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Abstract

The aim of this paper is to consider the moments and the semi-
moments (i.e semi-kurtosis) for portfolio selection with fuzzy risk fac-
tors (i.e. trapezoidal risk factors). In order to measure the lep-
tokurtocity of fuzzy portfolio return, notions of moments (i.e. Kur-
tosis) kurtosis and semi-moments(i.e. Semi-kurtosis) for fuzzy port-
folios are originally introduced in this paper, and their mathematical
properties are studied. As an extension of the mean-semivariance-
skewness model for fuzzy portfolio, the mean-semivariance-skewness-
semikurtosis is presented and its four corresponding variants are also
considered. We briefly designed the genetic algorithm integrating
fuzzy simulation for our optimization models.
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1 INTRODUCTION

In portfolio analysis, an asset return is usually characterized as a random
variable on a probability space (see Bachelier [1] and Markowitz [14]). An
important area of finance research is portfolio selection which is to select a
combination of assets under the constraints of the investor objectives. Since
returns are uncertain in nature, allocation capital in different risky assets
to minimize risk and to maximize the return is the main concern of portfo-
lio selection. Modern portfolio selection theory has been introduced by the
seminal work of [14] which consider trade-off between return and risk. As
in Markowitz[15], variance has been widely accepted as a risk measure by
numerous portfolio selection models. However variance as a risk measure has
some shortcomings and limitations (see [15]).

One important shortcoming is that analysis based on variance considers
high returns as equally undesirable low returns (i.e. it does not take into
account the asymmetry of the probability distribution). Then there is a
controversy over the issue of whether higher moments should be considered
in portfolio selection models. Some authors such as Samuelson [18], Krauss
et al. [11], Konno et al.[9]-[10], Briec et al.[4] have argued that it is important
to take into account higher moments than the first and second ones (see also
For instance Samuelson [18] showed that investors would prefer a portfolio
with a larger third order moment if first and second moments are same.

The above literature assumed that the securities returns are random vari-
ables with fixed expected returns and variances values. However, since in-
vestors receive efficient or inefficient information from the real world, am-
biguous factors usually exist in it. Consequently, we need to consider not
only random conditions but also ambiguous and subjective conditions for
portfolio selection problems. A recent litterature has recognized the fuziness
and the uncertainty of portfolios returns. As discussed in [6], investors can
make use of fuzzy set to reflect the vagueness and ambiguity of securities
(i.e. incompleteness of information due to the lack of data). Therefore, the
probability theory becomes difficult to used. For example, some authors
such as Tanaka and Guo [19] quantified mean and variance of a portfolio
through fuzzy probability and possibility distributions, Carlsson et al.[2]-[3]
used their own definitions of mean and variance of fuzzy numbers. In par-
ticular, Huang [7] quantified portfolio return and risk by the expected value
and variance based on credibility measure. Recently, Huang [7] has proposed
the mean-semivariance model for portfolio selection and Li et al.[5], Kar et
al.[8] introduced mean-variance-skewness for portfolio selection with fuzzy
returns.



Different from Huang [7] and Li et al.[5], after recalling the definition
of mean, variance, semi-variance and skewness, this paper consider the k-
moments (i.e. Kurtosis for & = 4) and semi-moments (i.e. semi-Kurtosis for
k = 4) for portfolio selection with fuzzy risk factors (i.e. returns). Several em-
pirical studies show that portfolio returns have fat tails. Generally investors
would prefer a portfolio return with smaller kurtosis which indicates the lep-
tokurtosis (fat-tails or thin-tails) when the mean value, the variance and the
asymmetry are the same. In order to measure the leptokurtocity of fuzzy
portfolio return, notions of moments and the semi-moments of fuzzy portfo-
lio are originally introduced in this paper, and their mathematical properties
are studied. As an extension of the mean-semivariance-skewness model for
fuzzy portfolio, the mean-semivariance-skewness-semikurtosis is presented
and the corresponding variants (the mean-variance-skewness-kurtosis, the
mean-variance-skewness-semikurtosis and the mean-variance-skewness-semikurtosis
models) are also considered. We briefly designed the genetic algorithm inte-
grating fuzzy simulation for our optimization models.

The paper is organized as follows. In Section 2, we review some prelimi-
nary knowledge on fuzzy variable and credibility measure. In Section 3, we
recall the notions of mean, variance, and skewness of a fuzzy variable. We
introduce kurtosis for fuzzy variables, study some of its properties and deter-
mine, for an integer £ > 1, the k-moment of a symmetric fuzzy trapezoidal
fuzzy variable. We compute variance, skewness and kurtosis of trapezoidal
numbers and triangular numbers. In Section 4, we introduce the notion of
semi-moment of order n=2p (p € N*) of a fuzzy variable. We justify that the
particular cases of the semi-moment are the known notion of semi variance
and the new notion of semi-Kurtosis for p = 1 and p = 2 respectively. We
compute the semi-variance and the semi-kurtosis of a trapezoidal fuzzy vari-
able. We establish some links between moment and semi-moment of fuzzy
variable. After a brief introduction of fuzzy-simulation-based genetic algo-
rithm, Section 5 suggests some determinist optimization programs with a
family of independent triangular fuzzy numbers and, proposes a genetic al-
gorithm to compute Kurtosis and semi-kurtosis of a fuzzy variable. Section
6 contains some concluding remarks and the proofs are in Section 7.

2 Fuzzy variable and credibility

Let £ be a fuzzy variable with membership function u. For any x € R, u(x)
represents the possibility that £ takes value x. For any set B, Liu defined
the credibility measure as the average of possibility measure and necessity



measure as follows:

Or(fe e BY) = & (supmx) — sup ) + 1) . 0

2 \zeB zeBe

It is easy to show that credibility measure is self-dual. That is,
Cr({¢ € B})+Cr({¢ € B°}) = 1.

Remark 1. Note that for ¢ taking values in B, Zadeh has defined the pos-
sibility measure of B by
Pos({§ € B}) = sup u(x)

zeB

and the necessity measure of ¢ by

Nec({¢€ € B}) =1 — sup p(z).
reB°
But neither, of these measures are self-dual. That reason also justified the
introduction of the credibility measure by Liu [12].

Example 1. 1. Let £ = (a,b,c,d) be a trapezoidal fuzzy number (with
a<b<c<d). Foranyr € R, Cr(¢ <r) is defined as follows:

0if r<a
172 fa<r<b
Cr({¢ <r}) = lsz<r<c
1— (=Y ife<r<d
1ifd§7‘

and
1ifr<a

1—3(52) ifa<r<b
if b<r<c

(=4 ife<r<d
0ifd<r

Cr({§ =r}) =

N[ D0 [

2. For all v € R, the credibility of a triangular fuzzy variable & = (a, b, c)
(with a < b < ¢) is given by:

0ifr<a
l(r=a b
Cr({{<r}) = f( ()if;;bT§<r<c
1Laof e<r

4



and
lifr<a

1—1(=%) ifa<r<b

Cr({{>r}) = 1(7‘—20) ifb<r<c

2\b—c
0ifc<r

Let us end this Section by giving some notations useful throughout this
paper.

e For a trapezoidal fuzzy variable £ = (a,b,c,d) such that a # b and
c # d, supp(§) = [a, d] its support, cor(§) = [b, ] its core, I, the length
of supp(§) and [. the length of cor(£). We set:

a=b—a,f=d—-"0l§)=d—aand [.(§) =c—b.

e For a triangular fuzzy variable £ = (a, b, ¢) such that b # a and ¢ # a,
we set:

a; = max{b—a,c— b} and v = min{b — a, c — b}.

o £ =(a,b,c, d)is symmetric (that is 3t € R,Vr € R, u(t —7r) = p(t+1))
if « = 3, and £ = (a, b, ¢) is symmetric if a3 = 7,

3 Moments of the trapezoidal of fuzzy vari-
ables

3.1 Expected Value, Variance and Skewness of fuzzy
random variables

The definitions of the expected value, variance and skewness of fuzzy variables
are obtained from Li et al. [5].

Definition 1. Let & be a fuzzy variable. Then its expected value is defined

as
0

E[f]:e:/0+0007"{§27“} dr — / Cri{¢ <r}dr (2)

—0o0

provided that at least one of the above integrals is finite.

Remark 2. Note that, expected value is one of the most important concepts
of fuzzy variable, which gives the center of its distribution.



Example 2. The expected value of a trapezoidal fuzzy variable denoted & =
(a,b,c,d) is given by E[¢] = L and the expected value of a triangular
fuzzy variable denoted & = (a, b, c) is given by E[¢] = “t2tc,

Definition 2. Let & be a fuzzy variable with finite expected value e. Then its
variance 1s defined as

Vel = E[(§ —e)’]- (3)

Let us determine the variance of a trapezoidal fuzzy variable and that of
a triangular fuzzy variable.

Example 3. 1. Let £ = (a,b,c,d) be a fuzzy trapezoidal variable with

expected value B[¢] = P — ¢ The variance V(€] of & is given by:

(o8 - J1(9)?

0
6a Vv 3 0+

@=Bl1, o (a+5) 1

o (58 4+ 50(9)° (257 + §1(9)?

e Lo O G O+ L

2. We can easily check that if € is symmetric (o = (), V] simply becomes

3[lc(&) + B + 57
24 '

V¢l =

3. Let & = (a,b,c) be a triangular fuzzy variable such that E[¢] = ¢t —
e.
The variance V[£] of & can be deduced from the variance of a trapezoidal
one by this way :

_ 33a3 + 21ady + 11lay? — 3
i384111 )

V]

4. More precisely:
- The variances of the following three trapezoidal fuzzy variables are:
V[(—1,2,3,4)] = %,V[(1,2,3,4)] = ﬁ and V[(—1,0,1,4)] = %.
- The variances of the following three triangular fuzzy variables are:

VI[(=1,0,4)] = 22 and V[(—1,1,2)] = V[(1,2,4)] = &.

1536

Let us end this Subsection with some useful preliminaries on the Skewness
of a fuzzy variable.



Definition 3. Let & be a fuzzy variable with finite expected value e. Then its
skewness is defined as

Sk() = E[(§ —e)’]. (4)
Remark 3. If £ has a symmetric membership, then Sk[§] = 0, see [5].

In the following example, we determine the skewness of trapezoidal and
triangular fuzzy variable respectively.

Example 4. 1. The skewness of a trapezoidal fuzzy variable £ = (a,b, ¢, d)
15 given by

1 b—e a—e 1 c—e d—e

e e e e R o el

Skl§] =

2. The skewness of a triangular fuzzy variable & = (a,b,c) is given by

1 b—e a—e 1 b—e c—e

SHEl = a7~ O+ g g )~ )

that s,

(c—a)’
32

In the following Subsection, we determine, for an integer k > 1, the k-
moment of a symmetric trapezoidal fuzzy variable.

SklE] =

(c+a —2b).

3.2 k-moment of a symmetric trapezoidal fuzzy vari-

able
Proposition 1. Let £ = (a,b,c,d) be a symmetric trapezoidal fuzzy variable
with expected value E[§] = e. For an integer k > 1, the k-moment my, =

E[(€ — e)*] is given by:

0 of k is odd

— k X .
M = 2,024 (c-b)+alh2

2k+1(k+1)

if kis even

Corollary 1. Let £ = (a,b,c) be a symmetric triangular fuzzy variable with
expected value E[§] = e. For an integer p > 1, the k-moment my, = E[(é—e)"]
s given by:
o I[fk=2p+1, then
myg = m2p+1 =0 (5)

k

o [fk=2p, then my = mg, = Ll;‘w.



3.3 Kurtosis: definitions, first properties and some
particular cases

In this section, we introduce the kurtosis of a fuzzy variable. We study its
properties and give some examples.

Definition 4. Let £ be a fuzzy variable such that E[¢] = e < 0.
e The kurtosis of &, denoted K[E], is given by:

K[g] = El(§ — ).

o The normalized kurtosis of &, denoted K'[€], is given by:

E[(§ —e)"]
(o]
We can rewrite K[¢] and K;[¢] by means of a credibility measure. For

such, we have:
Let £ be a fuzzy variable such that E[¢] = e < oo.

Kl[g] =

e The kurtosis K[] is given by:
+oo
K= [ orlie-etzr}an ()
0

e The normalized kurtosis K7[{] is given by:

0+°o Cri{(&—e)* > r}dr

: 7
o™ er{(€ e = r}dr]? (7)

Kl[&] =

The following result determines the Kurtosis by means of a credibility
measure. It also establishes some properties on the linearity of the Kurtosis.

Proposition 2. Let £ be a fuzzy variable such that E[§] = e.
1. The kurtosis of £ is defined by

—+00

K[¢] = Cr{€—e=r}vCr{—e< V/ridr (8)

0
2. The normalized kurtosis of £ is defined by

0+OO Cr{¢—e>Yr}vCr{{—e< Vr}dr
o™ Cr{§ e 2 Jrpv Cr{e —e < ¥frjar?

K] =



3. Va,b € R, K[a& + b] = a*K[¢].
4. Va,be R, K'ag +b] = K1[¢].

When £ becomes a symmetric fuzzy variable, then the previous formulas
become

Corollary 2. If € is a symmetric fuzzy variable, then (8) becomes

+oo
Kl = [ orte—ez Vi (10)
Then (9) becomes

0+°° Cr{ —e> r}dr
oFX Or{e — e > Iridr]?

Let us end this Section with the following Proposition which determine
the kurtosis of trapezoidal and triangular fuzzy variable.

K'l¢) = (11)

Proposition 3. 1. Let £ = (a,b,c,d) a fuzzy trapezoidal variable with
expected value E[§] = e. The kurtosis K[£] of € is given by:

o — M — l ¢ ) ‘O{*ﬁ' l R 5
o= B 1 (0t ), 1 o (4 Q)
5 156 — (O + O - g

2. If € = (a,b, c,d) is symmetric, the previous expression of K[£] becomes:

5[1c(&) + B]* + 108%[1.(€) + B)* + B
160 '

K[¢] =

3. Let & = (a,b,c) be a triangular fuzzy variable such that E[¢] = 24 =

€.
The kurtosis K[€] of & can be deduced from the kurtosis of a trapezoidal
one by this way :

2530} + 39501y + 17aqy* 4 2900y* + 7003® — ~°

Kl 10.2400

4. Let & = (a,b,c,d) a fuzzy trapezoidal variable with expected value E[§] =
e.



o The normalized kurtosis of & is given by:

K]
V2[E]

where K[€] and V[£] have been already given before.

Kl[f] =

o [or a = f3 the new expression of Ki[£] is

5[lc(&) + B1* + 108%[1.(&) + A* + p*
160[3[lc(5);rf]2+52]2

Kl[é] =

We deduce from the previous formulae that:

The normalized Kurtosis of some examples of trapezoidal fuzzy variables are:
K'((-1,2,3,4)] = ¥oe, K'[(1,2,3.4)] = 55, K'[(—2,-1,3,4)] = {55 and

K'(1,2,2,4)] = 355

We notice that: for & = (a,b,¢) a triangular fuzzy number, we have:

- if b=a, then K[¢] = :233-4* with E[¢] = 32,

- if b=c, then K[{] = 1052?:1004 with E[¢] = ¢£2.

3.4 Moments of portfolio

Example 5. Let (§ = (ai, b, ¢i,d;))iz12,..n be a family of n independent
trapezoidal fuzzy variables and x = (xy,...,2,) a family of n positive reals.
The portfolio & =31 | & defined by

n n n n n
=3 = wias, Y wibi, Y wici, Y wid;)
i=1 i=1 i=1 i=1 i=1
is a fuzzy variable and its expectation is:

1 n

e(z) = E[¢(z)] = Z;(aeri + ¢ +d;) zi. (12)
Proposition 4. e The variance of £ is

Vgl = By 12; ) Z$k (&k)+e(&r))] |Z$k (ar—PB)|+

k=1

<322k 121 1 LTk ) ka (&) +1el&)) |Zxk = Bil)

k=1

10



1 (lZZ:l rz(ak—ﬁk)\ + % S 2ils(€5))?
([z_l 2 T (205(&) — (e +Br))]) + S et o o B

e v S D DR U (7))
35 s anlo + By — o — Bil)
(il — 5T ade(§)” | RO S ()]
6> 1 @k + B + o — Bil)

e The skewness of £ is

N 1 Dot Th(br —enyg Do wnlar —ex)
1 [(ZZ:I xk’(ck — ek) )4 _ (ZZ:l xk’<dk — ek) )4]
8 ZZ:l xk(@c — dk) 4 4 '
o The kurtosis of € is
1
K[¢] = THI205 T, S ermand Zxk (&) +e(&r))] |Z$k a—PBe) |+

k=1

(512Zk By 1931@96;%3;2% 5(&r) + 1e(&k))] |Z$k (ar = Be)l)

k=1

n | > h—1 zr (o —Bk)l n
1 (r=t=t + 5 Yooy Trls(6r))°
(DY xz(ak—ﬁk)\ + % ZZ:l mklc(gk))5
5% ne1 Te(ou + B — o — Bil)
(DI xz(%—ﬁk)l . %Zzzl xklc(fk))B + |(\Zk:1xz(ak—ﬁk)\ . % 221 1’klc(fk))5|
10> w(ou + B + ok — Bl)
Corollary 3. Let (& = (a;, bi,¢i))iz12,..n be a family of n independent tri-
angular fuzzy variables, x = (x1,...,x,) a family of n positive reals, and

&= x;xi; be the portfolio.
Then

1. The mean of the portfolio return is :

El¢(@)] = wila; +2b; + c;).

i=1

11



2. The variance of the portfolio return is:

_ 3303 + 21aty + 11lagy? — 3
384041 '

VIg(x)]

3. The Skewness of the portfolio return is:
SK[E()] = (O wilei —ai)® Y wile; — 2 + a;)
i=1 i=1

4. The Kurtosis of the portfolio return is:

~253af + 39504y + 1Tany? + 29003y% 4 700y — ~°

Kl 10.2400,

4 Semi-Moment of fuzzy variable

Let & be a fuzzy variable with finite expected value e. We define the variable
(€ —e)~ as follows:

= f—eiftE<e

(E-¢) _{Oif§>e ' (13)
4.1 Definitions

Definition 5. 1. The semi-Moment of order n = 2p with p € N* s

My [€] = M [€] = E[[(§—e)7]*] = /0 ) Cr{[(€—e) ] = r}dr. (14)

2. The normalized semi-moment of £ is defined by:

M3 M3
(Mgl (VoIE])P
In the case where p = 1, we obtain the well-known semivariance of &
described as follows.

Definition 6. Let £ be a fuzzy variable with expected value e.

1. The semivariance of & is defined as

Vel = Blle -7 = | el -2y (15)

12



Remark 4. The variance of £ is used to measure the spread of its distribution
about e = F[¢]. Note that, variance concerns not only the part “¢ is less
than e”, but also the part “¢ is greater than e¢”. If we are only interested
with the first part, then we should use the concept of semi-variance.

For the example of semivariance of triangular and trapezoidal fuzzy vari-
ables, we have the following example:

Example 6. 1. The semivariance of a trapezoidal fuzzy number & = (a, b, ¢, d)
(where a,b,c,d € R such that a # b and ¢ # d) with expected value

_ atbtetd ; .
e = S s given by:

1 e—a b—e 1 e—c

VolE] = 606 —a) [( 1 )3+min(07(T)3)]+m maX(U»(T)3)

2. The semivariance of a triangular fuzzy number & = (a,b,c) with ex-
pected value e = %b*c is deduced from the semivariance of a trape-

zoidal one by this way:

1 e—a 1 b—e.4

6(b—a)[< 4 )3+(b—c)( 4 )

Vo] = min(0, (b — e))].

4.2  Semi-kurtosis: Definitions and examples

In this Subsection, we focus on the semi-Kurtosis (i.e. p=2 in (14))

Definition 7. Let £ be a fuzzy variable with finite expected value e. Then
the semikurtosis of & is defined

+o00
K= Bl =)= [ erlle=a T = (6)
Let us give the semikurtosis of a trapezoidal fuzzy number and a trian-
gular fuzzy number.

Example 7. 1. The semikurtosis of a trapezoidal fuzzy variable £ = (a,b, ¢, d)
with expected value e = ‘”ﬂﬂ s given by:

Kol = 10<bl_ Sl min, 5 e>5>]+10<d1_ 5 max(0, (=),

2. The semikurtosis of a triangular fuzzy number § = (a, b, ¢) with expected

value e = “*24”‘3 is deduced from the semikurtosis of a trapezoidal one
by this way:
1 e—a 1 b—e
KS _ 5 5 .3 h—
=155 a7 g ) min0. (b~ )

13



Definition 8. Let & a fuzzy variable with expected value e.
The normalized semi-kurtosis of & is defined by:

K]
K¢ = —2+.
= g
Example 8. 1. The normalized semikurtosis of a trapezoidal fuzzy vari-

able £ = (a, b, c,d) with expected value e is defined as follows:

Ty [(55)° + min(0, (439)°)] + g5p= max(0, (9)°)

B L [+ im0, o) 1 gy (0, (5

2. The normalized semikurtosis of a triangular fuzzy variable £ = (a, b, c)
with expected value e is defined as follows:

15 (55)° min(0, (b — e))]
79)? min(0, (b — e))]]?
77777 n be a family of independent trapezoidal fuzzy

variables with finite expected values (ex)k=1.. .n, (Tk)k=1,.nbe a family of n
positive reals and & =Y, _, xx& be a portfolio. Then

=) +(b,

o The semivariance of £ is

1 > e Teler —ap)
6 ZZ:I Ik(bk — ak) 4

1 > he Trler — cx)

max(0, (

Zk 1 xk(bk - ek))S)]_'_

AGE :

)3 4+min(0, (

)*)

6> ey T(dk — cx) 4
o The semikurtosis of € is
KS[f] _ 1 ZZ:l Il’k(ek - ak)) +m1n( <Zk 1xk(bk3 - ek’)) )]+

10 Zzzl .CEk(bk — ak) 4 4

1 > k1 Trler — cx) s
10 2221 l’k(dk — Ck> maX(O’ ( 4 : ) )

We end this section by establishing a link between Moment and Semi-
Moment.

14



4.3 Links between Moments and Semi-Moments

Proposition 6. Let & be a fuzzy variable with finite expected value e, MQSP[S]
and Msp[€] the semi-kurtosis and kurtosis of & respectively. Then

0 < Mg, [€] < My[€]. (17)

Proposition 7. Let & be a fuzzy variable with finite expected value e. Then
My, [€] =0 if and only if Cr{{ =e} = 1. (18)

Proposition 8. Let & be a fuzzy variable with finite expected value e. Then
pr[ﬁ] =0 if and only if Cr{{ = e} = 1,i.e., My,[] = 0. (19)

Proposition 9. Let & be a symmetric fuzzy variable with finite expected value
e. Then

My, €] = Mp,[€]. (20)

Remark 5. The previous results generalize those established by Huang [7]
when we consider moment and semi-moment as variance and semi-variance.

Furthermore, we can deduce the links between Kurtosis and semi-Kurtosis
of a fuzzy variable.

Corollary 4. Let & be a fuzzy variable with finite expected value e, K°[¢]
and K[£] the semi-kurtosis and kurtosis of & respectively. Then

1.
0 < K°[g] < K[¢). (21)

2.
K[¢] =0 if and only if Cr{{ =e} = 1. (22)

3.
K5[€] = 0 if and only if Or{¢ = e} = 1,i.e., K[¢] = 0. (23)

/.

K5[¢) = K¢]. (24)

15



5 An application in finance

5.1 Review, model, and a determinist program with a
family of triangular fuzzy numbers

Let & be a fuzzy variable representing the return of the ith security, and let

x; be the (proport)ion of the total capital invested in security i. In general, &; is
pit+di—pi

. Y

given as where p; is the closing price of the ith security at present,
P, is the estimated closing price in the next year, and d; is the estimated
dividends during the coming year.

It is clear that p; and d; are unknown at present. If they are estimated
as fuzzy variables, then &; is also a fuzzy variable. Thereby, the portfolios
&1, ..,.&, and the total return & = &y + Sa0 + ..o + &2, are also fuzzy
variables.

When minimal expected return, minimal skewness and maximal risk are
given, the investors prefer an asymmetric portfolio with small kurtosis .
Therefore, we propose the following mean-semivariance-skewness-semikurtosis
model:

minimize K°[z1&; + 2o + ... + 1,&5)

subject to
E[l’lfl + l‘2§2 + ...+ xnﬁn] Z S1
VEr1&1 + 22&o + oo + 1060] < 52 : (25)

Slei&r + 226+ ... + 2,6,] > s3
$1+.T2—|——|—]}n:1
2 >0i=12 ..n.

\

The first constraint of this model ensures the expected return is no less than
some target value s;, the second one assures that risk does not exceed some
given level s, the investor can bear, the third one assures that the skewness
is no less than some target value s3. The last two constraints imply that all
the capital will be invested to n securities and short-selling is not allowed.
The other variants of this model can be deduced from this one by changing
the objective function either by mean or semi-variance or skewness.

Theorem 1. Let (& = (a;, b, ¢;))iz12,...n be a family of n independent trian-
gqular fuzzy variables.
Then the model (25) becomes the following determinist programm:
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(o 1 S0 wi(ei—an)
M oS~ o (bi—ay) [(

subject to

Z?:l ZEZ'(CLi + 2b2 + Ci) Z 481
< _ 1 [(Z?:l x;(e;—a;)

53 " xi(bi—ay)

(X wiles — ai))* 2o, wiles — 20 + a;) > 3253
T+ 2+ ...+x,=1

r; >0,1=1,2,...n

\

Remark 6. [t is important to notice that, similarly to above, one can write
four variants of the previous model and deterministic program. These vari-
ants are described as follows.

1. This model minimizes risk (semi-variance) when expected return and
skewness are both no less than some given target values s; and sz re-
spectively and the kurtosis is no more than the given target value sy. If
the second and the third constraints (skewness and Kurtosis) do not ex-
ist, then the above model degenerates to mean-variance model proposed
earlier by Huang [7].

2. This model maximizes the expected return. Similarly, if the first and
the third constraints (semi-variance and kurtosis) do not exist, then

the above model degenerates to mean-variance model proposed earlier
by Huang [7].

3. The third variant of the first model is a model which mazimizes the
skewness. If we cancel the third constraint (kurtosis), then the above
model degenerates to mean-variance-skewness model proposed by Li [5].

4. The fourth and last variant of the first model is the multi-objective
nonlinear programming. The aim of this model is to minimize the risk
(semi-variance) and the kurtosis, to mazximize the expected value and
the skewness when the different target values are unknown.

5.2 Random fuzzy simulation and Genetic algorithm

Genetic algorithm (GA) has been successfully used to solve many industrial
optimization problems, and has been well discussed in Goldberg[?] and re-
cently in [12]. In [12], the author designed the hybrid intelligent algorithm
integrating random fuzzy fuzzy simulation and GA is designed to solve the
proposed models. Roughly speaking, in the proposed algorithm, random
simulation and fuzzy simulation are employed to computed the credibility of
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a fuzzy investment return X = &1 + &ao + ..o + &2, the Kurtosis and
semi-Kurtosis of X.

In the following, we provide a method to compute the kurtosis and semi-
kurtosis of general fuzzy variables describing security returns. Fuzzy simula-
tion was first introduced by Liu and Iwamura [13], and then was successfully
applied to solving fuzzy optimisation problems by Liu [12]. For the compu-
tation of other parameters as mean, variance, semivariance and skewness, we
can refer to [5] and [7].

Let &; be a fuzzy variable with membership function p;, and decision variable
xj, for all 1 < j < n. It is obvious to see that the computation of the kurtosis
and semikurtosis of the variable &1 +& o +...+&, 2, depends on the compu-
tation of Cr{& z1+&xa+...4+&,x, > r} where r is a nonnegative real number.

e Computation of the credibility measure
Randomly generate real numbers 6;; such that p1;(6;;) >¢,7 =1,2,...,n,i =
1,2, ..., N respectively, where ¢ is a sufficiently small number, and N is a
sufficiently large integer. Then, the value of Cr{& x1+&xo+...+ T, >
r} can be estimated by the formula

1 n n
S(max { min y1;(6;,)/ Y 0jiw; > r}+1—max { min p;(6;:)/ Y 5 > r}).
j=1 Jj=1

2 1<i<N "1<j<n 1<i<N "1<j<n

In the same way, we can deduce the computation of the expression
C’r{flxl + 52372 + ...+ gnﬂfn S T}.

e Computation of the kurtosis
Note that we write 7 = FE[{1x1 + &xe + ..o + ] which may be
calculated by fuzzy simulation [12].
The following algorithm is used to compute K[{1x1 + & + ... + £y
step 1. Set e =0
step 2. Randomly generate 6,5, such that p1;(6;,) >¢,j =1,2,...,n,k =
1,2, ..., N where ¢ is a sufficiently small number.
step 3. Set two numbers

. 4
a = min (021 + Oyxo + ... + Oz, — 7)°,
1<k<N

b= max (A1x1 + oo + ... + Oppzn, — 7)4

ax
1<k<N
step 4. Randomly generate a number r € [a, b].

18



step 5. Set e «+— e + Cr{& iz + Soxo + .o + Euwn > 1)
step 6. Repeat the fourth to fifth steps for N times.
step 7. Return aVO+bA 0+ w as the target value.
e Computation of the semikurtosis
Note that we write 7 = E[{121 + &9 + oo 4+ ] which may be
calculated by fuzzy simulation [12].
the following algorithm is used to compute K*[&x) + Eamg + ... + E,2].
step 1. Set e =0
step 2. Randomly generate 6,5, such that 11;(6;1) > €,7 =1,2,...,n.k =
1,2, ..., N, where ¢ is a sufficiently small number.
Step 3. If O1px1 + Oopxo + ... + Oz, — 7 < 0, go to step 4 else go to
step 2.
Step 4. Set two numbers

. 4
a = min (021 + Oyxo + ... + Oz, — 7)°,
1<k<N

b= m (Hlkxl + 9%1"2 + ...+ Gnkxn — 7')4.

ax
1<k<N

step 5. Randomly generate a number r € [a, b].
step 6. Set e «+— e + er{& 1z + Sra + ...+, > 1)
step 7. Repeat the fifth to sixth steps for N times.

step 8. Return a VO +b A0+ w as the target value.

In the following, we recall general principle of GA.

Liu[12] has successfully applied GA to solve many optimization prob-
lems with fuzzy parameters. In in our work, following [5], a solution x =
(x1,...,2,) is encoded by a chromosome ¢ = (cy, ..., c,) where the genes ¢;
for ¢ = 1,...,n are non-negative numbers. We can then find the decoding
processes by the relation x; = ¢;/ Z?Zl ¢;. The preceded relation ensures
that 3°7 | x; = 1 always holds.

In GA, we employ the rank-based-evaluation(RBE) function to measure
the likelihood of reproduction for each chromosome. The RBE function is
defined by

Eval(c;) =v (1 —v)t ;o i=1,...,pop — size, (26)

where v € (0,1). The procedure of the genetic algorithm is summarized as
follows:

19



e Step 1. Initialize pop — size feasible chromosomes, in which fuzzy sim-
ulation is use d to check the feasibility of the chromosomes (i.e. z; > 0,
x; = ¢;/ ) ;_ ¢i and therefore Y7 x; = 1).

e Step 2. Employ random fuzzy simulation to compute the objectives of
all chromosomes, and then gives an order of the chromosomes based of
the objectives values.

e Step 3. Find the evaluation function of each chromosome according to
the RBE function. Then calculate the fitness of each chromosome by
the evaluation function.

e Step 4. Select the chromosomes according to spinning roulettes wheel.

e Step 5. Update the chromosomes by crossover operation and muta-
tion operation where random fuzzy simulation is utilized to check the
feasibility of each child.

e Step 6. Repeat Steps 2-5 for a given number of generations.

e Step 7. Report the best chromosome, and then decoded into the opti-
mal soplution.

6 Concluding remarks

Different from Huang [7] and Li et al.[5], after recalling the definition of mean,
variance, semi-variance and skewness, this paper consider the k-moments
(i.e. Kurtosis for & = 4) and semi-moments (i.e. semi-Kurtosis for k = 4)
for portfolio selection with fuzzy risk factors (i.e. returns). In order to mea-
sure the leptokurtocity of fuzzy portfolio return, notions of moments and
the semi-moments of fuzzy portfolio are originally introduced in this paper,
and their mathematical properties are studied. As an extension of the mean-
semivariance-skewness model for fuzzy portfolio, the mean-semivariance-skewness-
semikurtosis is presented and the corresponding variants (the mean-variance-
skewness-kurtosis, the mean-variance-skewness-semikurtosis and the mean-
variance-skewness-semikurtosis models) are also considered. We briefly de-
signed the genetic algorithm integrating fuzzy simulation for our optimization
models. The next step of our research will be an application to real financial
portfolios data.
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7 Proof of the results

Throughout this Section, £ is a fuzzy variable with E[¢] =

Proof of Proposition 1: For a symmetric trapezoidal fuzzy variable
¢ = (a,b,c,d), we can easily show the following result:
Cr{(§ —e)* zrp=Cr{—e= ItV Or{g—ez ).
Lifo<r<(52)F
Cri€—ef2r} = —F+ 5+ 5 i (D <r < (L + B
0, 1f7“2(c L+ )"
where a =d —c=b—a.
So, we can conclude that: . .
i~ J(c—b)k—J Jj+1 J(c—b)k—
fo +5) C’I"{ )k Z ’I"} _ Zl oz 0 Ck (25) (c—b) - Z Ck+1(2/3) (c—b)

2k+1(k+1) = 2R (ht 1)

c,ffll [(c—b)+a)k—2i
2K+ (k1)

. The proof is complete. [

Proof of Corollary 1: We show that, for a symmetric fuzzy variable
¢, mg[€] is nil when k is an odd number.
By definition, we have:
mil€] = B[~ B[] = [ Or{(€ = E[€)* = r}dr— [° Cr{(6~ E[E)*
ridr,Vk € N*.
In [5], X. Li has already proved that for a symmetric fuzzy variable £, E[¢] = e
and Cr{{ —e > r} = Cr{{ — e < —r}, where e is a real number such that
ple —r) = ple+r),¥r € R and p is the membership function of &.
Furthermore, we have:
my €] = [ Cr{(é—e)F > T}dr—ffoo Cri(é—e)* <r}dr= [ kr*1Cr{¢—
e > ridr — ffoo krt=1Cr{€ —e < r}dr = [k IOM{E — e < —r}dr —

k10 {€ — e < r}dr = 0.

Now, we assume that k is an even integer.
For a symmetric triangular fuzzy variable & = (a,b,c), we can easily show
the following result:

Since Cr{(§ —e)f > r} = Cr{€ —e > ¥/r} v Cr{¢ — e < ¥/r}, we have:
a—Yyr k
AV S 5> L0<r<a
Crite —ef =1} {O, if r > ¥
wherea=c—-b=0—a.

So, we can conclude that: my[¢] = [ = 5

ot O‘_‘[d = of. O

Proof of Proposition 2: 1) It is easy to show that: Cr{({ —e)* > r} =
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Cr{¢ —e> Yr} Vv Cr{¢ —e < {/r}. Hence we have the following egality:

400 +o0
K¢ :/0 Cr{(§—e)' = rdr = /0 Cr{¢—e = Vr}vCri{¢—e < /r}dr.

2) We deduce the second result from the definition of K'[¢] and by using the
fact that:

vig - | " Or{(e=e)? > r}r = / " Crie—e = YRV E—e < S

3) i) Let a,b € R. We have K[af + b] = E[(a + b — Ela& + b])*]. Since
Ela& +b] = aE[£] + b, we deduce that K[af +b] = E[(a +b—aE[¢] - b)Y =
B{(at — aBle])"] = a'B|(¢ — Bl = ¢ K[e]

ii) Since V[a& + b] = a*V[¢], we deduce K'[af + 0] = K'[£]. O

Proof of Corollary 2: When ¢ is a symmetric fuzzy variable, we have:
Cri(¢—e)* >ridr =Cr{¢—e> Yr}and Cr{(£—e)?> > r}dr = Cr{ —e >
</r} and the proof is complete. [J

Proof of Proposition 3: 1) Let £ = (a,b,¢,d) be a trapezoidal fuzzy
variable such that F[{] =e,a =b—a,5=d —c.
By using the fact that Cr{(¢—e)* > r} = Cr{f—e > Y/r}vCOr{t—e < J/r},
we can easily obtain the following results:
i)When « > 3, then e < ¢. We can so distinguish the two following cases as
follows:
15tcase: e < b

(1 kema if 0 < < (b —e)?
%,4if(b—e)4§7"§(c—e)4
Cri(¢—e)>r}=< — T;;_d, if (c—e)t<r< (e—"Ter)4

“Vrteca i (o — @by < < (e — )

0, if r > (e —a).

\
and finally we get:

KIEl = Jy ™ Orl(§=e)* 2 rhdr = (et (o ((aflecty (sbepglecn

(e—a)’ (b—e)® (c—e)®
10c 10a 108 °
2dcase: e > b

%, ifOSTS(C_€)4
_ Yrde—d . v
Cr{(¢ —e)>r} = 28 ¢ if (c—e)

=Vrtesa if (e — aib)
0, if r > (e —a).
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and finally we get:

+o0 e—a e—b —a e—a e—b a(d—e e—a
K[l = Jy ™ Cr{(g=e) 2 rhdr = (S5 () (e lesthys (atemegiglens
(e=a)® _ (c—e)®

10« 108 -

ii) When « < 8, we use a similar way to calculate K[¢].
iii)When o = 3, we have:

5, iF0<r < (52
Cr{€—e)' >r} =0 —L+<L+ 1 if (5D <r < (52 +B)
0, if r > (52 + 5)*
a=d—c=b—a
and this result implies that:
oo 5[(c —b) + B]* + 1082%[(c — b) + B]* + B
K[f]:/ CT{(§—€)4ZT}dT: [( ) ﬁ] 1§0[( ) 6] ]
0

2) Let & = (a,b,c) be a triangular fuzzy variable such that E[¢{] =e,a =
b—a,B = c—b. By using the fact that Cr{({ —e)* > r} = Cr{¢ —e >
Vv COr{€ — e < /r}, we can easily obtain the following results:

i)When « > 3, then e < b and

1 — Ykeze ip g < p < (h—e)?
<r

Yree—c - 4 a+B\4
Or{(6—eyt =rp={ T2 Bl sr< (5
i () < r < (e —a)!

0, ifr>(e—a)?
and finally we get:
253a” + 39508 + 17aB* + 29002 5% + 7002 3>

)+

_65

+oo
K¢ :/0 Cr{(¢—e)* = r}dr = 10.240a

ii) When « < (3, we use a similar way to calculate K[¢].
iii)When o« = 3, we have:

k
a—V4 ifo<r<oaok

Or{(&—e>4zr}={ o

0, if r > o

where o = ¢ — b = b — a and this result implies that:

+o0 Oé4

K¢ = i Cr{(¢—e)* >r}tdr = 0
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Proof of Corollary 3: We deduce these results from Proposition 3.

Proof of Proposition 6: Let § € © and r € R. With (13), we have:
—e)Psi{<e

[(€—e)T Osié>e
i) I €(8) < e, then [(€(8) — )] = (€(6) — ¢)%. And [(£(6) — &) ] > r &
£0) — e > 1.
ii) If £(0) > e, then [(£(0) — €)7]* = 0 and (§(0) — €)™ = [(£(6) — e)7]™.
Thus the inequality [(£(6) — e)™]* > r implies (£(0) — e)* > r. We de-
duce that V0,7, {0/[(£(0) —e)7]?* > 1} C {0/(£(0) — e)? > r}. Since Cr is
monotone, we have: Vr,Cr{[({ —e)"|** > r} < Cr{(¢ —e)* > r}. Hence
K[g) = [ Cr{(€ = o) 2 r}dr = [ Cr{[(€ — )] = r}dr = K°[¢]. O
For p = 2, we show (21).

. Thus we distinguish two cases as follows:

Proof of Proposition 7: Assume that £ is symmetric anf let p € N* .
(<) : Assume that Cr{¢ = e} = 1. Thus we have: Cr{{ —e = 0} = 1 iff
Cr{(¢ —e)* =0} = 1. With the self-duality of Cr, we have Cr{({ —e)* #
0} = 0.

Let r > 0. We have: Cr{(§—e)® >r} < Cr{(é—e)* > 0} < Cr{({—e)*? #
0} = 0. That means Vr > 0,Cr{(¢ —e)® > r} = 0. And we deduce
K[§] = [ Cr{(€ — e > r}dr = 0.

(=:) Assume that K[¢] = 0. Since Cr takes values in [0;1], this equal-
ity means Cr{({ —e)* > r} = 0,Vr > 0. Since Cr is self-dual, we have
Cr{(¢ —e)** = 0} = 1 and we deduce that Cr{¢ —e = 0} = 1, that is,
Cri{=e}=10

Assume that £ is symmetric and replace p = 2 in the precede proof to
obtain (22).

Proof of Proposition 8: Let p € N*. Assume that My,[¢{] = 0. With
Proposition 6, we have My [¢] = 0.
Assume that M) [¢] = 0. that is, E[[(€ — e)7]*] = 0. Since E[[(§ —e)"]*] =
N o Or{[(€ — e)7]22 > r}dr, and the credibility measure Cr takes its value
in [0;1], then Cr{[(£ —e)7]?*’ > r} = 0,Vr > 0. By the self-duality of Cr, we
have Cr{[({ —e)7]*’ = 0} = 1 and, deduce that

Cr{((—e)” =0} =1 (27)
Since { —e = (§ —e)” + (£ — €)™, then 27 implies £ —e = (£ —e)™.
And E[(€ — )] = E[(& —e)*] = [,7° Cr{(¢ — e)* > r}dr = 0. This equality
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implies that Cr{({ —e)* > r} = 0,¥r > 0. Since Cr is self dual, we obtain
Cr{(¢—e)t =0} = 1.
With Cr{(§ —e)~ = 0} = 1 and Cr{(§ — e)" = 0} = 1, we deduce
Cr{(¢ —e) = 0} = 1, that is, Cr{¢ = e} = 1. With Proposition 7, we
have My,[¢] = 0. O

When p = 2 and ¢ is symmetric we obtain (23).

Proof of Proposition 9: p € N*. Assume that £ is symmetric and let
us show (24).
Since My, [¢] = [7° Cr{(¢—e)® > r}dr and My [¢] = [["° Cr{[(§—e) ]? >
r}dr, it suffices to show that: Cr{(¢ —e)* > r} = Cr{[({ —e)7]** > r}. For
that we distinguish two cases:
-If r < 0, then we have Cr{(§—e)** > r} = Cr{[((—e)"|* > r} = Cr{O} =
1.
- If r > 0, then (with r = r"*) and assume that 7’ > 0. We have (£ — )% >
re (E—e) €l —oo;—r]Ur;+oof, and [(E —e) | > r & (E—¢)” €
] —o00; —r']U[r’; +00|. Therefore, we obtain Cr{(é—e)? >r} =1-Cr{—r' <
E—e<r},Or{[(—e) P >r}=1-Cr{—r < (E—¢)” <1}
It rests to show that Cr{—r' < —e<r'} =Cr{—r' < ({ —e)” <7r'}.
Let p be the membership function of £ —e and i/ be the membership function

. , o pité<e
of (£ —e)™. Let us recall that p/ = { 0 otherwise
We have:

CT{_T, < 5_6 < 7”,} = %[1+Supx€]fr’;r’[:u(x)_max<sup:v€]foo;fr’[M(x)7Supxe}r’;Jroo;[IU/(x))] =
%[1 + Supze]—’r’;ﬂ[ - Supxe]—oo;—r’[ ,u(:c)]

We also have Cr{—r" < (§ —e)” < '} = Cr{—r" < (£ —e)~ < 0} since

(€ —e)” < 0. Therefore

T
Cr{i—r"<(—e)" <7} = = |1+ sup p'(x)—max( sup p'(z), sup p'(z))
2 z€]—r";0[ xT€]—o00;—71'[ 2€]0;+00;]
T
= 3 14+ sup p(x)— sup p'(x)]. (28)
zel—1"0] S

Since p/'(z) = 0, Va €]0; +00], hence
Cr{i—r'<—e<r'}=Cr{—r < ({—¢e)” <1}

Assume that £ is symmetric. In the the precede proof, when p = 2 we obtain
(24). O
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