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In this paper, the high Reynolds number channel flow is simulated by numerical approach
at coarse resolution, in which the instantaneous acceleration is decomposed into filtered and
subgrid parts, and then both components are modeled. The filtered acceleration is modeled
in the framework of the LES approach. The model for the subgrid acceleration is based on
two stochastic processes. The first is for its norm, and is based on statistical universalities
in fragmentation under scaling symmetry, providing correlation of subgrid forcing across the
channel. The second is for its orientation, and is based on the Brownian motion on a unit
sphere in order to represent a stochastic relaxation towards full isotropy away from the wall.
Two main parameters of the stochastic process include the Reynolds number based on the
friction velocity, and the channel half-width. In order to assess the capability of the model
proposed, the paper illustrates its application versus recent high Reynolds number DNS,
including DNS performed in this paper.
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1. Introduction

Application of large-eddy simulation (LES) in turbulent channel flow becomes too
expensive when the Reynolds number is high, and the resolution of strong gra-
dients in the near-wall region is needed. Starting from the earlier study of Moin
and Kim [1], different modifications of this approach have been proven successful
(Meneveau and Katz [2], Piomelli and Balaras [3], Sagaut [4], Pantano et al. [5],
Spalart et al. [6]). Among them one is to incorporate direct simulation of subgrid-
scale turbulence into LES techniques on the basis of estimation of the unresolved
velocity field. Approaches proposed by Domaradzki and Adams [7] Park and Ma-
hesh [8], and Westbury et al. [9] are focused on simulation of the residual-stress
tensor. The model proposed by Schmidt et al. [10] is based on the LES/ODT
(One Dimensional Turbulence) coupling [11, 12] and provides stochastically the
unresolved velocity field as the wall is approached. The approach of Kemenov and
Menon [13] is based on the simulation of a turbulent velocity field which is defined
by superposition of large-scale and small-scale components. The latter is computed
directly on subgrid-scales by a simplified 1D motion equation (in three directions).
It is worth noting that the above reported subgrid-scale (SGS) models are invariant
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to the Reynolds number. Thereby, in these models, the intermittency effects are
discarded on subgrid-scales.

In the approach proposed by Sabel’nikov et al. in [14], the key element of the
SGS model is acceleration in the residual flow. This acceleration has been mod-
eled stochastically in the case of three-dimensional box turbulence, with statistical
properties depending on the Reynolds number. The general idea of this approach,
referred to as LES-SSAM (stochastic subgrid acceleration model), consists of the
following. The total instantaneous acceleration
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where the overbar denotes the filtering operation, ui denotes the filtered velocity.
The second component represents the total acceleration in the residual field:
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If both parts are modeled, their sum gives an approximation to (1).

The first assumption is to replace (3) by a classical LES-equation with a simple



eddy-viscosity model
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where νt denotes the eddy viscosity and subscript ∆ is the length scale associated
with the filter size.

The second assumption is to replace (4) by

(
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where p∗ is the pressure providing the subgrid velocity model-field to be solenoidal,
and âi is attributed to the stochastic acceleration of the residual flow.

The third assumption is to replace the sum of (5) and (6) by the model-equation
for a surrogate field, denoted hereafter by the symbolˆ:
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In this equation, the new pressure field p̂ is such that

∂ûk

∂xk
= 0 (8)

Equations (7) and (8) will be applied here to a high Reynolds number channel flow,
with a new subgrid acceleration model for â′i.

In high Reynolds number channel flows, the acceleration is a highly intermittent
variable. It has been reported by direct numerical simulations (DNS) [15], that
this intermittency is mostly related to quasi-coherent vortical structures in the
wall-layer. A fluid particle, trapped in such a vortex, is subjected to an intense
centripetal acceleration. It was revealed [15] that those fluid particles preserve the
magnitude of their acceleration longer than its direction. This finding is consistent
with the experimental studies [16–18] of a high Reynolds number “free” turbu-
lence. Here, in wall-bounded turbulent flow, the intermittency effects are mani-
fested by deep cross-channel interaction between energy containing eddies of very
different length-scales [19]. Recent DNS studies identified mechanisms, which may
be responsible for such turbulent correlations across the channel. In the near-wall
region, there are upward ejections of vortical fluid, as a part of vortices-streaks
regeneration cycle [20–25]. Above the buffer layer, where the Reynolds number de-
pendent flow [26, 27] has intermittent streaky structure as well [28–30], the pressure
fluctuations acting on the flow in the buffer zone and in the viscous sublayer, may



also generate eruptions of small-scale wall structures towards outer flow [31–33].
Besides, the unsteady bursting events, when the large outer-flow eddies appear
closely to the wall, has been reported in [34]. Concerning LES of such flow, the
significant role of the “under-resolved” momentum transfer across the channel was
emphasized in [35].

The question raised in this study is as follows. Despite the huge number of
very different turbulent structures, produced by different random realizations in
the wall-bounded flow, and interacting across the scales, is it possible to match
recent DNS statistics by a rather simple model in the framework of LES-SSAM
approach. The purpose of this paper is to propose such a model with assessment of
its capability by comparison with DNS. The subgrid acceleration model proposed
here is based on the following assumptions : (i) there are two independent stochastic
processes, one for the norm, and another for the orientation; (ii) both processes
are correlated over the channel height; (iii) the stochastic process for the norm of
acceleration is given by the statistical universalities of fragmentation under scaling
symmetry; (iv) the stochastic process for the orientation relaxes towards isotropy
in the channel center-line. Two main parameters of the stochastic process include
the Reynolds number based on the friction velocity, and the channel half-width.

This paper is organized as follows. The stochastic model for the non-resolved
acceleration will first be presented. The models for the norm and the orientation of
the non-resolved acceleration will be described. Then, details about the performed
numerical simulations will be given. Finally, the comparison between the classical
LES, DNS and the LES-SSAM approach will be presented and discussed.

2. Stochastic model for the non-resolved acceleration

The stochastic behavior of the subgrid acceleration is prescribed to its norm and to
its orientation. It is assumed that the orientation of subgrid acceleration is mostly
controlled by orientation of vortex sheets and tubes, lying mostly in the streamwise-
spanwise plane near the wall. These structures become randomly distributed with
increasing distance from the wall. As to the subgrid acceleration norm, it is con-
structed in terms of wall-parameters, following DNS observation [14], in which the
significance of the solenoidal component of acceleration very near the wall was
shown.

In this study, the suggestion is to introduce the stochastic processes for this norm
with correlation across the channel. The subgrid forcing â′ in (7) is therefore given
by two independent stochastic processes, one for its norm |a| and another for its
orientation ei, i.e. :

â′i = |a|ei (9)

This model will be different from the model proposed in [14], where authors in-
troduced a model for the acceleration in homogeneous and isotropic turbulent flow
given also by two independent stochastic processes, one for the norm of the accel-
eration, and another one for its orientation. In [14], the model for the acceleration
norm has been derived from the lognormal model for the energy dissipation [36–40]
(see also recent paper advocating the lognormal model, such as [41] , and its ap-
plication in [42]). Simultaneously its orientation was generated randomly in each



time step of order of the Kolmogorov time scale.

2.1. Model for the norm of the subgrid acceleration

We represent the norm of the non-resolved acceleration by a typical velocity in-

crement at the wall expressed as ∆
u2
∗

ν
and multiplied by a frequency f , which is a

random variable:

|a| = ∆
u2
∗

ν
f (10)

Here u∗ is the friction velocity. High values of f correspond to strong velocity
gradients. Usually the stochastic process evolves with time. In order to introduce
the cross-channel correlation in subgrid forcing by a stochastic process for f , we
shall replace time by distance from the wall. Thus the random frequency f will
evolve stochastically from the wall to the outer flow. To this end, we introduce the
non-dimensional evolution parameter τ , which is defined as follows:

τ = −ln

(
h − y

h

)
(11)

where h is the channel half-width, and y is the wall distance. It can be seen from
(11) that when y = 0 then τ = 0, and when y → h then τ → ∞. Hence f evolves
with τ , increasing from zero to infinity, correspondingly to y increasing from zero
to the channel half-width.

The near-wall region is characterized by strong velocity gradients (high values of
f), which decrease in mean towards the outer flow through a highly intermittent
dynamics. We assumed that with increasing distance from the wall (increasing τ)
the frequency f is changing by a random independent multiplier α (0 < α < 1), f →
αf . α is governed by distribution q(α),

∫ 1
0 q(α)dα = 1. This multiplicative process,

often referred to as fragmentation under scaling symmetry, requires knowledge of
q(α), which is, in principle, unknown. However if relaxation of f is fast, comparing
to advancement from the wall to the outer region, the population balance equation,
describing continuous evolution of distribution G(f ; τ) can be reduced exactly to
the Fokker-Planck equation [43]:

∂G(f ; τ)
∂τ

= −〈ln α〉 ∂

∂f
(fG) +

〈ln2 α〉
2

∂

∂f

(
f

∂

∂f
(fG)

)
(12)

Here G(f ; τ) is the normalized distribution function,
∫ ∞
0 G(f)df = 1. It should be

noted that only the first two logarithmic moments of α, denoting here as 〈lnk α〉 =∫ 1
0 q(α) lnk αdα, k = 1, 2, appear in the evoluton of G(f ; τ) (equation 12) and
〈ln α〉/〈ln2 α〉 = 〈ln f〉/

〈
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〉
, with 〈ln f〉 =
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The solution of (12) and its properties are described in [43]. It is shown that
with increasing time (here with increasing of parameter τ , O < τ < ∞ instead
of O < t < ∞), the initial distribution G(f ; τ = 0) goes first to the log-normal
distribution:
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where F is the initial scale of frequency, which is introduced bellow. It is worth
noting that originally, the lognormal distribution has been identified by Kol-
mogorov [44] in his discrete model of cascade breakage events. However the Kol-
mogorov’s lognormality was derived in the context of the central limit theorem.
The analytical solution (13) of the population balance equation, obtained with-
out appealing to the central limit theorem, shows that by further increasing of τ ,

the “log-normal” multiplier in eq. 13 exp
(
−

(
ln f

F

)2
/2〈ln2 α〉τ

)
tends to unity,

and the long-time limit distribution is determined by the power law with one
universal parameter, 〈ln α〉/〈ln2 α〉. In our paper, instead of using those univer-
sal asymptotics, we use (12) in order to derive the stochastic equation. In the Itô
interpretation, it reads :

df =
(
〈lnα〉 + 〈ln2α〉/2

)
fdτ +

√
〈ln2α〉/2fdW (τ) (14)

where dW (τ) is a Wiener process (〈dW (τ)〉 = 0 and 〈dW (τ)2〉 = 2dτ , here and
below the brackets denote the ensemble average). Parameters are chosen in the
following form:

〈lnα〉 = −Re1/3
+

〈ln2α〉 = −〈lnα〉
(15)

where Re+ = u∗h/ν.
The main properties of the stochastic process (14) are: (i) it providing a subgrid

forcing that is correlated across the channel height; (ii) as the wall distance in-
creases, it generates evolution of frequency from high to low mean values through
two intermediate universal asymptotics: the earlier is log-normal distribution, while
the latter is power law, with high probability of zero-frequency and stretched tail of
high-frequency. This stretched tail is determined by Re+, and induces rare events
of strong subgrid forcing in the outer-flow, thereby mimicking bursting effects.

The starting condition (first grid cell, τ = 0) is given as follows. First, the mean
value of the frequency at the wall is introduced as f+ = u∗/λ, where λ is a Taylor-
like scale. It is estimated by Kolmogorov’s scaling in terms of wall parameters. The
Reynolds number, based on friction velocity, is: Re+ = u∗h/ν = h/y0 ≈ Re3/4

h ,
where y0 is the thickness of the viscous layer, and Reh is the Reynolds number based
on the center-line velocity. One then yields: λ ≈ hRe−1/2

h ≈ hRe−2/3
+ . Second, the

starting value for the random path (14) is sampled from the stationary log-normal
distribution of f/f+.

The probability density function (PDF) of the frequency f has been computed for
different wall distances by means of DNS in a channel flow with Re+ = 590. Details
about this simulation are given in Table 1. First, the norm of the acceleration was
computed and then f was estimated by using Equation (10). As it can be seen
from Fig. 1, surprisingly, the model (Equations 14 and 15) matches well the results
of DNS. In agreement with DNS data, the stochastic process provides a broad
frequency distribution in the wall region and relaxes toward low frequencies when
distance from the wall increases.

2.2. Model for the orientation of the acceleration vector

We assumed that with increasing distance from the wall, the orientation of subgrid
acceleration relaxes stochastically from the streamwise-spanwise alignment (with



random azimuth) to full isotropy.
First, this assumption was assessed by DNS performed in this paper. The orien-

tation vector ei in Equation (9) is determined by longitude φ and latitude θ:

ei =
â′i
|a|

=






ex = cos(θ) cos(φ)
ey = sin(θ)
ez = cos(θ) sin(φ)

(16)

where −π ≤ φ ≤ π characterizes orientation in the streamwise-spanwise (x, z)
plane, and −π/2 ≤ θ ≤ π/2 defines orientation relatively to the normal-to-wall
direction (θ = 0 and θ = ±π/2 will correspond to accelerations, which are parallel
to the wall and normal to the wall, respectively). The schematic representation is
given in Fig. 2. If φ and θ are random, their PDF’s corresponding to full isotropy,
have the following forms Pisotropic(φ) = 1/2π and Pisotropic(θ) = | cos(θ)|/2, respec-
tively. The mean value for both distributions is zero, and computation of variance
yields:

< φ2 >isotropic=
∫ π

−π
φ2Pisotropic(φ)dφ =

π2

3
(17)

< θ2 >isotropic=
∫ π/2

−π/2
θ2Pisotropic(θ)dθ =

π2

4
− 2 (18)

By DNS at Re+ = 180, 590 and 1000, one can obtain the statistics of φ and θ
(see Section 3, and especially, Table 1 for details about the resolution used in the
simulation). Then, < φ2 > and < θ2 > can be computed and compared with (17)
and (18), respectively. To this end, large-scale acceleration obtained by our DNS
has been removed by using sharp spectral filtering in homogeneous directions and
Gaussian filtering in the normal to the wall direction. In such filtering operation,
the mean of these two angles is negligibly small. The results of computations are
given in Fig. 3 for different distances from the wall. It can be seen that the variance
of φ (Fig. 3a) is close to the variance of the isotropic distribution (Equation 17) for
almost the entire range of y+, and for all three Reynolds numbers. As to variance
of θ (Fig. 3b), it is negligibly small at the wall, and then it grows almost linearly
with the distance from the wall up to y+ ≈ 30 ∼ 50, after which it tends towards
a constant value. This value is relatively close to the variance of the isotropic
distribution of θ (Equation 18). From this observation, we conclude that the subgrid
acceleration vector relaxes towards isotropy, reaching at a high Reynolds number
a nearly isotropic distribution at about y+ ≈ 50.

In order to reflect this tendency towards isotropy, the stochastic model for the
orientation (16) is constructed as a Brownian random walk on the surface of a
sphere of unity radius. This random walk takes place with increasing distance from
the wall. The evolution of the unit vector ei is defined by the following stochastic
process:

{
γ = 2DdW

0 ≤ β < 2π (19)

where γ is the path length between two successive positions on the sphere, and β
is the initial direction from point 1 to point 2 (see Fig. 2). β is chosen randomly
from the uniform distribution. D is a diffusion coefficient, and dW is the standard



Wiener process defined by: < dW >= 0, < dW 2 >= 2dy+, with dy+ representing
the cell size (in wall units) in the wall normal direction. The rules of this random
walk are given by geodesic calculus:






θk+1 = sin−1(sin θk cos γ + cos θk sin γ cos β)
φk+1 = φk + arg(ξ)
)(ξ) = sin β sin γ cos θk

*(ξ) = cos γ − sin θk sin θk+1

(20)

where θk and φk are two angles corresponding to the node k, and ξ is a complex
number, with real and imaginary part )(ξ) and *(ξ), respectively.

With increasing distance from the wall (y+), the diffusive equilibrium is attained
as a final state, which corresponds to the isotropic PDF’s:

{
Pθ(θ, y+ → ∞) → Pisotropic(θ)
Pφ(φ, y+ → ∞) → Pisotropic(φ) (21)

where, at the distance from the wall y+, Pθ(θ, y+) and Pφ(φ, y+) are the PDF’s of
θ and φ, respectively. An example of one realization of such a Brownian motion on
a sphere is given in Fig. 4.

Correspondingly to DNS, the process starts on the wall (y+ = 0) with:
{

Pθ(θ, y+ = 0) = δ(θ)
Pφ(φ, y+ = 0) = Pisotropic(φ) (22)

where δ is the Dirac distribution. This implies that the subgrid scale acceleration
at y+ = 0 is taken to be parallel to the wall with random azimuth.

In our case, the diffusion coefficient D controls the relaxation rate towards
isotropy. A linear regression of DNS data (Fig. 3b for y+ < 20), yields that
D = 0.01. Fig. 5 shows statistics of θ computed from the model proposed here
(Equations 19, 20 and 22, and D = 0.01) and from our DNS. It can be seen that
the model matches well the DNS data. For φ, with the prescribed wall condition
(22), the model provides exactly < φ2 >=< φ2 >isotropic.

3. Characteristics of the numerical simulations

For assessment of the SGS acceleration model, we ran simulations of a pressure
driven turbulent channel flow. A pseudo-spectral computational code is used. The
code uses the spectral approximation (Fourier Chebyshev) and a variational projec-
tion method on a divergence free space following the original idea of Moser [45]. The
time integration uses the explicit Adam-Basforth algorithm for non-linear terms,
and the semi-implicit algorithm for diffusion terms. A rotational form is used for
convective terms in order to ensure energy conservation. Periodic boundary con-
ditions were applied along the streamwise (x) and the spanwise (z) directions,
whereas the no-slip condition is imposed on the walls. The computer code was
developed in the scientific group of M. Buffat [46].

A posteriori tests have been done for three Reynolds numbers: Re+ = 590, 1000
et 2000. Results of LES-SSAM approach were compared with the standard LES

and the DNS given in the literature [47, 48] and also with the DNS performed
specifically in the present work. The conditions for those three approaches were
exactly the same, including the same computational mesh for LES and LES-SSAM.
The parameters taken for these simulations are summarized in Table 1.



Table 1. Summery of parameters used for numerical simulations.

Name Re+ Rec Nx × Ny × Nz Lx × Ly × Lz ∆x+ × ∆y+ × ∆z+ dt+a Cs A/h

DNS 180 3280 192 × 193 × 192 3πh × 2h × 4
3πh 9.0 × (0.02 ∼ 3.0) × 4.0 0.030 - -

DNS 587 12490 384 × 257 × 384 3
2πh × 2h × 3

4πh 7.2 × (0.04 ∼ 7.2) × 3.6 0.033 - -
DNSb 587 12547 384 × 257 × 384 2πh × 2h × πh 9.7 × (0.04 ∼ 7.2) × 4.8 - - -
LES 587 14160 64 × 65 × 64 3πh × 2h × πh 87 × (0.71 ∼ 29) × 29 0.1 0.16 0.015
LES-SSAM 587 12760 64 × 65 × 64 3πh × 2h × πh 87 × (0.71 ∼ 29) × 29 0.1 0.16 0.015

DNS 1000 22250 512 × 385 × 512 4
3πh × 2h × 2

3πh 8.2 × (0.03 ∼ 8.3) × 4.1 0.034 - -
DNSc 934 20960 3072 × 385 × 2304 8πh × 2h × 3πh 7.6 × (0.06 ∼ 7.6) × 3.8 - - -
LES 1000 25430 96 × 97 × 96 3πh × 2h × πh 99 × (0.53 ∼ 33) × 33 0.1 0.16 0.009
LES-SSAM 1000 23380 96 × 97 × 96 3πh × 2h × πh 99 × (0.53 ∼ 33) × 33 0.1 0.16 0.009
LES 1000 25500 64 × 65 × 64 3πh × 2h × πh 147 × (1.2 ∼ 49) × 49 0.1 0.2 0.015
LES-SSAM 1000 23700 64 × 65 × 64 3πh × 2h × πh 147 × (1.2 ∼ 49) × 49 0.1 0.2 0.015

DNSc 2003 48680 6144 × 633 × 4608 8πh × 2h × 3πh 8.2 × 8.9 × 4.1 - - -
LES 2000 49350 128 × 129 × 128 3πh × 2h × πh 147 × (0.60 ∼ 49) × 49 0.1 0.16 0.006
LES-SSAM 2000 48950 128 × 129 × 128 3πh × 2h × πh 147 × (0.60 ∼ 49) × 49 0.1 0.16 0.006
LES 2000 52640 64 × 65 × 64 3πh × 2h × πh 295 × (2.4 ∼ 98) × 98 0.1 0.2 0.015
LES-SSAM 2000 49050 64 × 65 × 64 3πh × 2h × πh 295 × (2.4 ∼ 98) × 98 0.1 0.2 0.015

a dt+ = dt/t∗ is the time step of the simulation; t∗ = ν/u2
∗ is a viscous time of the order of the Kolmogorov time scale at

the wall.

b Moser et al. (1999) [47]

c Hoyas and Jiménez (2008) [48]

For LES and LES-SSAM simulations, the classical Smagorinsky model is used
with wall damping function for the turbulent viscosity [4]:

νturb = (Cs∆fV D)2|S|
|S| = (2SijSij)1/2

fV D = 1 − e−y/A
(23)

where A is specified below. Here Cs is the Smagorinsky constant, ∆ = (∆x×∆y×
∆z)1/3 is the characteristic grid size, Sij = 1

2

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
is the resolved strain-

rate tensor, fV D is the Van Driest function, y is the distance from nearest wall,
and A is the constant controlling the damping function fV D. As suggested by [49],
for a detached-eddy simulation (DES), the turbulent length-scale in the wall-layer
is defined as . = min(y,∆). In order to fulfill this suggestion, in the Van Driest
damping function, we choose A such that ∆ × fV D ∼ min(y,∆).

It should be noted that in this code, the Reynolds number is given by choos-
ing ν and the pressure gradient−1

ρ
∂Pt

∂x . In order to attain the required Reynolds
number we used the Dean’s correlation [50]: ν = 0.110UchRe−1.1296

+ and−1
ρ

∂Pt

∂x =
Re2

+ν2/h3, where Uc is the center-line velocity. It can be noticed from Table 1 that
the LES-SSAM matches better the DNS Reynolds number than the standard LES.
Thereby, for a given set of parameters (ν and −1

ρ
∂Pt

∂x ), both the center-line velocity
and the mass flow rate are improved by LES-SSAM model.

4. Results and discussion

For the sake of simplicity, we will only present simulations for the 64 × 65 × 64
grid, for all three Reynolds numbers. For finer resolutions the difference between
LES-SSAM and standard LES is less pronounced, but still present. Fig. 6 shows
evolution of the mean velocity across the channel. The LES-SSAM reproduces well



the logarithmic law of the wall predicted by DNS, which is not the case with
standard LES.

Fig. 7 shows also the improvement in the prediction of the velocity variance
when LES-SSAM is used. This can be seen especially for the streamwise velocity
compared to the DNS of [48]. For the other components, the profile is also better
predicted by LES-SSAM than by the standard LES. It should be noted that the
variance of the streamwise velocity at Re+ = 1000 computed by our DNS deviates
slightly from the DNS in [48]. This may be due to a smaller computational domain
in comparison with [48] and a higher Reynolds number.

Fig. 8 illustrates the vertical profiles of the turbulent and viscous stresses, τturb =
−ρ〈u′v′〉 and τvisc = −ρν ∂〈u〉

∂y , respectively. The results are presented as ratios
τturb/(τturb + τvisc) and τvisc/(τturb + τvisc). Once again, the advantage of the LES-
SSAM approach versus the classical LES is explicitly shown. Both the viscous and
the turbulent stresses are better predicted by LES-SSAM.

Velocity spectra are illustrated in Fig. 9. For both Reynolds numbers and both
y+ shown in the figure, it can be clearly seen that the high wave number part of
the spectrum is much better resolved by LES-SSAM than by LES.

Fig. 10 represents the evolution of the longitudinal autocorrelation coefficient of
the velocity components at y+ = 5, representing the near-wall region. The improve-
ment of the correlation length due to the better resolution of the small-scale part
of the spectrum by LES-SSAM is clearly seen in this figure. Another observation is
that for small wall distances, the streamwise longitudinal autocorrelation is more
spatially correlated than the remaining two components, because of the alignment
of streaky structures with the wall.

Fig. 11 illustrates the PDF of the spanwise acceleration. At three very different
distances to the wall, the PDF obtained by the DNS displays stretched tails, as
a manifestation of intermittency. The same evidence of intermittency is obtained
by LES-SSAM, while in the case of the standard LES those tails are much less
developed. This effect is also observed for the PDF of the other two components
of the acceleration.

5. Conclusion

In numerical simulation of a high-Reynolds number channel flow at moderate reso-
lution, the instantaneous acceleration has been split into filtered and subgrid parts.
Then, both components were modeled, in the framework of LES combined with
the stochastic subgrid acceleration model.

The aim of the new model for subgrid acceleration was to account for intermit-
tency in the residual (unfiltered) wall-bounded flow. This model was constructed
in accordance with DNS observations, reported in the literature, and DNS per-
formed specifically in the present paper. The model is based on two independent
stochastic processes: one for the norm of the subgrid acceleration, the other for its
orientation.

The norm is given by a characteristic velocity increment, in terms of wall-
parameters, multiplied by stochastic frequency. The stochastic process, constructed
in lines of statistical universalities in fragmentation under the scaling symmetry,
evolves with distance from the wall towards outer flow. To this end the non-
dimensional evolution parameter was introduced, which increases from zero to
infinity, as the distance to the wall increases from the wall to the channel half-



width. The multiplicative stochastic process provides correlation of the subgrid
forcing across the channel. With increasing wall distance and consequently, de-
creasing mean frequency, this process has two intermediate universal asymptotics.
The earlier is the log-normal distribution, while the later is power distribution.
The power law has a high peak of probability for zero-frequency and a stretched
tail for high-frequencies, which depends on the Reynolds number. Sampling from
that stretched tail induces rare events of strong subgrid forcing in the outer-flow,
mimicking thereby bursting events.

It was assumed that orientation of the subgrid acceleration is controlled by ori-
entation of vortices, which become randomly distributed, if distance from the wall
increases. In order to fulfill this tendency towards full isotropy, the stochastic model
for subgrid acceleration orientation is based on a Brownian random walk on the
surface of a sphere of unity radius. Starting close to the wall, from the direction
in the streamwise-spanwise plane with random azimuth, the random walk takes
place with increasing distance from the wall, and tends to the diffusive equilibrium
as a final state, which corresponds to isotropic PDF’s for the two geodesic angles,
longitude and latitude. The diffusion coefficient was computed by DNS and found
to be almost independent of the Reynolds number.

In the case of turbulent channel flow, the results of the LES-SSAM approach
were compared with DNS data (Re+ = 590, 1000 and 2000) and with standard
LES. The LES-SSAM model was proven successful in predictions of DNS results:
(i) resolution of the small-scale part of the energy spectrum and simulation of spa-
tial correlations are close to DNS; (ii) stretched tails in the PDF of acceleration are
predicted in agreement with DNS; (iii) computation of mean and of variance of the
velocity components, as well as of turbulent and viscous stresses are explicitly im-
proved. Along with fundamental interest, the LES-SSAM approach has a practical
relevance, when significant physics take place on subgrid scales. In such condi-
tions, simulations at a high Reynolds number warrant advanced SGS models that
account for intermittency effects on small spatial scales. Examples include scalar
mixing and turbulent combustion, dispersion, vaporization and combustion in two-
phase flows. This requires the further development of this approach with many
associated questions, concerning complex geometry, correlation between norm and
orientation of the subgrid acceleration, time-correlations, etc. However, the ap-
proach given in [14], and in the present paper is very simple, and easily realizable
for any LES code without supplementary CPU requirement.
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[19] J. Jiménez. Recent developments on wall-bounded turbulence. Rev. R. Acad. Cien. Serie A. Mat.,
101(2):187–203, 2007.

[20] J. Kim. On the structure of wall-bonded flows. Physics of Fluids, 26(8), 1983.
[21] J. M. Hamilton, J. Kim, and F. Waleffe. Regeneration mechanisms of ner-wall turbulence structures.

Journal of Fluid Mechanics, 287:317–348, 1995.
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Figure 1. Distribution of f/f+ from SSAM (cross) and comparison with DNS (line) at Re+ = 590, for
several distances from the wall.
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Figure 3. Variance of the angles φ (a) and θ (b) for the orientation of the
acceleration at small scale obtained from DNS, for Re+ = 180 (full line)
Re+ = 590 (dotted line) and Re+ = 1000 (dashed line). The variances are
normalized by the value of the variance for an isotropic distribution of the
orientation vector (Equations 17 and 18). Insert: zoom near the wall.



Figure 4. Realization of the random walk on the sphere given by Equations 19 and 20.
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Figure 5. Evolution of the variance of θ. Comparison between DNS for Re+ = 180 (full line) Re+ = 590
(dotted line) and Re+ = 1000 (dashed line) and the stochastic model defined by Equations 19, 20 and 22
(crosses). The straight line corresponds to the variance for an isotropic distribution.
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Figure 6. Streamwise mean velocity, for Re+ = 590, Re+ = 1000 and Re+ = 2000 from bottom to
top, respectively, shifted by 10 wall units upward. Square: LES; cross: LES-SSAM; dash: DNS (only for
Re+ = 590 and Re+ = 1000); dots: DNS from [47] for Re+ = 590 and from [48] for Re+ = 1000 and
Re+ = 2000. Long dashed line: logarithmic law of the wall.
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Figure 7. Standard deviation of streamwise (u), spanwise (w) and normal
(v) velocity (in wall unites), for Re+ = 590 (a), Re+ = 1000 (b) and Re+ =
2000 (c), from top to bottom, respectively. Square: LES; cross: LES-SSAM;
dash: DNS (only for Re+ = 590 and Re+ = 1000); dots: DNS from [47] for
Re+ = 590 and from [48] for Re+ = 1000 and Re+ = 2000.
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Figure 9. Normalized longitudinal one dimensional spectra of normal to wall
velocity for two distances to the wall : y+ = 5 and y+ = 20, for Re+ = 1000 (a
and b) and Re+ = 2000 (c and d). Square: LES; cross: LES-SSAM; dash: DNS;
dots: DNS from [48].



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  500  1000  1500  2000

uu

x+

y+=5

(a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

vv

x+

y+=5

(b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000

w
w

x+

y+=5

(c)

Figure 10. Longitudinal autocorrelation coefficient of streamwise (a), nor-
mal (b) and spanwise (c) velocity component, at y+ = 5, Re+ = 1000.
Square: LES; cross: LES-SSAM; dash: DNS.
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Figure 11. Distribution of spanwise acceleration at three distances from the
wall: y+ = 5, y+ = 20, y+ = 950. Re+ = 1000. Square: LES; cross: LES-
SSAM; dash: DNS.


