Exact Simulation of One-dimensional Stochastic Differential Equations involving the local time at zero of the unknown process

Abstract : In this article we extend the exact simulation methods of Beskos et al. to the solutions of one-dimensional stochastic differential equations involving the local time of the unknown process at point zero. In order to perform the method we compute the law of the skew Brownian motion with drift. The method presented in this article covers the case where the solution of the SDE with local time corresponds to a divergence form operator with a discontinuous coefficient at zero. Numerical examples are shown to illustrate the method and the performances are compared with more traditional discretization schemes.
Type de document :
Article dans une revue
Monte Carlo Methods and Applications, De Gruyter, 2013, 19 (1), pp.41-71. <10.1515/mcma-2013-0002>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00565286
Contributeur : Pierre Etore <>
Soumis le : lundi 14 janvier 2013 - 16:22:33
Dernière modification le : mardi 28 octobre 2014 - 18:34:49
Document(s) archivé(s) le : lundi 15 avril 2013 - 04:06:08

Fichiers

etoremartinez1MCMArevis2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre Etore, Miguel Martinez. Exact Simulation of One-dimensional Stochastic Differential Equations involving the local time at zero of the unknown process. Monte Carlo Methods and Applications, De Gruyter, 2013, 19 (1), pp.41-71. <10.1515/mcma-2013-0002>. <hal-00565286v3>

Partager

Métriques

Consultations de
la notice

517

Téléchargements du document

216