J. A. Mccubrey, M. M. Lahair, and R. A. Franklin, Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways, Antioxidants & Redox Signaling, vol.8, issue.9-10, pp.1775-1789, 2006.
DOI : 10.1089/ars.2006.8.1775

S. Torii, T. Yamamoto, Y. Tsuchiya, and E. Nishida, ERK MAP kinase in G1 cell cycle progression and cancer, Cancer Science, vol.17, issue.8, pp.697-702, 2006.
DOI : 10.1093/carcin/bgi066

A. S. Dhillon, S. Hagan, O. Rath, and W. Kolch, MAP kinase signalling pathways in cancer, Oncogene, vol.4, issue.22, pp.3279-3290, 2007.
DOI : 10.1158/0008-5472.CAN-05-0115

H. J. Schaeffer and M. J. Weber, Mitogen-Activated Protein Kinases: Specific Messages from Ubiquitous Messengers, Molecular and Cellular Biology, vol.19, issue.4, pp.2435-2444, 1999.
DOI : 10.1128/MCB.19.4.2435

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC84036

D. K. Morrison and R. J. Davis, Regulation of MAP Kinase Signaling Modules by Scaffold Proteins in Mammals, Annual Review of Cell and Developmental Biology, vol.19, issue.1, pp.91-118, 2003.
DOI : 10.1146/annurev.cellbio.19.111401.091942

A. J. Whitmarsh, The JIP family of MAPK scaffold proteins, Biochemical Society Transactions, vol.34, issue.5, pp.828-832, 2006.
DOI : 10.1042/BST0340828

R. J. Davis, Signal Transduction by the JNK Group of MAP Kinases, Cell, vol.103, issue.2, pp.239-252, 2000.
DOI : 10.1016/S0092-8674(00)00116-1

M. Malumbres and M. Barbacid, RAS oncogenes: The first 30 years, Nature Reviews Cancer, vol.245, issue.9, pp.459-465, 2003.
DOI : 10.1038/nrc1193

M. T. Uhlik, A. N. Abell, B. D. Cuevas, K. Nakamura, and G. L. Johnson, Wiring diagrams of MAPK regulation by MEKK1, 2, and 3, Biochemistry and Cell Biology, vol.82, issue.6, pp.658-663, 2004.
DOI : 10.1139/o04-114

B. D. Cuevas, A. M. Winter-vann, N. L. Johnson, and G. L. Johnson, MEKK1 controls matrix degradation and tumor cell dissemination during metastasis of polyoma middle-T driven mammary cancer, Oncogene, vol.97, issue.36, pp.4998-5010, 2006.
DOI : 10.1038/sj.onc.1209507

H. Nagai, T. Noguchi, K. Takeda, and H. Ichijo, Pathophysiological Roles of ASK1-MAP Kinase Signaling Pathways, BMB Reports, vol.40, issue.1, pp.40-41, 2007.
DOI : 10.5483/BMBRep.2007.40.1.001

E. Giacobini and R. E. Becker, One Hundred Years after the Discovery of Alzheimer's Disease. A Turning Point for Therapy?, Journal of Alzheimer's Disease, vol.12, issue.1, pp.37-52, 2007.
DOI : 10.3233/JAD-2007-12105

P. C. Reid, Y. Urano, T. Kodama, and T. Hamakubo, Alzheimer's Disease: cholesterol, membrane rafts, isoprenoids and statins, Journal of Cellular and Molecular Medicine, vol.3, issue.3, pp.11-383, 2007.
DOI : 10.1016/j.neuron.2004.08.043

M. Tabaton and E. Tamagno, The molecular link between ??- and ??-secretase activity on the amyloid ?? precursor protein, Cellular and Molecular Life Sciences, vol.64, issue.17, pp.2211-2218, 2007.
DOI : 10.1007/s00018-007-7219-3

J. Z. Wang and F. Liu, Microtubule-associated protein tau in development, degeneration and protection of neurons, Progress in Neurobiology, vol.85, issue.2, pp.148-175, 2008.
DOI : 10.1016/j.pneurobio.2008.03.002

M. Perez, M. A. Moran, I. Ferrer, J. Avila, and P. Gomez-ramos, Phosphorylated tau in neuritic plaques of APPsw/Tauvlw transgenic mice and Alzheimer disease, Acta Neuropathologica, vol.299, issue.Pt 3, pp.409-418, 2008.
DOI : 10.1007/s00401-008-0420-0

J. B. Paulson, M. Ramsden, C. Forster, M. A. Sherman, E. Mcgowan et al., Amyloid Plaque and Neurofibrillary Tangle Pathology in a Regulatable Mouse Model of Alzheimer's Disease, The American Journal of Pathology, vol.173, issue.3, pp.173-762, 2008.
DOI : 10.2353/ajpath.2008.080175

N. N. Dewji, The structure and functions of the presenilins, CMLS Cellular and Molecular Life Sciences, vol.62, issue.10, pp.1109-1119, 2005.
DOI : 10.1007/s00018-005-4566-9

. Borchelt, Mutant presenilins specifically elevate the levels of the 42 residue ?amyloid peptide in vivo: evidence for augmentation of a 42-specific ? secretase, Hum. Mol. Genet, vol.13, pp.159-170, 2004.

L. Placanica, L. Zhu, and Y. M. Li, Gender- and Age-Dependent ??-Secretase Activity in Mouse Brain and Its Implication in Sporadic Alzheimer Disease, PLoS ONE, vol.282, issue.4, p.5088, 2009.
DOI : 10.1371/journal.pone.0005088.s001

E. Kojro and F. Fahrenholz, The Non-Amyloidogenic Pathway: Structure and Function of ??-Secretases, Subcell. Biochem, vol.38, pp.105-127, 2005.
DOI : 10.1007/0-387-23226-5_5

S. Suomensaari, D. Wang, J. Walker, L. Zhao, V. Mcconlogue et al., Purification and cloning of amyloid precursor protein ?-secretase from human brain, Nature, vol.402, pp.537-540, 1999.

G. Yu, M. Nishimura, S. Arawaka, D. Levitan, L. Zhang et al., Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and ?APP processing, Nature, vol.407, pp.48-54, 2000.

R. Vassar, B. D. Bennett, S. Babu-khan, S. Kahn, E. A. Mendiaz et al., Beta-Secretase Cleavage of Alzheimer's Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE, Science, vol.286, issue.5440, pp.735-741, 1999.
DOI : 10.1126/science.286.5440.735

F. M. Laferla, K. N. Green, and S. Oddo, Intracellular amyloid-?? in Alzheimer's disease, Nature Reviews Neuroscience, vol.66, issue.7, pp.499-509, 2007.
DOI : 10.1038/nrn2168

C. Caspersen, N. Wang, J. Yao, A. Sosunov, X. Chen et al., Mitochondrial A?: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease, FASEB J, vol.19, pp.2040-2041, 2005.

M. T. Lin and M. F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases, Nature, vol.175, issue.7113, pp.787-795, 2006.
DOI : 10.1038/nature05292

D. Pratico, Oxidative stress hypothesis in Alzheimer???s disease: a reappraisal, Trends in Pharmacological Sciences, vol.29, issue.12, pp.609-615, 2008.
DOI : 10.1016/j.tips.2008.09.001

X. Zhu, H. G. Lee, A. K. Raina, G. Perry, and M. A. Smith, The Role of Mitogen-Activated Protein Kinase Pathways in Alzheimer???s Disease, Neurosignals, vol.11, issue.5, pp.270-281, 2002.
DOI : 10.1159/000067426

B. J. Tabner, O. M. El-agnaf, S. Turnbull, M. J. German, K. E. Paleologou et al., Hydrogen Peroxide Is Generated during the Very Early Stages of Aggregation of the Amyloid Peptides Implicated in Alzheimer Disease and Familial British Dementia, Journal of Biological Chemistry, vol.280, issue.43, pp.35789-35792, 2005.
DOI : 10.1074/jbc.C500238200

A. Chiarini, I. Dal-pra, M. Marconi, B. Chakravarthy, J. F. Whitfield et al., Calcium-Sensing Receptor (CaSR) in Human Brains Pathophysiology: Roles in Late-Onset Alzheimers Disease (LOAD), Current Pharmaceutical Biotechnology, vol.10, issue.3, pp.317-326, 2009.
DOI : 10.2174/138920109787847501

B. Puig, T. Gomez-isla, E. Ribe, M. Cuadrado, B. Torrejon-escribano et al., Expression of stress-activated kinases c-Jun N-terminal kinase (SAPK/JNK-P) and p38 kinase (p38-P), and tau hyperphosphorylation in neurites surrounding ?A plaques in APP Tg2576 mice, Neuropathol. Appl. Neurobiol, pp.30-491, 2004.

C. A. Marques, U. Keil, A. Bonert, B. Steiner, C. Haass et al., Neurotoxic Mechanisms Caused by the Alzheimer's Disease-linked Swedish Amyloid Precursor Protein Mutation: OXIDATIVE STRESS, CASPASES, AND THE JNK PATHWAY, Journal of Biological Chemistry, vol.278, issue.30, pp.278-28294, 2003.
DOI : 10.1074/jbc.M212265200

A. Aiso, I. Lin, and . Nishimoto, Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death, J. Neurochem, vol.84, pp.864-877, 2003.

E. Tamagno, M. Parola, P. Bardini, A. Piccini, R. Borghi et al., Tabaton, ?-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways, J. Neurochem, pp.92-628, 2005.

C. Shen, Y. Chen, H. Liu, K. Zhang, T. Zhang et al., Hydrogen peroxide promotes A? production through JNK-dependent activation of ?secretase, J. Biol. Chem, pp.283-17721, 2008.

A. Colombo, A. Bastone, C. Ploia, A. Sclip, M. Salmona et al., JNK regulates APP cleavage and degradation in a model of Alzheimer's disease, Neurobiology of Disease, vol.33, issue.3, pp.33-518, 2009.
DOI : 10.1016/j.nbd.2008.12.014

Z. Muresan and V. Muresan, The Amyloid-beta Precursor Protein Is Phosphorylated via Distinct Pathways during Differentiation, Mitosis, Stress, and Degeneration, Molecular Biology of the Cell, vol.18, issue.10, pp.3835-3844, 2007.
DOI : 10.1091/mbc.E06-07-0625

Y. Sekine, K. Takeda, and H. Ichijo, The ASK1-MAP Kinase Signaling in ER Stress and Neurodegenerative Diseases, Current Molecular Medicine, vol.6, issue.1, pp.87-97, 2006.
DOI : 10.2174/156652406775574541

A. L. Peel, N. Sorscher, J. Y. Kim, V. Galvan, S. Chen et al., Tau Phosphorylation in Alzheimer's Disease: Potential Involvement of an APP???MAP Kinase Complex, NeuroMolecular Medicine, vol.5, issue.3, pp.205-218, 2004.
DOI : 10.1385/NMM:5:3:205

V. Galvan, S. Banwait, P. Spilman, O. F. Gorostiza, A. Peel et al., Interaction of ASK1 and the ?amyloid precursor protein in a stress-signaling complex, Neurobiol. Dis, pp.28-65, 2007.

M. Leyssen, D. Ayaz, S. S. Hebert, S. Reeve, B. De-strooper et al., Amyloid precursor protein promotes post-developmental neurite arborization in the Drosophila brain, The EMBO Journal, vol.276, issue.16, pp.2944-2955, 2005.
DOI : 10.1038/sj.emboj.7600757

M. Danni and . Tabaton, JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1, Neurobiol. Aging, vol.30, pp.1563-1573, 2009.

Y. F. Liao, B. J. Wang, H. T. Cheng, L. H. Kuo, and M. S. Wolfe, Tumor necrosis factor? , interleukin-1?, and interferon-? stimulate ?-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway, J. Biol. Chem, pp.279-49523, 2004.

Y. Hashimoto, T. Chiba, M. Yamada, M. Nawa, K. Kanekura et al., Transforming growth factor ?2 is a neuronal death-inducing ligand for amyloid-? precursor protein, Mol. Cell. Biol, pp.25-9304, 2005.

S. Gandhi and N. W. Wood, Molecular pathogenesis of Parkinson's disease, Human Molecular Genetics, vol.14, issue.18, pp.2749-2755, 2005.
DOI : 10.1093/hmg/ddi308

W. Poewe, Non-motor symptoms in Parkinson???s disease, European Journal of Neurology, vol.51, issue.s1, pp.14-20, 2008.
DOI : 10.1002/mds.10417

S. Lesage and A. Brice, Parkinson's disease: from monogenic forms to genetic susceptibility factors, Human Molecular Genetics, vol.18, issue.R1, pp.48-59, 2009.
DOI : 10.1093/hmg/ddp012

. Goedert, ?-synuclein in Lewy bodies, Nature, vol.388, pp.839-840, 1997.

A. Sulzer and . Rosenthal, Mice lacking ?-synuclein display functional deficits in the nigrostriatal dopamine system, Neuron, vol.25, pp.239-252, 2000.

G. Duvoisin, L. I. Di-iorio, R. L. Golbe, and . Nussbaum, Mutation in the ?-synuclein gene identified in families with Parkinson's disease, Science, vol.276, pp.2045-2047, 1997.

J. Miller, J. Blancato, and K. Hardy, Gwinn-Hardy, ?-Synuclein locus triplication causes Parkinson's disease, Science, vol.302, issue.841, 2003.

P. Defebvre, M. Amouyel, and A. Farrer, Destee, ?-synuclein locus duplication as a cause of familial Parkinson's disease, Lancet, vol.364, pp.1167-1169, 2004.

L. Chen and M. B. , ??-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease, Nature Neuroscience, vol.165, issue.5, pp.657-663, 2005.
DOI : 10.1042/BA20020004

. Anderson, Polo-like kinase 2 (PLK2) phosphorylates ?-synuclein at serine 129 in central nervous system, J. Biol. Chem, vol.284, pp.2598-2602, 2009.

G. K. Tofaris, A. Razzaq, B. Ghetti, K. S. Lilley, and M. G. Spillantini, Ubiquitination of ??-Synuclein in Lewy Bodies Is a Pathological Event Not Associated with Impairment of Proteasome Function, Journal of Biological Chemistry, vol.278, issue.45, pp.278-44405, 2003.
DOI : 10.1074/jbc.M308041200

B. I. Giasson, J. E. Duda, I. V. Murray, Q. Chen, J. M. Souza et al., Oxidative Damage Linked to Neurodegeneration by Selective alpha -Synuclein Nitration in Synucleinopathy Lesions, Science, vol.290, issue.5493, pp.985-989, 2000.
DOI : 10.1126/science.290.5493.985

G. K. Tofaris, P. Garcia-reitbock, T. Humby, S. L. Lambourne, M. O. Connell et al., Pathological Changes in Dopaminergic Nerve Cells of the Substantia Nigra and Olfactory Bulb in Mice Transgenic for Truncated Human ??-Synuclein(1-120): Implications for Lewy Body Disorders, Journal of Neuroscience, vol.26, issue.15, pp.3942-3950, 2006.
DOI : 10.1523/JNEUROSCI.4965-05.2006

. Buchman, Induction of neuronal death by ?-synuclein, Eur. J. Neurosci, vol.12, pp.3073-3077, 2000.

E. C. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, The Lancet Neurology, vol.8, issue.4, pp.382-397, 2009.
DOI : 10.1016/S1474-4422(09)70062-6

O. A. Levy, C. Malagelada, and L. A. Greene, Cell death pathways in Parkinson???s disease: proximal triggers, distal effectors, and final steps, Apoptosis, vol.18, issue.1, pp.478-500, 2009.
DOI : 10.1007/s10495-008-0309-3

R. L. Miller, M. James-kracke, G. Y. Sun, and A. Y. Sun, Oxidative and Inflammatory Pathways in Parkinson???s Disease, Neurochemical Research, vol.190, issue.1, pp.55-65, 2009.
DOI : 10.1007/s11064-008-9656-2

G. E. Meredith, P. K. Sonsalla, and M. F. Chesselet, Animal models of Parkinson???s disease progression, Acta Neuropathologica, vol.26, issue.Suppl 1, pp.385-398, 2008.
DOI : 10.1007/s00401-008-0350-x

W. Zhang, T. Wang, Z. Pei, D. S. Miller, X. Wu et al., Aggregated ??-synuclein activates microglia: a process leading to disease progression in Parkinson's disease, The FASEB Journal, vol.19, issue.6, pp.533-542, 2005.
DOI : 10.1096/fj.04-2751com

. Mcgeer, ?-synuclein activates stress signaling protein kinases in THP-1 cells and microglia, Neurobiol. Aging, vol.29, pp.739-752, 2008.

A. Klegeris, B. I. Giasson, H. Zhang, J. Maguire, S. Pelech et al., McGeer, ?synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells, FASEB J, vol.20, 2000.

. Anandatheerthavarada, Mitochondrial import and accumulation of ?-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain, J. Biol. Chem, vol.283, pp.9089-9100, 2008.

M. S. Parihar, A. Parihar, M. Fujita, M. Hashimoto, and P. Ghafourifar, Mitochondrial association of alpha-synuclein causes oxidative stress, Cellular and Molecular Life Sciences, vol.65, issue.7-8, pp.1272-1284, 2008.
DOI : 10.1007/s00018-008-7589-1

A. Schober, Classic toxin-induced animal models of Parkinson's disease: 6- OHDA and MPTP, Cell Tissue Res, pp.318-215, 2004.

F. Cicchetti, J. Drouin-ouellet, and R. E. Gross, Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?, Trends in Pharmacological Sciences, vol.30, issue.9, pp.30-475, 2009.
DOI : 10.1016/j.tips.2009.06.005

D. Adam, Pesticide use linked to Parkinson's disease, Nature, vol.408, issue.125, 2000.

J. M. Hatcher, K. D. Pennell, and G. W. Miller, Parkinson's disease and pesticides: a toxicological perspective, Trends in Pharmacological Sciences, vol.29, issue.6, pp.322-329, 2008.
DOI : 10.1016/j.tips.2008.03.007

M. F. Beal, Experimental models of Parkinson's disease, Nature Reviews Neuroscience, vol.55, issue.5, pp.325-334, 2001.
DOI : 10.1056/NEJM199810153391603

S. Karunakaran, L. Diwakar, U. Saeed, V. Agarwal, S. Ramakrishnan et al., Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson's disease: protection by ??-lipoic acid, The FASEB Journal, vol.21, issue.9, pp.2226-2236, 2007.
DOI : 10.1096/fj.06-7580com

M. S. Saporito, B. A. Thomas, and R. W. Scott, )-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo, J. Neurochem, pp.75-1200, 2000.

M. Ouyang and X. Shen, Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells, Journal of Neurochemistry, vol.274, issue.1, pp.234-244, 2006.
DOI : 10.1074/jbc.274.12.8208

R. M. Silva, C. Y. Kuan, P. Rakic, and R. E. Burke, Mixed lineage kinase-c-jun N-terminal kinase signaling pathway: A new therapeutic target in Parkinson's disease, Movement Disorders, vol.277, issue.6, pp.653-664, 2005.
DOI : 10.1002/mds.20390

J. E. Chipuk and D. R. Green, How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?, Trends in Cell Biology, vol.18, issue.4, pp.157-164, 2008.
DOI : 10.1016/j.tcb.2008.01.007

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242477

S. Karunakaran, U. Saeed, M. Mishra, R. K. Valli, S. D. Joshi et al., Selective Activation of p38 Mitogen-Activated Protein Kinase in Dopaminergic Neurons of Substantia Nigra Leads to Nuclear Translocation of p53 in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Treated Mice, Journal of Neuroscience, vol.28, issue.47, pp.12500-12509, 2008.
DOI : 10.1523/JNEUROSCI.4511-08.2008

N. Rawal, C. Parish, G. Castelo-branco, and E. , Inhibition of JNK increases survival of transplanted dopamine neurons in Parkinsonian rats, Cell Death and Differentiation, vol.23, issue.2, pp.381-383, 2007.
DOI : 10.1038/sj.cdd.4402010

J. Pan, Y. X. Zhao, Z. Q. Wang, L. Jin, Z. K. Sun et al., Expression of FasL and its interaction with Fas are mediated by c-Jun N-terminal kinase (JNK) pathway in 6-OHDA-induced rat model of Parkinson disease, Neuroscience Letters, vol.428, issue.2-3, pp.428-82, 2007.
DOI : 10.1016/j.neulet.2007.09.032

K. Newhouse, S. L. Hsuan, S. H. Chang, B. Cai, Y. Wang et al., Rotenoneinduced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells, Toxicol. Sci, pp.79-137, 2004.

S. L. Hsuan, H. M. Klintworth, and Z. Xia, Basic Fibroblast Growth Factor Protects against Rotenone-Induced Dopaminergic Cell Death through Activation of Extracellular Signal-Regulated Kinases 1/2 and Phosphatidylinositol-3 Kinase Pathways, Journal of Neuroscience, vol.26, issue.17, pp.26-4481, 2006.
DOI : 10.1523/JNEUROSCI.4922-05.2006

J. Peng, X. O. Mao, F. F. Stevenson, M. Hsu, and J. K. Andersen, The Herbicide Paraquat Induces Dopaminergic Nigral Apoptosis through Sustained Activation of the JNK Pathway, Journal of Biological Chemistry, vol.279, issue.31, pp.279-32626, 2004.
DOI : 10.1074/jbc.M404596200

H. Klintworth, K. Newhouse, T. Li, W. S. Choi, R. Faigle et al., Activation of c-Jun N-Terminal Protein Kinase Is a Common Mechanism Underlying Paraquat- and Rotenone-Induced Dopaminergic Cell Apoptosis, Toxicological Sciences, vol.97, issue.1, pp.97-149, 2007.
DOI : 10.1093/toxsci/kfm029

S. Ramachandiran, J. M. Hansen, D. P. Jones, J. R. Richardson, and G. W. Miller, Divergent Mechanisms of Paraquat, MPP+, and Rotenone Toxicity: Oxidation of Thioredoxin and Caspase-3 Activation, Toxicological Sciences, vol.95, issue.1, pp.95-163, 2007.
DOI : 10.1093/toxsci/kfl125

L. Resnick and M. Fennell, Targeting JNK3 for the treatment of neurodegenerative disorders, Drug Discovery Today, vol.9, issue.21, pp.932-939, 2004.
DOI : 10.1016/S1359-6446(04)03251-9

M. S. Saporito, R. L. Hudkins, and A. C. Maroney, 2 Discovery of Cep-1347/Kt-7515, an Inhibitor of the Jnk/Sapk Pathway for the Treatment of Neurodegenerative Diseases, Prog. Med. Chem, pp.40-63, 2002.
DOI : 10.1016/S0079-6468(08)70081-X

C. Y. Kuan and R. E. Burke, Targeting the JNK Signaling Pathway for Stroke and Parkinsons Diseases Therapy, Current Drug Target -CNS & Neurological Disorders, vol.4, issue.1, pp.63-67, 2005.
DOI : 10.2174/1568007053005145

L. Guo, W. Wang, and S. G. Chen, Leucine-rich repeat kinase 2: Relevance to Parkinson's disease, The International Journal of Biochemistry & Cell Biology, vol.38, issue.9, pp.1469-1475, 2006.
DOI : 10.1016/j.biocel.2006.02.009

A. Zimprich, S. Biskup, P. Leitner, P. Lichtner, M. Farrer et al., Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology, Neuron, vol.44, issue.4, pp.601-607, 2004.
DOI : 10.1016/j.neuron.2004.11.005

T. M. Dawson and . Dawson, Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.16842-16847, 2005.

C. J. Gloeckner, A. Schumacher, K. Boldt, and M. Ueffing, The Parkinson diseaseassociated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4, J. Neurochem, vol.7, issue.109, pp.959-968, 2009.

J. F. Staropoli, C. Mcdermott, C. Martinat, B. Schulman, E. Demireva et al., Parkin Is a Component of an SCF-like Ubiquitin Ligase Complex and Protects Postmitotic Neurons from Kainate Excitotoxicity, Neuron, vol.37, issue.5, pp.735-749, 2003.
DOI : 10.1016/S0896-6273(03)00084-9

T. M. Dawson and . Dawson, Parkin ubiquitinates the ?-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease, Nat. Med, vol.7, pp.1144-1150, 2001.

M. K. Lim, T. Kawamura, Y. Ohsawa, M. Ohtsubo, S. Asakawa et al., Parkin interacts with LIM Kinase 1 and reduces its cofilinphosphorylation activity via ubiquitination, Exp. Cell Res, pp.313-2858, 2007.
DOI : 10.1016/j.yexcr.2007.04.016

L. Petrucelli, C. O. Farrell, P. J. Lockhart, M. Baptista, K. Kehoe et al., Parkin Protects against the Toxicity Associated with Mutant ??-Synuclein, Neuron, vol.36, issue.6, pp.1007-1019, 2002.
DOI : 10.1016/S0896-6273(02)01125-X

H. Jiang, Y. Ren, J. Zhao, and J. Feng, Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis, Human Molecular Genetics, vol.13, issue.16, pp.1745-1754, 2004.
DOI : 10.1093/hmg/ddh180

URL : http://hmg.oxfordjournals.org/cgi/content/short/13/16/1745

. Cho, Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila, Proceedings of the National Academy of Sciences, vol.102, issue.29, pp.10345-10350, 2005.
DOI : 10.1073/pnas.0500346102

D. Narendra, A. Tanaka, D. F. Suen, and R. J. Youle, Parkin is recruited selectively to impaired mitochondria and promotes their autophagy, The Journal of Cell Biology, vol.84, issue.5, pp.795-803, 2008.
DOI : 10.1073/pnas.0711845105

H. M. Mcbride, Parkin mitochondria in the autophagosome: Figure 1., The Journal of Cell Biology, vol.579, issue.5, pp.757-759, 2008.
DOI : 10.1073/pnas.0802814105

H. Picchio, A. K. Alder, C. M. Godwin, and . Croce, Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.5956-5961, 2003.

J. F. Staropoli, Tumorigenesis and neurodegeneration: two sides of the same coin?, BioEssays, vol.102, issue.8, pp.719-727, 2008.
DOI : 10.1002/bies.20784

X. Ronai, Z. Zhuang, and . Zhang, Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation, J. Clin. Invest, vol.119, pp.650-660, 2009.

R. D. Mills, C. H. Sim, S. S. Mok, T. D. Mulhern, J. G. Culvenor et al., Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1), Journal of Neurochemistry, vol.3, issue.1, pp.18-33, 2008.
DOI : 10.1038/35037739

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.25, issue.7097, pp.1157-1161, 2006.
DOI : 10.1038/nature04788

E. Andres-mateos, C. Perier, L. Zhang, B. Blanchard-fillion, T. M. Greco et al., DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase, Proceedings of the National Academy of Sciences, vol.104, issue.37, pp.14807-14812, 2007.
DOI : 10.1073/pnas.0703219104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1976193

J. Xu, N. Zhong, H. Wang, J. E. Elias, C. Y. Kim et al., The Parkinson's disease-associated DJ-1 protein is a transcriptional co-activator that protects against neuronal apoptosis, Human Molecular Genetics, vol.14, issue.9, pp.1231-1241, 2005.
DOI : 10.1093/hmg/ddi134

E. Junn, W. H. Jang, X. Zhao, B. S. Jeong, and M. M. Mouradian, Mitochondrial localization of DJ-1 leads to enhanced neuroprotection, Journal of Neuroscience Research, vol.356, issue.1, pp.123-129, 2009.
DOI : 10.1002/jnr.21831

. Forloni, DJ-1 modulates ?-synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson's disease and involvement of HSP70, PLoS One, vol.3, p.1884, 2008.

J. Waak, S. S. Weber, A. Waldenmaier, K. Gorner, M. Alunni-fabbroni et al., Regulation of astrocyte inflammatory responses by the Parkinson's disease-associated gene DJ-1, The FASEB Journal, vol.23, issue.8, pp.2478-2489, 2009.
DOI : 10.1096/fj.08-125153

J. S. Mo, M. Y. Kim, E. J. Ann, J. A. Hong, and H. S. Park, DJ-1 modulates UV-induced oxidative stress signaling through the suppression of MEKK1 and cell death, Cell Death and Differentiation, vol.87, issue.6, pp.1030-1041, 2008.
DOI : 10.1073/pnas.97.26.14382

S. Zucchelli, S. Vilotti, R. Calligaris, Z. S. Lavina, M. Biagioli et al., Aggresome-forming TTRAP mediates pro-apoptotic properties of Parkinson's disease-associated DJ-1 missense mutations, Cell Death and Differentiation, vol.27, issue.3, pp.428-438, 2009.
DOI : 10.1038/sj.onc.1203378

L. Vande-walle, M. Lamkanfi, and P. Vandenabeele, The mitochondrial serine protease HtrA2/Omi: an overview, Cell Death and Differentiation, vol.19, issue.3, pp.453-460, 2008.
DOI : 10.1038/sj.onc.1208681

L. M. Martins, A. Morrison, K. Klupsch, V. Fedele, N. Moisoi et al., Neuroprotective Role of the Reaper-Related Serine Protease HtrA2/Omi Revealed by Targeted Deletion in Mice, Molecular and Cellular Biology, vol.24, issue.22, pp.24-9848, 2004.
DOI : 10.1128/MCB.24.22.9848-9862.2004

K. M. Strauss, L. M. Martins, H. Plun-favreau, F. P. Marx, S. Kautzmann et al., Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease, Human Molecular Genetics, vol.14, issue.15, pp.2099-2111, 2005.
DOI : 10.1093/hmg/ddi215

J. Yun, J. H. Cao, M. W. Dodson, I. E. Clark, P. Kapahi et al., Loss-of-Function Analysis Suggests That Omi/HtrA2 Is Not an Essential Component of the pink1/parkin Pathway In Vivo, Journal of Neuroscience, vol.28, issue.53, pp.28-14500, 2008.
DOI : 10.1523/JNEUROSCI.5141-08.2008

H. Plun-favreau, K. Klupsch, N. Moisoi, S. Gandhi, S. Kjaer et al., The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1, Nature Cell Biology, vol.22, issue.11, pp.1243-1252, 2007.
DOI : 10.1038/ncb1644

P. Pasinelli and R. H. Brown, Molecular biology of amyotrophic lateral sclerosis: insights from genetics, Nature Reviews Neuroscience, vol.6, issue.2, pp.710-723, 2006.
DOI : 10.1038/nrn1971

S. Vucic and M. C. Kierna, Pathophysiology of Neurodegeneration in Familial Amyotrophic Lateral Sclerosis, Current Molecular Medicine, vol.9, issue.3, pp.255-272, 2009.
DOI : 10.2174/156652409787847173

J. Q. Lee and . Trojanowski, Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations, Ann. Neurol, pp.61-427, 2007.

C. Lagier-tourenne and D. W. Cleveland, Rethinking ALS: The FUS about TDP-43, Cell, vol.136, issue.6, pp.1001-1004, 2009.
DOI : 10.1016/j.cell.2009.03.006

P. J. Shaw, Molecular and cellular pathways of neurodegeneration in motor neurone disease, Journal of Neurology, Neurosurgery & Psychiatry, vol.76, issue.8, pp.1046-1057, 2005.
DOI : 10.1136/jnnp.2004.048652

M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Dal-canto, C. Y. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Motor neuron degeneration in mice that express a human Cu, pp.1772-1775, 1994.
DOI : 10.1126/science.8209258

C. Bendotti, M. B. Cutrona, C. Cheroni, G. Grignaschi, D. Lo-coco et al., Inter- and Intracellular Signaling in Amyotrophic Lateral Sclerosis: Role of p38 Mitogen-Activated Protein Kinase, Neurodegenerative Diseases, vol.2, issue.3-4, pp.128-134, 2005.
DOI : 10.1159/000089617

M. Tortarolo, P. Veglianese, N. Calvaresi, A. Botturi, C. Rossi et al., Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression, Molecular and Cellular Neuroscience, vol.23, issue.2, pp.180-192, 2003.
DOI : 10.1016/S1044-7431(03)00022-8

S. S. Holasek, T. M. Wengenack, K. K. Kandimalla, C. Montano, D. M. Gregor et al., Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice, Brain Research, vol.1045, issue.1-2, pp.1045-185, 2005.
DOI : 10.1016/j.brainres.2005.03.037

M. Dewil, V. F. Cruz, L. Van-den, W. Bosch, and . Robberecht, Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1(G93A)-induced motor neuron death, Neurobiol. Dis, pp.26-332, 2007.

C. Bendotti, C. Atzori, R. Piva, M. Tortarolo, M. J. Strong et al., Activated p38MAPK Is a Novel Component of the Intracellular Inclusions Found in Human Amyotrophic Lateral Sclerosis and Mutant SOD1 Transgenic Mice, Journal of Neuropathology & Experimental Neurology, vol.63, issue.2, pp.63-113, 2004.
DOI : 10.1093/jnen/63.2.113

P. N. Dingwall, C. E. Leigh, and C. C. Shaw, Miller, p38? stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis, Mol. Cell. Neurosci, pp.26-354, 2004.

J. Brownlees, A. Yates, N. P. Bajaj, D. Davis, B. H. Anderton et al., Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b, J. Cell Sci, vol.113, pp.401-407, 2000.

C. Raoul, A. G. Estevez, H. Nishimune, D. W. Cleveland, O. Delapeyriere et al., Motoneuron Death Triggered by a Specific Pathway Downstream of Fas, Neuron, vol.35, issue.6, pp.1067-1083, 2002.
DOI : 10.1016/S0896-6273(02)00905-4

C. Raoul, E. Buhler, C. Sadeghi, A. Jacquier, P. Aebischer et al., Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.6007-6012, 2006.
DOI : 10.1073/pnas.0508774103

URL : https://hal.archives-ouvertes.fr/hal-00088942

B. Meusser, C. Hirsch, E. Jarosch, and T. Sommer, ERAD: the long road to destruction, Nature Cell Biology, vol.67, issue.8, pp.766-772, 2005.
DOI : 10.1016/S1097-2765(04)00212-6

H. Nishitoh, H. Kadowaki, A. Nagai, T. Maruyama, T. Yokota et al., ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1, Genes & Development, vol.22, issue.11, pp.1451-1464, 2008.
DOI : 10.1101/gad.1640108

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2418582

H. Nishitoh, A. Matsuzawa, K. Tobiume, K. Saegusa, K. Takeda et al., ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats, Genes & Development, vol.16, issue.11, pp.1345-1355, 2002.
DOI : 10.1101/gad.992302

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC186318

T. Boutros, E. Chevet, and P. Metrakos, Mitogen-Activated Protein (MAP) Kinase/MAP Kinase Phosphatase Regulation: Roles in Cell Growth, Death, and Cancer, Pharmacological Reviews, vol.60, issue.3, pp.60-261, 2008.
DOI : 10.1124/pr.107.00106

S. Schubbert, K. Shannon, and G. Bollag, Hyperactive Ras in developmental disorders and cancer, Nature Reviews Cancer, vol.91, issue.4, pp.295-308, 2007.
DOI : 10.1038/nrc2109

M. Settleman, T. Giovannini, and . Jacks, Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon, Nat. Genet, pp.40-600, 2008.

S. R. Calcagno, S. Li, M. Colon, P. A. Kreinest, E. A. Thompson et al., OncogenicK-ras promotes early carcinogenesis in the mouse proximal colon, International Journal of Cancer, vol.32, issue.11, pp.2462-2470, 2008.
DOI : 10.1002/ijc.23383

L. Voisin, C. Julien, S. Duhamel, K. Gopalbhai, I. Claveau et al., Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors, BMC Cancer, vol.113, issue.1, 2008.
DOI : 10.1053/gast.1997.v113.pm9352861

E. Halilovic and D. B. Solit, Therapeutic strategies for inhibiting oncogenic BRAF signaling, Current Opinion in Pharmacology, vol.8, issue.4, pp.419-426, 2008.
DOI : 10.1016/j.coph.2008.06.014

P. T. Wan, M. J. Garnett, S. M. Roe, S. Lee, D. Niculescu-duvaz et al., Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF, Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF, pp.855-867, 2004.
DOI : 10.1016/S0092-8674(04)00215-6

L. K. Rushworth, A. D. Hindley, E. O. Neill, and W. Kolch, Regulation and Role of Raf-1/B-Raf Heterodimerization, Molecular and Cellular Biology, vol.26, issue.6, pp.26-2262, 2006.
DOI : 10.1128/MCB.26.6.2262-2272.2006

A. Zebisch, P. B. Staber, A. Delavar, C. Bodner, K. Hiden et al., Two Transforming C-RAF Germ-Line Mutations Identified in Patients with Therapy-Related Acute Myeloid Leukemia, Cancer Research, vol.66, issue.7, pp.3401-3408, 2006.
DOI : 10.1158/0008-5472.CAN-05-0115

C. Huang, K. Jacobson, and M. D. Schaller, MAP kinases and cell migration, Journal of Cell Science, vol.117, issue.20, pp.4619-4628, 2004.
DOI : 10.1242/jcs.01481

S. Chakraborti, M. Mandal, S. Das, A. Mandal, and T. Chakraborti, Regulation of matrix metalloproteinases: an overview, Molecular and Cellular Biochemistry, vol.253, issue.1/2, pp.269-285, 2003.
DOI : 10.1023/A:1026028303196

K. Balmanno and S. J. Cook, Tumour cell survival signalling by the ERK1/2 pathway, Cell Death and Differentiation, vol.96, issue.3, pp.368-377, 2009.
DOI : 10.1074/jbc.M010384200

R. Ley, K. Balmanno, K. Hadfield, C. Weston, and S. J. Cook, Activation of the ERK1/2 Signaling Pathway Promotes Phosphorylation and Proteasome-dependent Degradation of the BH3-only Protein, Bim, Journal of Biological Chemistry, vol.278, issue.21, pp.278-18811, 2003.
DOI : 10.1074/jbc.M301010200

Z. Fu and D. J. Tindall, FOXOs, cancer and regulation of apoptosis, Oncogene, vol.1, issue.16, pp.2312-2319, 2008.
DOI : 10.1074/jbc.M205424200

M. R. Warr and G. C. Shore, Unique biology of Mcl-1: therapeutic opportunities in cancer, Curr. Mol. Med, vol.8, pp.138-147, 2008.

M. Chaparro, L. Gonzalez-moreno, M. Trapero-marugan, J. Medina, and R. Moreno-otero, Review article: pharmacological therapy for hepatocellular carcinoma with sorafenib and other oral agents, Alimentary Pharmacology & Therapeutics, vol.359, issue.6 Suppl. 11, pp.28-1269, 2008.
DOI : 10.1111/j.1365-2036.2008.03857.x

N. E. Hynes and G. Macdonald, ErbB receptors and signaling pathways in cancer, Current Opinion in Cell Biology, vol.21, issue.2, pp.177-184, 2009.
DOI : 10.1016/j.ceb.2008.12.010

K. Ohira, M. Hirakawa, and . Mori, Somatic mutations of epidermal growth factor receptor in colorectal carcinoma, Clin. Cancer Res, vol.11, pp.1368-1371, 2005.

G. K. Dy and A. A. Adjei, Emerging Therapeutic Targets in Non-Small Cell Lung Cancer, Proceedings of the American Thoracic Society, vol.6, issue.2, pp.218-223, 2009.
DOI : 10.1513/pats.200808-099LC

J. G. Paez, P. A. Janne, J. C. Lee, S. Tracy, H. Greulich et al., EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy, Science, vol.304, issue.5676, pp.1497-1500, 2004.
DOI : 10.1126/science.1099314

J. Q. Zhu, W. Z. Zhong, G. C. Zhang, R. Li, X. C. Zhang et al., Better survival with EGFR exon 19 than exon 21 mutations in gefitinib-treated non-small cell lung cancer patients is due to differential inhibition of downstream signals, Cancer Letters, vol.265, issue.2, pp.307-317, 2008.
DOI : 10.1016/j.canlet.2008.02.064

U. Weissleder, L. C. Mahmood, K. K. Cantley, and . Wong, Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers, Nat. Med, pp.14-1351, 2008.

J. Downward, Targeting RAS and PI3K in lung cancer, Nature Medicine, vol.4, issue.12, pp.1315-1316, 2008.
DOI : 10.1038/nm1208-1315

M. A. Bogoyevitch, I. Boehm, A. Oakley, A. J. Ketterman, and R. K. Barr, Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1697, issue.1-2, pp.89-101, 2004.
DOI : 10.1016/j.bbapap.2003.11.016

I. Churcher, Tau Therapeutic Strategies for the Treatment of Alzheimers Disease, Current Topics in Medicinal Chemistry, vol.6, issue.6, pp.579-595, 2006.
DOI : 10.2174/156802606776743057

L. J. Chico, D. M. Van-eldik, and . Watterson, A novel p38? MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model, J. Neuroinflammation, vol.4, issue.21, 2007.

A. Colombo, M. Repici, M. Pesaresi, S. Santambrogio, G. Forloni et al., The TAT-JNK inhibitor peptide interferes with beta amyloid protein stability, Cell Death and Differentiation, vol.171, issue.10, pp.1845-1848, 2007.
DOI : 10.1046/j.1471-4159.2001.00046.x

C. W. Olanow, K. Kieburtz, and A. H. Schapira, Why have we failed to achieve neuroprotection in Parkinson's disease?, Annals of Neurology, vol.56, issue.suppl 5, pp.101-110, 2008.
DOI : 10.1002/ana.21461

E. V. Fedorov, S. C. Fedorov, J. R. Almo, D. Mathiasen, M. S. Bozyczko-coyne et al., Mixed-lineage kinase 1 and mixed-lineage kinase 3 subtype-selective dihydronaphthyl[3,4-a]pyrrolo[3,4-c]carbazole-5- ones: optimization, mixed-lineage kinase 1 crystallography, and oral in vivo activity in 1-methyl-4-phenyltetrahydropyridine models, J. Med. Chem, pp.51-5680, 2008.

M. Beloueche-babari, L. E. Jackson, N. M. Al-saffar, P. Workman, M. O. Leach et al., Magnetic resonance spectroscopy monitoring of mitogen-activated protein kinase signaling inhibition, Cancer Res, pp.65-3356, 2005.

B. Van-den-blink, T. Ten-hove, G. R. Van-den, M. P. Brink, S. J. Peppelenbosch et al., From extracellular to intracellular targets, inhibiting MAP kinases in treatment of Crohn's disease, Ann. N. Y. Acad. Sci, pp.973-349, 2002.

V. E. Torres and P. C. Harris, Mechanisms of Disease: autosomal dominant and recessive polycystic kidney diseases, Nature Clinical Practice Nephrology, vol.68, issue.1, pp.40-55, 2006.
DOI : 10.1038/ncpneph0070

Y. Aoki, T. Niihori, Y. Narumi, S. Kure, and Y. Matsubara, The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders, Human Mutation, vol.268, issue.8, pp.29-992, 2008.
DOI : 10.1002/humu.20748