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This paper considers a real-world Two-Dimensional Strip Packing Problem involving spe-
cific machinery constraints and actual cutting production industry requirements. To suit the
problem to a wider range of machinery characteristics, the design objective contemplates the
minimisation of material length and the total number of cuts for guillotinable-type patterns.
The number of cuts required for the cutting process is crucial for the life of the industrial
machines and is an important aspect in determining the cost and efficiency of the cutting
operation. In this paper we propose the application of evolutionary algorithms to address the
multi-objective problem, for which numerous approaches to its single-objective formulation
exist but for which multi-objective approaches are almost non-existent. The multi-objective
evolutionary algorithms applied provide a set of solutions offering a range of trade-offs be-
tween the two objectives from which clients can choose according to their needs. At the same
time, by considering both the length and number of cuts, they derive solutions with wastage
levels similar to most previous approximations which just seek to optimise the overall length.

Keywords: Two-Dimensional Strip Packing; Multi-Objective Optimisation; Evolutionary
Algorithms.

1. Introduction

Cutting and packing problems arise in many industrial applications where it is nec-
essary to arrange a set of required pieces or items on a stock sheet or raw material.
It is essential to produce good quality arrangements which allow for raw material
utilisation and, therefore, wastage to be minimised. Cutting and packing prob-
lems appear in many forms [Dyckhoff (1990), Dowsland and Dowsland (1992)] and
involve different dimensions, types of pieces (irregular or regular), types of cuts (or-
thogonal, guillotine, non-guillotine), piece rotation (fixed, 90°) or final goal. Most
variants of cutting and packing problems have been widely studied [Sweeney and
Paternoster (1992), Lodi et al. (2002)] and many approaches have been proposed.
Among the existing approximations, three kind of techniques can be distinguished:
exact, heuristics, and metaheuristics. Initially, a wide variety of exact methods were
devised [Bekrar et al. (2007)]. However, such approaches cannot accommodate large
and actual problem instances. For this reason, heuristic strategies were formulated
in order to obtain good quality - although not necessarily optimal - solutions in
an acceptable computational time [Dagli and Tatoglu (1987), Mumford-Valenzuela
et al. (2004)]. As a more general and sophisticated method, different types of hybrid
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algorithms and metaheuristics have been considered [Hopper and Turton (2001),
Bortfeldt (2006), Garrido and Riff (2007), Padmanaban and Prabhaharan (2008)].
Some metaheuristics cited above generate a number of different solutions or input
sequences that are usually interpreted by placement heuristics. These algorithms
are guided through the problem search space by previous attempts and involve a set
of parameters that must be fine-tuned so as to improve the resulting performance.

This paper focuses on the so-called Two-Dimensional Strip Packing Problem
(2Dsp) where a set of specified pieces must be obtained from a large stock sheet
with fixed width W and unlimited length. Each specified rectangular piece i has
fixed dimensions (/;, w;), although it can be rotated 90 degrees, considering also
the dimensions (w;, ;). All specified pieces must be orthogonally arranged on the
material so as not to overlap and so that only vertical or horizontal builds (Fig-
ure 1) of pieces are generated. This last constraint always yields the possibility
of producing the final patterns through guillotine cuts, i.e. the pieces have to be
cut with their edges parallel to the edges of the stock sheet going from one border
straight to the opposite side. The production of non-guillotine cuts may require
a more complex machinery operation. For this reason, in order to give support
to a wider range of industrial cutting machines, in the proposed approach only
guillotinable patterns are built so that all resulting solutions can be cut in both
guillotine and non-guillotine modes.

The most common goal in the 2DSP consists of minimising the necessary stock
sheet length required to cut the whole set of specified pieces. However, in some
2D real-world cutting and packing applications, other optimisation criteria may be
taken under consideration. In some industrial fields, the raw material is either very
cheap or can be easily recycled. In such cases, a more important criterion for the
pattern generation may be the speed at which the pieces can be obtained, thus
maximising the usage of the cutting equipment [Cowton and Wirth (1993)]. The
cutting speed is specifically limited by the features of the available machinery but,
in general, it is determined by the number of cuts involved in the cutting pattern.
Moreover, the number of cuts required for the cutting process is also crucial for
the life of the industrial machines. Since the number of cuts is an important aspect
in determining the cost and efficiency of the cutting operation, a comprehensive
optimisation methodology should take also this criterion into consideration.

Therefore, in this study, the number of cuts is taken as a second design objective.
This way, the problem can be posed as a multi-objective optimisation problem
for optimising the layout of rectangular parts so as to minimise both the sheet
length (trim loss) and the number of cuts necessary to achieve the final specified
pieces. Many proposals appear in the literature considering the single-objective
formulation of the problem, but only a few address real-world multi-objective con-
straints [Song et al. (2006), Tiwari and Chakraborti (2006), Illich et al. (2007)].
In Song et al. (2006) several optimisation criteria are analysed for the strip packing
problem. The application of multi-objective evolutionary algorithms is described
in Tiwari and Chakraborti (2006) and Illich et al. (2007) for solving the two-
objective optimisation problem involving the minimisation of the material length
and the number of cuts. The first approach always allows for guillotinable cuts,
while the second approach only allows for non-guillotine cuts.

The remaining content of the article is structured as follows: Section 2 briefly
introduces multi-objective optimisation problems and outlines the most common
approaches for their solution. A description of the problem implementation details
and its specific features for developing an evolutionary approach are presented in
Section 3. The computational results obtained with some of the most widely used
evolutionary algorithms and further comparisons with single-objective approxima-
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Figure 1. Vertical and horizontal builds

tions are shown in Section 4. Finally, the paper closes with the conclusions and
some future lines of work.

2. Multi-Objective Optimisation

Multi-objective or multi-criteria optimisation problems (MOPS) arise in most real-
world disciplines [Dimopoulos (2006), Ye and Zhou (2006), Nearchou (2007)]. The
multiple objectives are usually conflicting or competing, but must be simultane-
ously optimised. In practise, it is often impossible to find a single optimum that
dominates all other solutions Therefore, a solution optimising every single objective
might not exist. MOPs can be formally described as:

Optimise f(x) = (fi(x), fo(x), ..., fr(z)) subject to x € X (1)

where f(z) is the objective vector, f;(z) is the i-th objective to be optimised,
is the decision vector and X is the feasible region in the decision space. While in
single-objective optimisation the optimal solution is usually clearly defined, this
does not hold for MOPs. Instead of a single optimum, there is rather a set or front
of alternative trade-offs, known as Pareto-optimal front, constituted by the non-
dominated solutions y:

B2/ Viel.k fi(z) > fily),3i € 1.k fi(z) > fi(y) (2)

These solutions are optimal in the sense that no other solutions in the search space
are superior to them when all objectives are considered. That is, a solution y is
said to be non-dominated if there does not exist a solution z that performs better
in at least one objective and at least as well as y in the rest. The final aim when
dealing with MOPs is to obtain a non-dominated solution set which, in the best
case, will coincide with the Pareto-optimal front. From the resulting final solution
set, a human decision maker will be able to select a suitable compromise solution.

2.1 Multi-Objective Approaches

Since exact approaches are practically unaffordable for most MOPs, a wide variety
of approximated algorithms have been designed. Two common approaches for sim-
plifying the MOPs solution are: convert the original problem into a single-objective
one by combining or aggregating the multiple objectives into a single function; or,
translate some of the objectives into constraints. Optimising a combination of the
objectives has the advantage of producing a single compromise solution - which can
be achieved by the application of classical single-objective optimisation strategies -
requiring no further interaction with the decision maker. However, the application
of such an approach requires a prior knowledge of the problem that is not always
available. Moreover, these techniques lose in solution diversity and may be sensi-
tive to the shape of the Pareto-optimal front, e.g. if the optimal solution cannot be
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accepted, either due to the function used excluding aspects of the problem which
were unknown prior to optimisation, or due to an inappropriate setting of the co-
efficients of the combining function, new runs of the optimiser may be required
before a suitable solution is found [Fonseca and Fleming (1995), Zitzler (1999)].

Therefore, a MOPs solution calls for alternative approaches. Usually, a more ap-
propriate approximation involves the application of techniques that can specifically
deal with multiple objectives and MOPs intrinsic complexity (very large search
spaces, uncertainty, noise, disjoint Pareto curves, etc.). Ewvolutionary algorithms
(EAs) have shown great promise for calculating solutions to large and difficult
optimisation problems and have been successfully used across a wide variety of
real-world applications [Eiben (1998)]. In fact, when applied to MOPs, EAs seem to
perform better than other blind search strategies. The use of EAs to solve problems
of this special nature has been motivated mainly because they are able to capture
multiple Pareto-optimal solutions in a single simulation run - which is possible
thanks to their population-based feature - and to exploit similarities of solutions
by recombination.

EAs that are specifically designed to deal with multiple objective functions are
known as multi-objective evolutionary algorithms (MOEAs) [Coello et al. (2007)].
When designing MOEAs two major problems must be addressed [Zitzler et al.
(2000)]: how to accomplish fitness assignment and selection in order to guide the
search towards the Pareto-optimal set, and how to maintain a diverse population
in order to prevent premature convergence and achieve a well distributed trade-off
front. Many alternatives have been proposed in an attempt to adhere to such de-
sign goals [Coello (1999)]: VEGA [Schaffer (1985)], NPGA [Horn and et al. (1994)],
NSGA [Srinivas and Deb (1994), Deb et al. (2002)], SPEA [Zitzler and Thiele (1998a),
Zitzler et al. (2002)], IBEA [Zitzler and Kinzli (2004)], etc.

3. Problem Implementation

Evolutionary approaches have been successfully applied to the single-objective
2DsP formulation [Ono and Ikeda (1998), Mumford-Valenzuela et al. (2004), Bort-
feldt (2006)], achieving competitive results for most test problems even when
compared to some heuristics specifically designed to address the 2Dsp. Moreover,
MOEAs have demonstrated, in general, to behave better than other blind search
strategies in the optimisation of real-world MOPs. In fact, to our knowledge, the
only two approaches for the multi-objective 2DSP are both based on MOEAs. So, in
this work, the problem solution also lies in the application of MOEAs.

In order to simplify the 2DSP solution, a C++ framework that provides some of
the best known MOEAs has been used [Le6n et al. (2007)]. The plug-in architec-
ture of the framework allows final users to incorporate their own problems and
evolutionary algorithms. Although some specific EA-based frameworks have been
proposed for solving MOPs [Gagné and Parizeau (2006), Liefooghe et al. (2007)],
not many support parallel schemes and even fewer provide an easy customisation of
the parallel models. As a novelty, the selected framework integrates a new parallel
island-based model - called team algorithm - that allows for the dynamic coopera-
tion and self-adaption of different MOEASs in the solution of a given problem [Leén
et al. (2008)]. Although the tool allows for ample customisation of the execution
models - including several parallel schemes - in this case its default sequential
behaviour was sufficient to successfully deal with the problem.

To obtain a solution to the 2DsP using the tool, the user must select the set
of MOEAs to be employed together with their set of parameters. Moreover, it is
also necessary to define some specific features related to the problem, i.e. gene
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codification for the representation of the individuals, the functions involved in the
evaluation of the objectives, and also the genetic operators to be applied during
the evolution process.

3.1 Optimisation algorithms

In particular, from the MOEAs provided by the framework, the ones tested for the
solution of the 2DsP are briefly described next:

e NSGA-II [Deb et al. (2002)] is a non-dominated sorting based MOEA. Two of the
most important characteristics that differentiate NSGA-II from NSGA and other
non-dominated sorting based approaches are: a fast non-dominated sorting ap-
proach with reduced computational complexity and a selection operator which
combines previous populations with new generated offspring, ensuring elitism in
the approach. The algorithm works as follows: the two populations are sorted
according to their rank, and the best solutions are chosen to create a new pop-
ulation. In the case of having to select some individuals with the same rank, a
density estimation based on measuring the crowding distance to the surround-
ing individuals belonging to the same rank is used to yield the most promising
solutions.

e SPEA2 [Zitzler et al. (2002)] uses a population and an archive. It assigns to each
individual a fitness value that is the sum of its strength raw fitness plus a density
estimation. In each generation the non-dominated individuals of both the original
population and the archive are used to update the archive. If the number of non-
dominated individuals is greater than the population size, a truncation operator
based on calculating the distances to the k-th nearest neighbour is used. This
entire procedure is known as environmental selection. Then, the algorithm applies
the selection, crossover, and mutation operators to members of the archive in
order to create a new population of offspring which becomes the population of
the next generation.

e IBEA [Zitzler and Kiinzli (2004)] allows the optimisation goal to be defined in
terms of a performance measure or quality indicator. This measure is used di-
rectly for fitness calculation. The algorithm allows the use of different binary
quality indicators. In this work the binary multiplicative e-indicator [Zitzler et al.
(2003)] was used. There exist two versions of IBEA, one basic and a more robust
version known as adaptive. In the adaptive version, which is the one applied
here, objectives values are normalised and the indicator values are adaptively
scaled.

3.2 Gene codification

In this work a postfix notation is used to represent the candidate solutions [Ono
and Tkeda (1998), Tiwari and Chakraborti (2006)]. The operands are the identifiers
of the pieces, while the operators are ‘V’ and ‘H’ (Figure 1). The operator ‘H’
concatenates its two operands horizontally, while the ‘V’ operator concatenates
them vertically unless the problem width constraint is violated, in which such case
it behaves as the ‘H’ operator. Note that the ‘H’ operator can always be applied
without violating the problem constraints because the stock sheet has unlimited
length. At the end of the gene, a bit string equal in size to the number of pieces is
attached. It determines whether each piece must be rotated. In order to constitute a
valid gene, each piece must appear once. Moreover, for any operator, if the number
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of pieces to its left is n, and the number of operators to its left plus itself is n,,
then the following condition must hold:

1<n,<mnp—1 (3)

Using such a representation, the gene size remains constant and no parentheses
are required to uniquely represent a solution (Figure 2). Note also that the gene
representation defines cutting patterns built by means of vertical and horizontal
constructions, thus always providing a packing solution that can be cut in the
guillotine mode and even, if the appropriate machinery is available, using a non-
guillotine process.

’

Figure 2. Layout in the stock sheet for the gene ‘1 3 H 2 V 010’

3.3 Ewvaluation of the objectives

As mentioned before, every gene represents a certain arrangement of pieces on the
stock sheet. The chosen codification gives information on how pieces must be com-
bined or placed on the raw material. Based on such information, both optimisation
objectives considered, i.e. the overall length and the number of cuts necessary, can
be evaluated. For this purpose, the methods applied here are based on the usage of
stacks and the postfix notation which represents the gene [Ono and Ikeda (1998)].

In evaluating the second objective - the number of cuts necessary - two different
types of evaluations must be considered since the gene representation used allows
for both guillotine and non-guillotine cutting processes. Whenever guillotine cut-
ting is not necessary, the number of cuts required to accomplish the job can be
significantly reduced if already cut parts are laid undisturbed on the stock sheet
and combined cuts are made for the remaining aligned edges. Placing a guillotine
restriction on the cutting process alters the number of cuts involved in obtaining a
given pattern set, thus yielding a different number of cuts for the same arrangement
of pieces when considering guillotine or non-guillotine situations. Figure 3 shows
how the same arrangement of pieces involves a different number of required cuts
when guillotine or non-guillotine methods are applied.

In the case of guillotine cutting where the cut has to be made from edge to edge,
an iterative method is applied to calculate the number of cuts involved. The gene is
traversed from left to right, interpreting every element and creating the indicated
constructions, thus calculating the partial widths and lengths. For each implied
vertical or horizontal combination of pieces, at least one cut is necessary. If the
combined rectangles do not match in length (for vertical builds) or in width (for
horizontal builds), an extra cut is required for such a construction. At the end of
the process the complete final pattern is obtained. In this case, the value of the
first objective - required overall length - is immediately given by the length of the
resulting final pattern. This procedure is depicted in Algorithm 1. Note that the
algorithm incorporates the corresponding pseudo-code to ensure the evaluation of
genes always satisfies the stock sheet width constraint.

http://mc.manuscriptcentral.com/tprs Email: ijpr@Ilboro.ac.uk

Page 6 of 17



December 18, 2008
Page 7 of 17

©CoO~NOUTA,WNPE

10:30 International Journal of Production Research 2dcsp
International Journal of Production Research

Optimisation of a Multi-Objective 2D Strip Packing Problem 7
o o e e oo B ~
! e et i 1
1 3 b 7 4
| W7/ o !
X ¥
: 4 ! : 3 :
1 N a |
| n |
1‘I—__________________________ _____ a 2’
[ 10, & 11 v
: ! [ "’
////2 : | : X
1 ! 1
1 1 !
4 8 : i 1 !
] 2] \
2 e |7 : : ¥
1 1 : |
I | »
1 1 : 1
1 Lo L ___. !
1 5 | 6 el N
Mumber of guilloting cuts = 11 v

T56HHA4Z23IHTEHHRHY

v

Mumber of non-guillotine cuts = 8

Figure 3. Comparison of guillotine and non-guillotine cutting processes

For the evaluation of the objectives in the non-guillotine mode, an initial analysis
of the gene is needed in order to calculate the bottom-left (z1,y1) and top-right
(x2,y2) coordinates of each item when placed in the stock sheet. The procedure
starts with the final rectangle or pattern composition, which is then split into
its two constituent parts. Then, the same method is recursively invoked until all
the individual items are separated and their coordinates are calculated. As in the
guillotine case, the required stock sheet length can be obtained from the dimensions
of the final rectangle. For evaluating the number of cuts, it is assumed that all the
pieces are laid out with their edges orthogonal to the stock sheet edges, with no
overlap between them or the stock sheet edges. In this situation, the maximum
number of cuts required in a cutting pattern composed by n pieces is 4n, since
each piece has four edges. Each edge of every piece is then checked to see if it lies
on one of the stock sheet edges. If it does, such a cut is not required, thus the
total number of cuts can be decreased by one. Next, the remaining edges which
are not on the edges of the stock sheet are checked with the edges of all the other
rectangles in order to find the alignments. For every pair of checked edges, only two
situations are possible: the two rectangles touch each other (either at the corners
or through their edges) or they do not touch at all. If they touch each other, then
only one cut is required to obtain the cutting of both edges, thus decreasing the
number of cuts by one. If the edges do not touch each other, then it is necessary
to find the line joining the two edges and whether any other rectangle crosses that
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Algorithm 1 Pseudo-code for the evaluation of objectives: Guillotine mode

1: numCuts + 1;
2: for (i = 0 to sizeOfGeneVbles) do
3:  if (isOperator(gene(i)) == false) then

4: stack.push(gene(i));

5. else

6: numCuts ¢ 1 + numCuts;

7: pieceA « stack.pop();

8: pieceB « stack.pop();

9: if (gene(i) == H) then

10: length(newPiece) < length(pieceA) + length(pieceB);
11: width(newPiece) + max(width(pieceA), width(pieceB));
12: if (width(pieceA) != width(pieceB)) then

13: numCuts < numCuts + 1;

14: end if

15: else

16: length(newPiece) + max(length(pieceA), length(pieceB));
17: width(newPiece) + width(pieceA) + width(pieceB);
18: if (width(newPiece) > width(stockSheet)) then

19: gene(i) < H;

20: undo changes made in iteration i;

21: repeat the iteration i;

22: end if

23: if (length(pieceA) != length(pieceB)) then

24: numCuts < numCuts + 1;

25: end if

26: end if

27: stack.push(newPiece);

28: end if

29: end for

30: finalPiece <+ stack.pop();

31: totalLength < length(finalPiece);

32: if (width(finalPiece) != width(stockSheet)) then
33:  totalCuts + numCuts + 1;

34: else

35:  totalCuts < numCuts;

36: end if

line. If no rectangle crosses such a line, a single cut suffices for both edges, again
reducing the number of cuts by one. Note that for the same edge, the number of
cuts can be reduced only once and also that for a given alignment of edges at least
one cut should be computed. Algorithm 2 briefly depicts the evaluation method
for the non-guillotine cutting mode. To simplify both pseudo-codes, considerations
on the orientation of the pieces have been omitted.

3.4 Genetic operators

In general, a genetic algorithm maintains a population of candidate solutions for the
problem, a population which is forced to evolve through the iterative application
of a set of genetic operators. The most common genetic operators are: selection,
crossover (also known as recombination) and mutation. Selection operators repli-
cate the most successful solutions found in a population. Crossover mechanisms
decompose two distinct solutions and then randomly mix their parts to form new
solutions. A mutation randomly perturbs a candidate solution. During the evolu-
tion process, MOEAs, like other evolutionary strategies, apply genetic operators to
the individuals of the current population. Selection operators allow the quality of
the solutions in future generations to be preserved while crossover and mutation
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Algorithm 2 Pseudo-code for the evaluation of objectives: Non-Guillotine mode
build finalPiece;
totalLength < length(final Piece);
calculate x1, y1, x2, y2 coordinates of finalPiece;
calculate x1, y1, x2, y2 coordinates of each piece inside finalPiece;
totalCuts < 4 * numPieces;
for (i = 0 to numPieces) do
numAxes <+ edges of piece i that fit in lower, upper or left edges of stock sheet;
totalCuts « totalCuts - numAxes;
end for
for (each pair of pieces) do
if (a pair of horizontal or vertical edges are aligned) then
if (pieces do not touch each other) then
if (there is another piece between both) then
if (piece between does not cross the aligned edges) then
totalCuts « totalCuts - 1;
end if
else
totalCuts + totalCuts - 1;
19: end if
20: else
21: totalCuts + totalCuts - 1;
22: end if
23: end if
24: end for

e e e e

operators generate the new individuals or offspring, thus maintaining diversity in
the solutions. Although the selection is mainly defined by the particular MOEA to
be used, the crossover and mutation depend on the specific problem to be solved,
e.g. in the solution of the 2DSP the genetic operators must generate new individuals,
ensuring the condition depicted in equation 3 is always satisfied.

The applied mutation [Ono and Ikeda (1998), Tiwari and Chakraborti (2006)]
operates as follows. First, two gene elements, p; and p2, are randomly selected.
Both elements represent piece numbers or operators and p; is closer to the left
of the gene. If both are piece numbers or operators, or p; is an operator and ps
is a piece, they are swapped. If p; is a piece number and ps is an operator, they
are swapped only when, after performing the swap, equation 3 still holds for any
operator. Then, a gene operator is randomly chosen and flipped based upon the
mutation probability. Finally, an orientation is also randomly chosen and flipped
from ‘0’ to ‘1’ or vice versa depending again on the mutation probability.

For the crossover, the Partially Mapped Crossover [Goldberg and Lingle (1985)]
has been selected, since its suitable behaviour has been demonstrated when applied
to the 2DsSP [Ono and Tkeda (1998), Tiwari and Chakraborti (2006)]. As in the case
of the mutation operator, the crossover also ensures that only new valid genes are
generated. The technique is based on the recombination of two gene chains where
only the information of the pieces is taken into account, i.e. the operators and
orientation bits are ignored for the application of this operator. Considering this
type of chain, first, two crossing points inside each of the given parents are randomly
chosen. Then, the segments of the parents inside such cross points are swapped in
order to generate the offspring. The remaining chains in the offspring are obtained
by mapping between the two parents. If a gene value outside the swapped segment
is not contained in the swapped segment, it remains the same, but if it is already
contained, it must be replaced by a value contained in the original segment of the
gene but not contained in the new segment under consideration.
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Figure 5. Metrics for Test Problem 5
4. Computational Results

The model was tested on a dedicated 20-node Debian GNU/Linux cluster with 1Gb
RAM and two Intel® Xeon'™ 2.66 GHz processors. The C++ compiler used was
gce 4.1.3. For the execution of the MOEAS, the crossover and mutation probabilities
were set to p. = 0.7 and p,, = 0.3, respectively, whereas the population size was
set to ps = 50. The values for this set of parameters were chosen as the result of a
previous analysis in which the corresponding algorithms were tested and fine-tuned.

4.1 Multi-objective optimisation

The first experiment addresses the analysis of different MOEAs when dealing with
the 2DsP. For the study, three of the most known MOEAs were considered: NSGA-II,
SPEA2 and the adaptive version of IBEA. These algorithms are currently available
in the multi-objective optimisation framework used [Leén et al. (2007)]. With the
above specification of the gene representation and the implementation of the eval-
uation functions and the genetic operators, sequential executions for three such
MOEAs were immediately available by using the framework. Although the tool pro-
vides several customisable parallel execution models, the analysis here does not
focus on the behaviour of such parallel schemes. The study analyses the behaviour
of multi-objective evolutionary approaches when dealing with a real-world MOP. In
particular, for this initial study, a guillotine cutting process was assumed.

The multi-objective computational study presented in this work is based on evo-
lutionary algorithms whose aim consists of improving the only other evolutionary
multi-objective related work [Tiwari and Chakraborti (2006)]. In this work only
five different test problems are defined. The first three problems are irrelevant be-
cause they are extremely simple and can be immediately and easily solved. That
is why only the two larger problem instances proposed in Tiwari and Chakraborti
(2006) were used for this experimental evaluation. Such larger instances are la-
belled as test problem 4 and test problem 5. Test problem 4 considers a stock sheet
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Figure 6. Evolution of Pareto fronts for an average execution

10 units wide and 10 different rectangles of various dimensions. Test problem 5 is
composed of 20 pieces of different dimensions and uses a stock sheet 10 units wide.
The three MOEAs were executed with both test problems number 4 and 5. Each
type of execution was repeated thirty times and the average values considered.

In order to compare the results obtained for each problem with the three ap-
proaches considered, two different metrics were applied: hypervolume [Zitzler and
Thiele (1998b)], and binary multiplicative e-indicator [Zitzler et al. (2003)]. These
metrics combine the analysis of convergence and diversity of solutions [Knowles
et al. (2006)]. The binary multiplicative e-indicator uses as reference front the
union of the solutions obtained by all the experiments.

Figures 4 and 5 show the hypervolume and e-indicator results for test prob-
lems 4 and 5, respectively. The metric values are represented from the beginning
of the evolution process until 25000 individual evaluations (500 generations) are
performed. The analysis of results for both metrics lead to similar conclusions.
NSGA-II and SPEA2 results are very similar and slightly improve on those obtained
by the IBEA approximation. Actually, NSGA-II appears to exhibit better behaviour,
as noted in Tiwari and Chakraborti (2006). Moreover, its results remain more uni-
form between executions and it involves less computational effort than SPEA2 or
IBEA.

Since NSGA-II seems to be the best MOEA from among those tested, its behaviour
was analysed in depth. To this end, both non-guillotine and guillotine cutting
processes were considered for test problems 4 and 5. Figure 6 shows the evolution
of the fronts, from 10 generations (500 evaluations) up to 500 generations (25000
evaluations), for an average NSGA-II execution. Notice that test problem 4 is much
simpler than test problem 5, and thus it usually converges faster and involves
smaller Pareto fronts. For both problems, the final non-dominated solutions are
achieved before 500 generations, thus demonstrating the good convergence of the
evolutionary approach. Moreover, the results also demonstrate that the application
of guillotine cuts requires a greater number of cuts than those needed for a non-
guillotinable scenario.

Figure 7 shows the best Pareto fronts obtained by NSGA-II also for test problem
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4 and 5. In this case, the Pareto fronts are smaller than those obtained in an
average execution. The solutions of the average fronts are improved, although the
difference is not very noticeable. As a layout example, Figure 8 shows the pattern
distributions for the two solutions in the best Pareto front obtained for test problem
5 when applying guillotine-type cuts.

In order to validate the quality of the approaches proposed here, previous results
were compared with those presented in Tiwari and Chakraborti (2006), which is - to
our knowledge - the only other existing multi-objective approach for the guillotin-
able 2DsP. In the current work, the gene representation and the genetic operators
applied are equivalent to those used in Tiwari and Chakraborti (2006). The main
differences between the two approaches lies in the algorithms applied. In our case,
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Figure 8. Guillotine layouts of the best achieved Pareto front for test problem 5
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Table 1. Solutions for the existing multi-objective guillotinable approaches of the 2DsP.

Non-Guillotine Cutting Guillotine Cutting
Test 4 Test 5 Test 4 Test 5

Length Cuts Length Cuts Length Cuts Length Cuts

Tiwari and Chakraborti (2006) 12 10 26 28 12 13 26 34
14 9 27 25 14 12 27 30
28 23 28 29
29 22 29 28
30 21 38 27
46 26
63 25
NSGA-II 10 7 22 17 10 11 22 22
23 15 32 21
24 14

2The best values obtained are shown for each approach considered.
PTiwari and Chakraborti (2006) approach involves a maximum of 100000 generations.

¢The approach proposed here involves a maximum of 500 generations.

we used three different MOEAs provided by a multi-objective optimisation tool. In
the work of Tiwari and Chakraborti (2006) the optimisation strategy employed
is a modification of NSGA-II, although no further details of the algorithm or the
parameter settings are given in the corresponding work.

Table 1 is included to allow for a better comparison between the only two multi-
objective approaches for the guillotinable 2DSP. In the table, the best solutions for
both approaches - Tiwari and Chakraborti (2006) and the one proposed here - are
shown. Results are specified for the two possible cutting processes, non-guillotine
and guillotine. The solutions obtained are represented as an overall length and an
associated number of required cuts. The best solutions in Tiwari and Chakraborti
(2006) are obtained after 100000 generations, while the best solutions achieved here
require fewer than 500 generations. Although the previous approach provides larger
Pareto fronts, the solutions obtained by the NSGA-1T implementation proposed here
are clearly superior to the previous best solutions given in Tiwari and Chakraborti
(2006), thus demonstrating the better behaviour of the new approach.

4.2 Single-objective optimisation

The application of MOEAs that generate solutions to the 2DsSP according to two
different optimisation criteria has a major advantage for potential customers: such
approaches provide a set of solutions offering a range of trade-offs between the
two objectives, from which clients can choose according to their needs as dictated
by, for example, raw material costs or even production time restraints. However,
dealing with more than one optimisation objective need not imply a reduced so-
lution quality simply because the problem in question is much more complex. On
the contrary, by considering both the length and number of cuts, the approaches
proposed here derive solutions with wastage levels similar to those in most previous
approximations which merely seek to optimise the overall length.

Table 2 shows the best required overall length obtained for certain 2DSP test
instances available in the literature [Wang and Valenzuela (2001)]. The table shows
the length achieved by three different heuristics and a genetic algorithm proposed
by Mumford-Valenzuela et al. (2004), all of which deal with the single-objective
formulation of the 2DsP. The last column of the table represents the best solution -
overall length - achieved by the approach proposed here when the second objective
- the number of cuts - is not considered. For smaller test instances, the multi-
objective approach provides better solutions than some heuristics that have been
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1 Table 2. Comparison of multiple and single objective approaches.
é Problem  NFDH FFDH  SPLIT GA NSGA-II
4 Nice.25 133 118 138 106 106
5 Nice.50 120 119 134 105 109
6 Nice.100 112 111 137 108 111

Nice.200 110 108 138 108 113
7 Nice.500 108 107 139 108 126
g Path.25 132 120 136 106 101

Path.50 143 131 154 106 103
10 Path.100 120 109 137 109 108
11 Path.200 128 116 138 112 121
12 Path.500 112 105 141 136 147
13 2The best values obtained are shown for each approach considered.
12’ b All the results are rounded to the nearest integer.
16 i . i . .. i
17 specifically designed to deal with the single-objective formulation of the problem.
18 Length solutions given by NSGA-II in the smaller test problems are similar to those
19 obtained by a simpler single-objective genetic algorithm. But when the size of
20 the instances increases, the specific single-objective approximations tend to behave
21 better, thanks to their simplicity and their single optimisation considerations.
22
23
;g 5. Conclusions
26 . gy . . . S
27 This work has shown the validity of MOEAs in dealing with the multi-objective
28 formulation of the two-dimensional strip packing problem. Such a formulation is
29 highly suited to the real-world problem appearing in some production and manu-
30 facturing industries. The consideration of both the number of cuts involved and the
31 amount of raw material used could imply significant cost savings for companies.
32 When the raw material is sufficiently cheap, a solution maximising the number of
33 cuts, and thus the productivity of the machinery, is usually more convenient. If the
34 raw material is very expensive, a solution minimising the length of the stock sheet
gg required is actually the best option. This way only one is execution is needed,
37 and afterwards the decision maker has to select the most appropriate solution,
38 depending on the specific demands involved at the moment. When applying single-
39 objective approaches, such specific demands must be known beforehand in order
40 to combine the different objectives in a suitable manner. If the demands vary, new
41 executions will naturally be needed. This availability of solution diversity is the
42 most important benefit of the approaches proposed here.
43 Instead of developing some of the existing best-known MOEAs from scratch, a
44 customisable multi-objective framework based on evolutionary algorithms [Ledn
jg et al. (2007, 2008)] was used. The results obtained with three different MOEAs
47 demonstrate the validity of evolutionary strategies in this kind of multi-objective
48 real-world problems. Such results clearly improve on those obtained previously
49 in Tiwari and Chakraborti (2006), which is the only known and first attempt at the
50 multi-objective guillotinable formulation of the problem. Since the gene representa-
51 tion used allows for both guillotine and non-guillotine cutting processes, the number
52 of cuts required may vary depending on the features of the machines available. The
53 computational study shows that whenever non-guillotine cuts are possible, i.e. the
54 machinery allows for this kind of more sophisticated cutting process, the number
gg of cuts required to accomplish the job can be significantly reduced. Moreover, by
57 considering both the length and number of cuts, the approaches proposed yield so-
58 lutions with wastage levels similar to those in most previous approximations which
59 merely seek to optimise the overall length.
60
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However, those techniques which are able to implicitly handle multiple objec-
tives are much more complex and require greater computational effort. For some
large problem instances, MOEAs-based approaches are either not able to obtain the
optimal solution set, or they need excessive computational resources to do so. In
future work, further analysis must be performed on the behaviour of other existing
MOEAs and also on the design and test of other mutation and crossover operators
that may lead to more efficient schemes. As an alternative, the incorporation of
some interactive decision making during the MOEAs execution may allow for some
non-interesting areas of the solution space to be discarded, while still enabling a
diversity of solutions to be obtained in the most suitable regions. In addition, it
has been demonstrated that using non-guillotine cuts highly reduces the number
of cuts required. If the industrial machines available allow for this kind of cut,
it would be recommended to focus solely on this specific problem without having
to consider only guillotinable-type constructions. This would make it possible to
define a completely different gene representation and genetic operators. Although
the problem would become much more restrictive, a new range of implementations
is available for exploration.
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