levels inverter.

switching frequency is inherently variable and very dependent
on torque and shaft speed. This produces torque harmonics with
variable frequencies and an acoustic noise with disturbance in-
tensities very dependent on these mechanical variables and par-
ticularly grating at low speed. The additional degrees of freedom
(space vectors, phase configurations, etc.) provided by the mul-
tilevel inverter should, therefore, be exploited by the control
strategy in order to reduce these drawbacks [6], [15].

A. Nomenclature

Vs Stator voltage vector.

¢s(¢p,)  Stator (rotor) flux vector.

T. Electromagnetic torque.

R, Stator resistance.

Ly (L) Stator (rotor) inductance.

L, Magnetizing inductance.

o Total leakage coefficient, 0 = 1 — L% /L, L,.
O, Angle between stator and rotor flux vectors.
p Pole pair number.

B. Torque and Flux Estimation

The stator flux vector an induction motor is related to the
stator voltage and current vectors by

dos (t)
7 ®)

Maintaining v, constant over a sample time interval and ne-
glecting the stator resistance, the integration of (10) yields

= vy (t) — R, (t)

t

Adys (£) = ¢y (£) — &5 (t — At) = / vAL(9)

t—At

Equation (9) reveals that the stator flux vector is directly af-
fected by variations on the stator voltage vector. On the contrary,
the influence of v, over the rotor flux is filtered by the rotor and
stator leakage inductance [20], and is, therefore, not relevant
over a short-time horizon. Since the stator flux can be changed
quickly while the rotor flux rotates slower, the angle between
both vectors 0, can be controlled directly by v,. A graphical
representation of the stator and rotor flux dynamic behavior is
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illustrated in Fig. 6. The exact relationship between stator and
rotor flux shows that keeping the amplitude of ¢, constant will
produce a constant flux ¢, [21].

Since the electromagnetic torque developed by an induction
motor can be expressed by [22]

3 L m

Te = 2 L L ¢s¢r Slnesr

(10)

it follows that change in 6, due to the action of v, allows for
direct and fast change in the developed torque. DTC uses this
principle to achieve the induction motor desired torque response,
by applying the appropriate stator voltage vector to correct the
flux trajectory.

C. Voltage Vector Selection [6], [15]

Fig. 7 illustrates one of the 127 Voltage vectors generated by
the inverter at instant t = k, denoted by v* (central dot). The next
voltage vector, to be applied to the load v" *+1 can be expressed
by

Rl = oF 4+ AoF (11)
where AvF = {v;|i =1, ..., 6}. Bach vector v; corresponds
to one corner of the elemental hexagon illustrated in gray and
by the dashed line in Fig. 7.

The task is to determine which v "" will correct the torque
and flux responses, knowmg the actual voltage vector v, the
torque and flux errors e and eT, and the stator flux vector
position (sector determmed by angle 6,). Note that the next
voltage vector v**1 applied to the load will always be one of
the six closest vectors to the previous v*; this will soften the
actuation effort and reduce high dynamics in torque response
due to possible large changes in the reference. Table II summa-

k+1

TABLE I
VOLTAGE-VECTOR-SELECTION LOOKUP TABLE
. k  k
Sector sign(€y ,er)
() ) (W) ()
1 Vz Vf, V3 VS
2 V3 Vl V4 V6
3 V4 V2 V5 Vl
4 Vs Vs Vs V)
5 V6 V4 V1 V3
6 " Vs £ Vs
AB k+l
Trajectory direction 0 )
Trajectory

corrections

VN A S — Y

Fig.8. Optimal space vector tracking and trajectory correction in the stationary
«a—f3 frame.

00,2
AVAVAVA /AVAVAV/ LIl 33,1 102 320

11,3

Fig. 9.
inverter.

Space vector and sequences of a seven-levels cascaded H-bridge

rizes vector selections for the different sectors and comparators
output (desired ¢, and T, corrections).

To implement the DTC of the induction motor fed by a hy-
brid H-bridge multilevel inverter, one should determine at each
sampling period, the inverter switch logic states as a function
of the torque and flux instantaneous values for the selection
of the space vector in the a—(3 frame [23], [24]. The proposed
control algorithm was divided into two major tasks, which are
independent and executed in cascade.

1) First task: It aims at the control of the electromagnetic state
of the induction motor. The torque and flux instantaneous
values, and their variations will be taken into account for
the space vector selection in the a—(3. Once the space is
chosen, the phase levels sequence can be selected. To en-
sure this task, one should detect the space vector position
in the a—/3 frame (Q* at sampling time k). The algorithm
must then select the next position Q¥ T to be achieved be-
fore next sampling instant k 4 1 (see Fig. 8) in order to re-
duce voltage steps magnitude. Only one step displacement
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in the a—(3 frame is authorized per sampling period 7.
Hence, in the absence of inverter saturation, Q’”1 must
coincide with one of the six corners of the elementary
hexagon centered at Q. The same procedure will be car-
ried out at the next period in order to determine the next
trajectory direction, yielding Q**+2, which in turn will co-
incide with one of the six corners of the new elementary
hexagon centered at Q¥ *!. In case of inverter saturation
(if Q" gives an unreachable point for Q¥ 1), a trajectory
correction is necessary (see Fig. 8). In cases (2) and (3), the
closest displacement direction is selected. Case (1) illus-
trates a particular situation in which no switching should
be performed, since the nearest reachable trajectory goes

Fig. 20.
voltage.(b) Line voltage.

Fig. 21.
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roughly toward the opposite sense of the favored one given
by the lookup table (see Table II).

Second task: It exploits the degree of freedom related to the
multilevel topology to choose the phase levels sequence
that synthesizes the voltage vector selected previously.
There are several phase levels sequences that are able to
generate the same vector illustrated in Fig. 9; this degree
of freedom can, therefore, be exploited to reduce voltage
steps magnitude according to one of the following criteria:
a) minimize the commutation number per period; b) dis-
tribute commutations for the three-phases per period; or c)
choose a vector which minimizes the homopolar voltage.
This task allows losses and torque ripple minimization.
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Finally, the configuration of each phase will be selected
and must be able to generate the phase levels.

IV. SIMULATION AND EXPERIMENTAL RESULTS

For the validation of the earlier discussed control approach,
simulations and experiments have been carried out.
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Figs. 10-15 and Figs. 16-21 show simulation results for five-
levels cascaded and seven-levels H-bridge inverter, respectively.

For further verification, a three-phase DSP (TMS320LF2407
A) controlled five- and seven-levels cascaded H-bridge multi-
level DTC induction motor drive system prototype was built
and tested (see Fig. 22). The induction motor ratings are given
in the Appendix. The switch ratings are (600 V/27 A) for the
insulated gate bipolar transistors. The prototype is versatile; it
consists of a multiwinding transformer and an inverter with a
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Fig. 27. Torque waveforms for seven-levels cascaded H-bridge.
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Fig. 29. Seven-levels cascaded H-bridge inverter output current waveforms.

burst structure that contains six H-bridges. The H-bridges and
transformer terminals are connected through a single-phase rec-
tifier with standard laboratory wires and connectors to get the
tested, or any other desired, topology. The multilevel inverter
control algorithms and the DTC are running in the same DSP.
The control cycle is 120 us.

It should be noted, as illustrated in Fig. 22(a), that the ex-
perimental setup was built to slightly emulate an automotive
application (electric vehicle).

Figs. 23-26 and Figs. 27-30 illustrate experimental results
for five-levels cascaded and seven-levels H-bridge inverter, re-
spectively.
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Fig. 30.  Seven-levels multilevel inverter output voltages during DTC.

The output voltages form with seven-levels stepped multi-
level waveform can be clearly appreciated; the motor currents
complete the overview of the performance of the drive. They
appear completely sinusoidal, since the low-pass nature of the
load has filtered the high-frequency content of the applied volt-
age. The stator flux with constant amplitude imposed by the
flux controller confirms the good dynamic performance of the
drive. The most important results are that torque ripple has been
almost eliminated in comparison to five-levels classic DTC.

V. CONCLUSION

This paper dealt with a comparison study for a cascaded H-
bridge multilevel DTC induction motor drive. Indeed, symmet-
rical and asymmetrical arrangements of five- and seven-levels
H-bridge inverters have been compared in order to find an op-
timum arrangement with lower switching losses and optimized
output voltage quality.

The carried out experiments shows that an asymmetrical con-
figuration provides nearly sinusoidal voltages with very low dis-
tortion, using less switching devices. In addition, torque ripples
are greatly reduced: asymmetrical multilevel inverter enables a
DTC solution for high-power induction motor drives, not only
due to the higher voltage capability provided by multilevel in-
verters, but mainly due to the reduced switching losses and
the improved output voltage quality, which provides sinusoidal
current without output filter.

APPENDIX

RATED DATA OF THE SIMULATED AND TESTED INDUCTION MOTOR

1 kW, 50 Hz, 400/230 V, 3.4/5.9 A, 1420 rpm
R=4.67Q,R,=8Q,L,=L,=0347TH, M=0366 H
J=0.06 kg.m?, = 0.042 Nm.sec
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